On fixed points for $\alpha-\eta-\psi$-contractive multi-valued mappings in partial metric spaces*

Vincenzo La Rosa, Pasquale Vetro
Department of Mathematics and Informatics, University of Palermo
Via Archirafi, 34, 90123 Palermo, Italy
vincenzo.larosa@unipa.it; pasquale.vetro@unipa.it

Received: February 26, 2014 / Revised: July 15, 2014 / Published online: March 23, 2015

Abstract

Recently, Samet et al. introduced the notion of $\alpha-\psi$-contractive type mappings and established some fixed point theorems in complete metric spaces. Successively, Asl et al. introduced the notion of $\alpha_{*}-\psi$-contractive multi-valued mappings and gave a fixed point result for these multivalued mappings. In this paper, we establish results of fixed point for α_{*}-admissible mixed multivalued mappings with respect to a function η and common fixed point for a pair (S, T) of mixed multi-valued mappings, that is, α_{*}-admissible with respect to a function η in partial metric spaces. An example is given to illustrate our result.

Keywords: partial metric space, $\alpha-\eta-\psi$-contractive condition, α_{*}-admissible pair with respect to a function η, fixed point, common fixed point.

1 Introduction

The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in metric fixed point theory. This research started with the work of Banach [6] who proved a classical theorem, known as the Banach contraction principle, for the existence of a unique fixed point for a contraction. The importance of this result is also in the fact that it gives the convergence of an iterative scheme to a unique fixed point. Since Banach's result, there has been a lot of activity in this area and many developments have been taken place (see also [26]). Some authors have also provided results dealing with the existence and approximation of fixed points of certain classes of contractive multi-valued mappings [$7,8,12,17,21,22$].

Let (X, d) be a metric space and let $C B(X)$ denote the collection of all nonempty closed and bounded subsets of X. For $A, B \in C B(X)$, define

$$
H(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

[^0]where $d(x, A):=\inf \{d(x, a): a \in A\}$ is the distance of a point x to the set A. It is known that H is a metric on $C B(X)$, called the Hausdorff metric induced by the metric d.

Definition 1. Let (X, d) be a metric space. An element x in X is said to be a fixed point of a multi-valued mapping $T: X \rightarrow C B(X)$ if $x \in T x$.

We recall that $T: X \rightarrow C B(X)$ is said to be a multi-valued contraction mapping if there exists $k \in[0,1)$ such that

$$
H(T x, T y) \leqslant k d(x, y) \quad \text { for all } x, y \in X
$$

The study of fixed points for multi-valued contractions using the Hausdorff metric was initiated by Nadler [17] who proved the following theorem.

Theorem 1. (See [17].) Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ be a multi-valued contraction mapping. Then there exists $x \in X$ such that $x \in T x$.

Later on, an interesting and rich fixed point theory was developed. The theory of multi-valued mappings has application in control theory, convex optimization, differential equations and economics (see also [11,15]). On the other hand, Matthews [16] introduced the concept of a partial metric as a part of the study of denotational semantics of dataflow networks. He gave a modified version of the Banach contraction principle, more suitable in this context (see also [2,3,10,13, 19, 20, 27]). In fact, (complete) partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory (see, $[9,14,16,23$, 25,28]). More recently, Aydi et al. [5] introduced a notion of partial Hausdorff metric type, associated to a partial metric, and proved an analogous to the well known Nadler's fixed point theorem [17] in the setting of partial metric spaces. Very recently, Romaguera [24] introduced the concept of mixed multi-valued mappings, so that both a self mapping $T: X \rightarrow X$ and a multi-valued mapping $T: X \rightarrow C B^{p}(X)$ (the family of all nonempty, closed and bounded subsets of a partial metric space X), are mixed multi-valued mappings. In this paper, we establish results of fixed point for α_{*}-admissible mixed multivalued mappings with respect to a function η. Also, we prove results of common fixed point for a pair (S, T) of multi-valued mappings, that is, α_{*}-admissible with respect to a function η in the setting of partial metric spaces.

In the sequel, the letters \mathbb{R} and \mathbb{N} will denote the set of all real numbers and the set of all positive integer numbers, respectively.

2 Preliminaries

First, we recall some definitions of partial metric spaces that can be found in $[10,16,18$, $19,23]$. A partial metric on a nonempty set X is a function $p: X \times X \rightarrow[0,+\infty)$ such that for all $x, y, z \in X$:
(p1) $x=y \Leftrightarrow p(x, x)=p(x, y)=p(y, y)$;
(p2) $p(x, x) \leqslant p(x, y)$;
(p3) $p(x, y)=p(y, x)$;
(p4) $p(x, y) \leqslant p(x, z)+p(z, y)-p(z, z)$.
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X. It is clear that if $p(x, y)=0$, then from (p1) and (p2) it follows that $x=y$. But if $x=y, p(x, y)$ may not be 0 . A basic example of partial metric space is the pair $([0,+\infty), p)$, where $p(x, y)=\max \{x, y\}$.

Each partial metric p on X generates a T_{0} topology τ_{p} on X, which has as a base the family of open p-balls $\left\{B_{p}(x, \epsilon): x \in X, \epsilon>0\right\}$, where

$$
\begin{equation*}
B_{p}(x, \epsilon)=\{y \in X: p(x, y)<p(x, x)+\epsilon\} \tag{1}
\end{equation*}
$$

for all $x \in X, \epsilon>0$.
Let (X, p) be a partial metric space. A sequence $\left\{x_{n}\right\}$ in (X, p) converges to a point $x \in X$ if and only if $p(x, x)=\lim _{n \rightarrow+\infty} p\left(x, x_{n}\right)$.

A sequence $\left\{x_{n}\right\}$ in (X, p) is called a Cauchy sequence if there exists (and is finite) $\lim _{n, m \rightarrow+\infty} p\left(x_{n}, x_{m}\right)$. A partial metric space (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges, with respect to τ_{p}, to a point $x \in X$ such that $p(x, x)=\lim _{n, m \rightarrow+\infty} p\left(x_{n}, x_{m}\right)$.

A sequence $\left\{x_{n}\right\}$ in (X, p) is called 0 -Cauchy if $\lim _{n, m \rightarrow+\infty} p\left(x_{n}, x_{m}\right)=0$. We say that (X, p) is 0 -complete if every 0 -Cauchy sequence in X converges, with respect to τ_{p}, to a point $x \in X$ such that $p(x, x)=0$.

Now, we recall the definition of partial Hausdorff metric and some properties that can be found in [1]. Let $C B^{p}(X)$ be the family of all nonempty, closed and bounded subsets of the partial metric space (X, p), induced by the partial metric p. Note that closedness is taken from (X, τ_{p}) and boundedness is given as follows: A is a bounded subset in (X, p) if there exist $x_{0} \in X$ and $M \geqslant 0$ such that for all $a \in A$, we have $a \in B_{p}\left(x_{0}, M\right)$, that is, $p\left(x_{0}, a\right)<p\left(x_{0}, x_{0}\right)+M$.

For $A, B \in C B^{p}(X)$ and $x \in X$, define

$$
\begin{aligned}
p(x, A) & =\inf \{p(x, a): a \in A\}, \\
\delta_{p}(A, B) & =\sup \{p(a, B): a \in A\}, \\
\delta_{p}(B, A) & =\sup \{p(b, A): b \in B\} .
\end{aligned}
$$

Remark 1. (See [4].) Let (X, p) be a partial metric space and A any nonempty set in (X, p), then

$$
\begin{equation*}
a \in \bar{A} \quad \text { if and only if } p(a, A)=p(a, a) \tag{2}
\end{equation*}
$$

where \bar{A} denotes the closure of A with respect to the partial metric p. Note that A is closed in (X, p) if and only if $A=\bar{A}$.

In the following proposition, we bring some properties of the mapping $\delta_{p}: C B^{p}(X) \times$ $C B^{p}(X) \rightarrow[0,+\infty)$.

Proposition 1. (See [1, Prop. 2.2].) Let (X, p) be a partial metric space. For any A, B, $C \in C B^{p}(X)$, we have the following:
(i) $\delta_{p}(A, A)=\sup \{p(a, a): a \in A\}$;
(ii) $\delta_{p}(A, A) \leqslant \delta_{p}(A, B)$;
(iii) $\delta_{p}(A, B)=0$ implies that $A \subseteq B$;
(iv) $\delta_{p}(A, B) \leqslant \delta_{p}(A, C)+\delta_{p}(C, B)-\inf _{c \in C} p(c, c)$.

Let (X, p) be a partial metric space. For $A, B \in C B^{p}(X)$, define

$$
H_{p}(A, B)=\max \left\{\delta_{p}(A, B), \delta_{p}(B, A)\right\}
$$

In the following proposition, we bring some properties of the mapping H_{p}.
Proposition 2. (See [1, Prop. 2.3].) Let (X, p) be a partial metric space. For all $A, B, C \in$ $C B^{p}(X)$, we have:
(h1) $H_{p}(A, A) \leqslant H_{p}(A, B)$;
(h2) $H_{p}(A, B)=H_{p}(B, A)$;
(h3) $H_{p}(A, B) \leqslant H_{p}(A, C)+H_{p}(C, B)-\inf _{c \in C} p(c, c)$.
Corollary 1. (See [1, Cor. 2.4].) Let (X, p) be a partial metric space. For $A, B \in$ $C B^{p}(X)$ the following holds:

$$
H_{p}(A, B)=0 \quad \text { implies that } A=B
$$

Remark 2. The converse of Corollary 1 is not true in general as shown by the following example.

Example 1. (See [1, Ex. 2.6].) Let $X=[0,1]$ be endowed with the partial metric p : $X \times X \rightarrow[0,+\infty)$ defined by

$$
p(x, y)=\max \{x, y\} \quad \text { for all } x, y \in X
$$

From (i) of Proposition 1, we have

$$
H_{p}(X, X)=\delta_{p}(X, X)=\sup \{x: 0 \leqslant x \leqslant 1\}=1 \neq 0 .
$$

In view of Proposition 2 and Corollary 1, we call the mapping $H_{p}: C B^{p}(X) \times$ $C B^{p}(X) \rightarrow[0,+\infty)$, a partial Hausdorff metric induced by p.
Remark 3. It is easy to show that any Hausdorff metric is a partial Hausdorff metric. The converse is not true (see Example 1).

3 Main results

In [24], Romaguera introduced the concept of mixed multi-valued mappings as follows.
Definition 2. Let (X, p) be a partial metric space. $T: X \rightarrow X \cup C B^{p}(X)$ is called a mixed multi-valued mapping on X if T is a multi-valued mapping on X such that for each $x \in X, T x \in X$ or $T x \in C B^{p}(X)$.

As said above, both a self mapping $T: X \rightarrow X$ and a multi-valued mapping $T:$ $X \rightarrow C B^{p}(X)$, are mixed multi-valued mappings. This approach is motivated, in part, by the fact that $C B^{p}(X)$ may be empty.

Now, we consider the family

$$
\Psi=\left\{\left(\psi_{1}, \ldots, \psi_{5}\right): \psi_{i}:[0,+\infty) \rightarrow[0,+\infty), i=1, \ldots, 5\right\}
$$

such that:
(i) ψ_{2}, ψ_{5} are nondecreasing and ψ_{4} is increasing;
(ii) $\psi_{1}(t), \psi_{2}(t), \psi_{3}(t) \leqslant \psi_{4}(t)$ for all $t>0$;
(iii) $\psi_{4}(s+t) \leqslant \psi_{4}(s)+\psi_{4}(t)$ for all $s, t>0$;
(iv) $\psi_{1}(t), \psi_{2}(t), \psi_{5}(t)$ are continuous in $t=0$ and $\psi_{1}(0)=\psi_{2}(0)=\psi_{5}(0)=0$;
(v) $\sum_{n=1}^{+\infty} \psi_{4}^{n}(t)<+\infty$ for all $t>0$.

The following lemma is obvious.
Lemma 1. If $\left(\psi_{1}, \ldots, \psi_{5}\right) \in \Psi$, then $\psi_{4}(t)<t$ for all $t>0$.
Let (X, p) be a partial metric space and $\alpha, \eta: X \times X \rightarrow[0,+\infty)$ be two functions with η bounded. In the sequel we denote

$$
\alpha_{*}(A, B)=\inf _{x \in A, y \in B} \alpha(x, y) \quad \text { and } \quad \eta_{*}(A, B)=\sup _{x \in A, y \in B} \eta(x, y)
$$

for every $A, B \subset X$.
Definition 3. Let (X, p) be a partial metric space, $T: X \rightarrow X \cup C B^{p}(X)$ a mixed multivalued mapping and $\alpha: X \times X \rightarrow[0,+\infty)$ a function. We say that T is an α_{*}-admissible mixed multi-valued mapping if

$$
\alpha(x, y) \geqslant 1 \quad \text { implies } \quad \alpha_{*}(T x, T y) \geqslant 1, \quad x, y \in X .
$$

Definition 4. Let (X, p) be a partial metric space, $S, T: X \rightarrow X \cup C B^{p}(X)$ be two mixed multi-valued mappings and $\alpha, \eta: X \times X \rightarrow[0,+\infty)$ be two functions with η bounded. We say that the pair (S, T) is α_{*}-admissible with respect to η if:

$$
\alpha(x, y) \geqslant \eta(x, y) \quad \text { implies } \quad \alpha_{*}(S x, T y) \geqslant \eta_{*}(S x, T y), \quad x, y \in X
$$

We say that T is an α_{*}-admissible mixed multi-valued mapping with respect to η if the pair (T, T) is α_{*}-admissible with respect to η.

If we take, $\eta(x, y)=1$ for all $x, y \in X$, then the definition of α_{*}-admissible mixed multi-valued mapping with respect to η reduces to Definition 3 .

The following theorem is one of our main results.
Theorem 2. Let (X, p) be a 0-complete partial metric space and let $T: X \rightarrow X \cup$ $C B^{p}(X)$ be a mixed multi-valued mapping. Assume that there exist $\left(\psi_{1}, \ldots, \psi_{5}\right) \in \Psi$
and two functions $\alpha, \eta: X \times X \rightarrow[0,+\infty)$ with η bounded, such that

$$
\begin{align*}
& \inf _{u \in T x} \eta(x, u) \leqslant \alpha(x, y) \quad \text { implies } \\
& H(T x, T y) \leqslant \max \{ \psi_{1}(p(x, y)), \psi_{2}(p(x, T x)), \psi_{3}(p(y, T y)) \\
&\left.\frac{\psi_{4}(p(x, T y))+\psi_{5}(p(y, T x)-p(y, y))}{2}\right\} \tag{3}
\end{align*}
$$

for all $x, y \in X$. Also suppose that the following assertions hold:
(i) T is an α_{*}-admissible mixed multi-valued mapping with respect to η;
(ii) there exist $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geqslant \eta\left(x_{0}, x_{1}\right)$;
(iii) for a sequence $\left\{x_{n}\right\} \subset X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then either

$$
\inf _{u_{n} \in T y_{n}} \eta\left(y_{n}, u_{n}\right) \leqslant \alpha\left(y_{n}, x\right) \quad \text { or } \quad \inf _{v_{n} \in T z_{n}} \eta\left(z_{n}, v_{n}\right) \leqslant \alpha\left(z_{n}, x\right)
$$

holds for all $n \in \mathbb{N}$, where $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are two given sequences such that $y_{n} \in T x_{n}$ and $z_{n} \in T y_{n}$ for all $n \in \mathbb{N}$.
Then T has a fixed point.
Proof. By (ii) there exist $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geqslant \eta\left(x_{0}, x_{1}\right)$. This implies that $\alpha\left(x_{0}, x_{1}\right) \geqslant \eta\left(x_{0}, x_{1}\right) \geqslant \inf _{y \in T x_{0}} \eta\left(x_{0}, y\right)$. If $x_{0}=x_{1}$ or $x_{1} \in T x_{1}$, then x_{1} is a fixed point of T. Assume that $x_{1} \notin T x_{1}$ and that $T x_{1}$ is not a singleton. Therefore, from (3), we have

$$
\left.\left.\begin{array}{rl}
0 \leqslant p\left(x_{1}, T x_{1}\right) \leqslant H\left(T x_{0}, T x_{1}\right) \\
\leqslant \max \{ & \psi_{1}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{2}\left(p\left(x_{0}, T x_{0}\right)\right), \psi_{3}\left(p\left(x_{1}, T x_{1}\right)\right) \\
& \left.\frac{\psi_{4}\left(p\left(x_{0}, T x_{1}\right)\right)+\psi_{5}\left(p\left(x_{1}, T x_{0}\right)-p\left(x_{1}, x_{1}\right)\right)}{2}\right\} \\
\leqslant \max \left\{\psi_{1}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{2}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{3}\left(p\left(x_{1}, T x_{1}\right)\right),\right. \\
\leqslant & \left.\frac{\psi_{4}\left(p\left(x_{0}, x_{1}\right)\right)+\psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)}{2}\right\} \\
\leqslant & \max \left\{\psi_{1}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{2}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{3}\left(p\left(x_{1}, T x_{1}\right)\right)\right. \\
\left.\max \left\{\psi_{4}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)\right\}\right\}
\end{array}\right\} \psi_{4}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)\right\} .
$$

Now, if

$$
\max \left\{\psi_{4}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)\right\}=\psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)
$$

then

$$
0<p\left(x_{1}, T x_{1}\right) \leqslant H\left(T x_{0}, T x_{1}\right) \leqslant \psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)<p\left(x_{1}, T x_{1}\right)
$$

which is a contradiction. Hence,

$$
0<p\left(x_{1}, T x_{1}\right) \leqslant H\left(T x_{0}, T x_{1}\right) \leqslant \psi_{4}\left(p\left(x_{0}, x_{1}\right)\right)
$$

If $q>1$, then

$$
0<p\left(x_{1}, T x_{1}\right)<q H\left(T x_{0}, T x_{1}\right) \leqslant q \psi_{4}\left(p\left(x_{0}, x_{1}\right)\right) .
$$

So there exists $x_{2} \in T x_{1}$ such that

$$
\begin{equation*}
0<p\left(x_{1}, x_{2}\right)<q H\left(T x_{0}, T x_{1}\right) \leqslant q \psi_{4}\left(p\left(x_{0}, x_{1}\right)\right) . \tag{4}
\end{equation*}
$$

If $T x_{1}=\left\{x_{2}\right\}$ is a singleton, again by (3), we get

$$
0<p\left(x_{1}, x_{2}\right) \leqslant H\left(T x_{0}, T x_{1}\right) \leqslant \psi_{4}\left(p\left(x_{0}, x_{1}\right)\right)
$$

and so (4) holds.
Note that $x_{1} \neq x_{2}$. Also, since T is α_{*}-admissible with respect to η, we have $\alpha_{*}\left(T x_{0}, T x_{1}\right) \geqslant \eta_{*}\left(T x_{0}, T x_{1}\right)$. This implies

$$
\alpha\left(x_{1}, x_{2}\right) \geqslant \alpha_{*}\left(T x_{0}, T x_{1}\right) \geqslant \eta_{*}\left(T x_{0}, T x_{1}\right) \geqslant \eta\left(x_{1}, x_{2}\right) \geqslant \inf _{y \in T x_{1}} \eta\left(x_{1}, y\right) .
$$

Therefore, from (3), we have

$$
\begin{align*}
H\left(T x_{1}, T x_{2}\right) \leqslant \max \{ & \psi_{1}\left(p\left(x_{1}, x_{2}\right)\right), \psi_{2}\left(p\left(x_{1}, T x_{1}\right)\right), \psi_{3}\left(p\left(x_{2}, T x_{2}\right)\right) \\
& \left.\frac{\psi_{4}\left(p\left(x_{1}, T x_{2}\right)\right)+\psi_{5}\left(p\left(x_{2}, T x_{1}\right)-p\left(x_{2}, x_{2}\right)\right)}{2}\right\} \\
\leqslant & \psi_{4}\left(p\left(x_{1}, x_{2}\right)\right) \tag{5}
\end{align*}
$$

Put $t_{0}=p\left(x_{0}, x_{1}\right)>0$. Then from (4), we deduce that $p\left(x_{1}, x_{2}\right)<q \psi_{4}\left(t_{0}\right)$. Now, since ψ_{4} is increasing, we deduce $\psi_{4}\left(p\left(x_{1}, x_{2}\right)\right)<\psi_{4}\left(q \psi_{4}\left(t_{0}\right)\right)$. Put

$$
q_{1}=\frac{\psi_{4}\left(q \psi_{4}\left(t_{0}\right)\right)}{\psi_{4}\left(p\left(x_{1}, x_{2}\right)\right)}>1
$$

If $x_{2} \in T x_{2}$, then x_{2} is a fixed point of T. Hence, we suppose that $x_{2} \notin T x_{2}$. Then

$$
0<p\left(x_{2}, T x_{2}\right) \leqslant H\left(T x_{1}, T x_{2}\right)<q_{1} H\left(T x_{1}, T x_{2}\right)
$$

So there exists $x_{3} \in T x_{2}$ (obviously $x_{3}=T x_{2}$ if $T x_{2}$ is a singleton) such that

$$
0<p\left(x_{2}, x_{3}\right)<q_{1} H\left(T x_{1}, T x_{2}\right)
$$

and from (5), we get

$$
0<p\left(x_{2}, x_{3}\right)<q_{1} H\left(T x_{1}, T x_{2}\right) \leqslant q_{1} \psi_{4}\left(p\left(x_{1}, x_{2}\right)\right)=\psi_{4}\left(q \psi_{4}\left(t_{0}\right)\right)
$$

Again, since ψ_{4} is increasing, then $\psi_{4}\left(p\left(x_{2}, x_{3}\right)\right)<\psi_{4}\left(\psi_{4}\left(q \psi_{4}\left(t_{0}\right)\right)\right)$. Put

$$
q_{2}=\frac{\psi_{4}\left(\psi_{4}\left(q \psi_{4}\left(t_{0}\right)\right)\right)}{\psi_{4}\left(p\left(x_{2}, x_{3}\right)\right)}>1
$$

If $x_{3} \in T x_{3}$, then x_{3} is a fixed point of T. Hence, we assume that $x_{3} \notin T x_{3}$. Then

$$
0<p\left(x_{3}, T x_{3}\right) \leqslant H\left(T x_{2}, T x_{3}\right)<q_{2} H\left(T x_{2}, T x_{3}\right)
$$

So there exists $x_{4} \in T x_{3}$ (obviously $x_{4}=T x_{3}$ if $T x_{3}$ is a singleton) such that

$$
\begin{equation*}
0<p\left(x_{3}, x_{4}\right)<q_{2} H\left(T x_{2}, T x_{3}\right) \tag{6}
\end{equation*}
$$

Clearly, $x_{2} \neq x_{3}$. Again, since T is α_{*}-admissible with respect to η,

$$
\alpha\left(x_{2}, x_{3}\right) \geqslant \alpha_{*}\left(T x_{1}, T x_{2}\right) \geqslant \eta_{*}\left(T x_{1}, T x_{2}\right) \geqslant \eta\left(x_{2}, x_{3}\right) \geqslant \inf _{y \in T x_{2}} \eta\left(x_{2}, y\right)
$$

Then from (3), we have

$$
\begin{align*}
H\left(T x_{2}, T x_{3}\right) \leqslant & \max \left\{\psi_{1}\left(p\left(x_{2}, x_{3}\right)\right), \psi_{2}\left(p\left(x_{2}, T x_{2}\right)\right), \psi_{3}\left(p\left(x_{3}, T x_{3}\right)\right)\right. \\
& \left.\frac{\psi_{4}\left(p\left(x_{2}, T x_{3}\right)\right)+\psi_{5}\left(p\left(x_{3}, T x_{2}\right)-p\left(x_{3}, x_{3}\right)\right)}{2}\right\} \\
& \leqslant \psi_{4}\left(p\left(x_{2}, x_{3}\right)\right) \tag{7}
\end{align*}
$$

Thus from (6) and (7), we deduce that

$$
0<p\left(x_{3}, x_{4}\right)<q_{2} H\left(T x_{2}, T x_{3}\right) \leqslant q_{2} \psi_{4}\left(p\left(x_{2}, x_{3}\right)\right)=\psi_{4}\left(\psi_{4}\left(q \psi_{4}\left(t_{0}\right)\right)\right)
$$

By continuing this process, we obtain a sequence $\left\{x_{n}\right\} \subset X$ such that $x_{n} \in T x_{n-1}$, $x_{n} \neq x_{n-1}, \alpha\left(x_{n-1}, x_{n}\right) \geqslant \eta\left(x_{n-1}, x_{n}\right)$ and $p\left(x_{n}, x_{n+1}\right) \leqslant \psi_{4}^{n-1}\left(q \psi_{4}\left(t_{0}\right)\right)$ for all $n \in \mathbb{N}$. Now for all $m>n$, we can write

$$
p\left(x_{n}, x_{m}\right) \leqslant \sum_{k=n}^{m-1} p\left(x_{k}, x_{k+1}\right) \leqslant \sum_{k=n}^{m-1} \psi_{4}^{k-1}\left(q \psi_{4}\left(t_{0}\right)\right)
$$

Therefore, $\left\{x_{n}\right\}$ is a 0 -Cauchy sequence. Since, (X, p) is a 0 -complete partial metric space, then there exists $z \in X$ such that $p\left(x_{n}, z\right) \rightarrow p(z, z)=0$ as $n \rightarrow+\infty$. Then from (iii), either

$$
\inf _{u_{n} \in T y_{n}} \eta\left(y_{n}, u_{n}\right) \leqslant \alpha\left(y_{n}, z\right) \quad \text { or } \quad \inf _{v_{n} \in T z_{n}} \eta\left(z_{n}, v_{n}\right) \leqslant \alpha\left(z_{n}, z\right)
$$

holds for all $n \in \mathbb{N}$, where $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are two given sequences such that $y_{n} \in T x_{n}$ and $z_{n} \in T y_{n}$ for all $n \in \mathbb{N}$. Here $x_{n-1} \in T x_{n-2}$ and $x_{n} \in T x_{n-1}$.

Therefore, either

$$
\inf _{u_{n} \in T x_{n-1}} \eta\left(x_{n-1}, u_{n}\right) \leqslant \alpha\left(x_{n-1}, z\right) \quad \text { or } \quad \inf _{v_{n} \in T x_{n}} \eta\left(x_{n}, v_{n}\right) \leqslant \alpha\left(x_{n}, z\right)
$$

holds for all $n \in \mathbb{N}$. If $p(z, T z)>0$, from (3), we have

$$
\begin{array}{r}
p(z, T z) \leqslant H\left(T x_{n-1}, T z\right)+p\left(x_{n}, z\right)-p\left(x_{n}, x_{n}\right) \\
\leqslant \max \left\{\psi_{1}\left(p\left(x_{n-1}, z\right)\right), \psi_{2}\left(p\left(x_{n-1}, T x_{n-1}\right)\right), \psi_{3}(p(z, T z)),\right. \\
\\
\left.\frac{\psi_{4}\left(p\left(x_{n-1}, T z\right)\right)+\psi_{5}\left(p\left(z, T x_{n-1}\right)\right)}{2}\right\}+p\left(x_{n}, z\right) \\
\leqslant \max \left\{\psi_{1}\left(p\left(x_{n-1}, z\right)\right), \psi_{2}\left(p\left(x_{n-1}, x_{n}\right)\right), \psi_{3}(p(z, T z))\right. \\
\end{array} \begin{aligned}
& \left.\frac{\psi_{4}\left(p\left(x_{n-1}, z\right)+p(z, T z)\right)+\psi_{5}\left(p\left(z, x_{n}\right)\right)}{2}\right\}+p\left(x_{n}, z\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& p(z, T z) \leqslant H\left(T x_{n}, T z\right)+p\left(x_{n+1}, z\right)-p\left(x_{n+1}, x_{n+1}\right) \\
& \leqslant \max \left\{\psi_{1}\left(p\left(x_{n}, z\right)\right), \psi_{2}\left(p\left(x_{n}, T x_{n}\right)\right), \psi_{3}(p(z, T z))\right. \\
&\left.\frac{\psi_{4}\left(p\left(x_{n}, T z\right)\right)+\psi_{5}\left(p\left(z, T x_{n}\right)\right)}{2}\right\}+p\left(x_{n+1}, z\right) \\
& \leqslant \max \left\{\psi_{1}\left(p\left(x_{n}, z\right)\right), \psi_{2}\left(p\left(x_{n}, x_{n+1}\right)\right), \psi_{3}(p(z, T z)),\right. \\
&\left.\frac{\psi_{4}\left(p\left(x_{n}, z\right)+p(z, T z)\right)+\psi_{5}\left(p\left(z, x_{n+1}\right)\right)}{2}\right\}+p\left(x_{n+1}, z\right)
\end{aligned}
$$

for all $n \in \mathbb{N}$. Taking limit as $n \rightarrow+\infty$ in the above inequalities, we get

$$
p(z, T z) \leqslant \psi_{4}(p(z, T z))<p(z, T z)
$$

a contradiction. Thus $p(z, T z)=0$. If $T z$ is a singleton, then $z=T z$. If $T z$ is not a singleton, from $p(z, T z)=0=p(z, z)$, by Remark 1 , we deduce $z \in T z$. Thus z is a fixed point of T.

If in Theorem 2, we assume $\eta(x, y)=1$ for all $x, y \in X$, then we obtain the following corollary.

Corollary 2. Let (X, p) be a 0 -complete partial metric space and let $T: X \rightarrow X \cup$ $C B^{p}(X)$ be a mixed multi-valued mapping. Assume that there exist $\left(\psi_{1}, \ldots, \psi_{5}\right) \in \Psi$
and a function $\alpha: X \times X \rightarrow[0,+\infty)$, such that

$$
\begin{array}{r}
H(T x, T y) \leqslant \max \left\{\psi_{1}(p(x, y)), \psi_{2}(p(x, T x)), \psi_{3}(p(y, T y)),\right. \\
\left.\frac{\psi_{4}(p(x, T y))+\psi_{5}(p(y, T x)-p(y, y))}{2}\right\} \tag{8}
\end{array}
$$

for all $x, y \in X$ with $\alpha(x, y) \geqslant 1$. Also suppose the following assertions hold:
(i) T is an α_{*}-admissible mixed multi-valued mapping;
(ii) there exist $x_{0} \in X$ and $x_{1} \in T x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geqslant 1$;
(iii) for a sequence $\left\{x_{n}\right\} \subset X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then either

$$
\alpha\left(y_{n}, x\right) \geqslant 1 \quad \text { or } \quad \alpha\left(z_{n}, x\right) \geqslant 1
$$

holds for all $n \in \mathbb{N}$ where $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are two given sequences such that $y_{n} \in T x_{n}$ and $z_{n} \in T y_{n}$ for all $n \in \mathbb{N}$.

Then T has a fixed point.
Example 2. Let $X=\{1,2,3,4\}$ and $p: X \times X \rightarrow[0,+\infty)$ be defined by $p(1,1)=$ $p(2,2)=p(4,4)=1 / 6, p(3,3)=0, p(1,2)=p(1,4)=p(2,4)=p(3,4)=1 / 2$, $p(1,3)=1 / 4, p(2,3)=1 / 3$ and $p(x, y)=p(y, x)$ for all $x, y \in X$. Let $T: X \rightarrow$ $C B^{p}(X)$ be defined by $T 1=\{3\}, T 2=\{1\}, T 3=\{3\}$ and $T 4=\{1,4\}$. Clearly, (X, p) is a 0 -complete partial metric space and $T x$ is a bounded closed subset of X for all $x \in X$. Let $\alpha: X \times X \rightarrow[0,+\infty)$ be defined by $\alpha(1,1)=\alpha(1,3)=$ $\alpha(2,3)=\alpha(3,3)=\alpha(3,1)=\alpha(3,2)=1$ and $\alpha(x, y)=0$ otherwise. Now, let $\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \psi_{5}:[0,+\infty) \rightarrow[0,+\infty)$ be defined by $\psi_{1}(t)=t / 2, \psi_{2}(t)=2 t / 3$, $\psi_{3}(t)=t / 2, \psi_{4}(t)=3 t / 4$ and $\psi_{5}(t)=5 t / 6$, then $\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \psi_{5}\right) \in \Psi$.

Now, we have:

$$
\begin{aligned}
& H(T 1, T 1)=H(\{3\},\{3\})=0 \leqslant \psi_{1}(p(1,1)) \\
& H(T 1, T 3)=H(\{3\},\{3\})=0 \leqslant \psi_{1}(p(1,3)) \\
& H(T 2, T 3)=H(\{1\},\{3\})=0.25 \leqslant \psi_{3}(p(2,\{1\})), \\
& H(T 3, T 3)=H(\{3\},\{3\})=0 \leqslant \psi_{1}(p(3,3)) .
\end{aligned}
$$

This implies

$$
\begin{array}{r}
H(T x, T y) \leqslant \max \left\{\psi_{1}(p(x, y)), \psi_{2}(p(x, T x)), \psi_{3}(p(y, T y)),\right. \\
\left.\frac{\psi_{4}(p(x, T y))+\psi_{5}[p(y, T x)-p(y, y)]}{2}\right\}
\end{array}
$$

for all $x, y \in X$ with $\alpha(x, y) \geqslant 1 . T$ is an α_{*}-admissible mixed multi-valued mapping and $x_{0}=1$ satisfies condition (ii). Now, we note that for a sequence $\left\{x_{n}\right\} \subset X$ such that
$\alpha\left(x_{n}, x_{n+1}\right) \geqslant 1$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, we have $x=3$ and this ensures that (iii) holds. Thus, by Corollary 2 the mixed multi-valued mapping T has a fixed point. We note that

$$
\begin{aligned}
H(T 2, T 4)=\frac{1}{2}>\max \{ & \psi_{1}(p(2,4)), \psi_{2}(p(2, T 2)), \psi_{3}(p(4, T 4)), \\
& \left.\frac{\psi_{4}(p(2, T 4))+\psi_{5}(p(4, T 2)-p(4,4))}{2}\right\} .
\end{aligned}
$$

4 Common fixed point results

Let (X, p) be a partial metric space, let $\alpha, \eta: X \times X \rightarrow[0,+\infty)$ be two functions with η bounded and let $S, T: X \rightarrow 2^{X}$ be two multi-valued mappings on X. We denote

$$
\Gamma(S x, T y)=\min \left\{\inf _{u \in S x} \eta(x, u), \inf _{v \in T y} \eta(y, v)\right\}=\Gamma(T y, S x)
$$

Let $\Phi=\left\{\left(\psi_{1}, \ldots, \psi_{5}\right): \psi_{i}:[0,+\infty) \rightarrow[0,+\infty), i=1, \ldots, 5\right\}$ such that:
(i) ψ_{2}, ψ_{3} are nondecreasing and ψ_{4}, ψ_{5} are increasing;
(ii) $\psi_{1}(t), \psi_{2}(t), \psi_{3}(t) \leqslant \min \left\{\psi_{4}(t), \psi_{5}(t)\right\}$ for all $t>0$;
(iii) $\psi_{i}(s+t) \leqslant \psi_{i}(s)+\psi_{i}(t)(i=4,5)$ for all $s, t>0$;
(iv) $\psi_{1}(t), \psi_{2}(t)$ and $\psi_{3}(t)$ are continuous in $t=0$ and $\psi_{1}(0)=\psi_{2}(0)=$ $\psi_{3}(0)=0$;
(v) $\sum_{n=1}^{+\infty} \psi_{5}^{n}(t)<+\infty$ for all $t>0$;
(vi) $\psi_{4}(t)<t$ for all $t>0$;
(vii) $\psi_{4}\left(\psi_{5}(t)\right)=\psi_{5}\left(\psi_{4}(t)\right)$ for all $t>0$.

The following theorem is our main result on the existence of common fixed point for multi-valued mappings.
Theorem 3. Let (X, p) be a 0-complete partial metric space and let $S, T: X \rightarrow$ $X \cup C B^{p}(X)$ be two mixed multi-valued mappings on X. Assume that there exist $\left(\psi_{1}, \ldots, \psi_{5}\right) \in \Phi$ and two functions $\alpha, \eta: X \times X \rightarrow[0,+\infty)$ with η bounded such that

$$
\begin{align*}
H(S x, T y) \leqslant \max \{ & \psi_{1}(p(x, y)), \psi_{2}(p(x, S x)), \psi_{3}(p(y, T y)) \\
& \left.\frac{\psi_{4}(p(x, T y)-p(x, x))+\psi_{5}(p(y, T x)-p(y, y))}{2}\right\} \tag{9}
\end{align*}
$$

for all $x, y \in X$ with $\alpha(x, y) \geqslant \Gamma(S x, T y)$. Also suppose the following assertions hold:
(i) the pair (S, T) is α_{*}-admissible with respect to η;
(ii) there exist $x_{0} \in X$ and $x_{1} \in S x_{0}$ such that $\alpha\left(x_{0}, x_{1}\right) \geqslant \eta\left(x_{0}, x_{1}\right)$;
(iii) $\alpha(x, x) \geqslant \Gamma(S x, T x)$ for all $x \in X$, which is a fixed point of S or T;
(iv) for a sequence $\left\{x_{n}\right\} \subset X$ such that $\alpha\left(x_{n}, x_{n+1}\right) \geqslant \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$ as $n \rightarrow+\infty$, then either

$$
\inf _{u_{n} \in S y_{n}} \eta\left(y_{n}, u_{n}\right) \leqslant \alpha\left(y_{n}, x\right) \quad \text { or } \quad \inf _{v_{n} \in T z_{n}} \eta\left(z_{n}, v_{n}\right) \leqslant \alpha\left(z_{n}, x\right)
$$

holds for all $n \in \mathbb{N}$ where $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are two given sequences such that $y_{n} \in T x_{n}$ and $z_{n} \in S y_{n}$ for all $n \in \mathbb{N}$.

Then S and T have a common fixed point.
Proof. From (iii) and (9) it follows that the mixed multi-valued mappings S and T have the same fixed points. Let $x_{0} \in X$ and $x_{1} \in S x_{0}$ be such that $\alpha\left(x_{0}, x_{1}\right) \geqslant \eta\left(x_{0}, x_{1}\right)$, then

$$
\alpha\left(x_{0}, x_{1}\right) \geqslant \eta\left(x_{0}, x_{1}\right) \geqslant \inf _{u \in S x_{0}} \eta\left(x_{0}, u\right) \geqslant \Gamma\left(S x_{0}, T x_{1}\right) .
$$

If $x_{0}=x_{1}$, then x_{0} is a common fixed point of S and T. The same holds if $x_{1} \in T x_{1}$. Hence, we assume that $x_{0} \neq x_{1}$ and $x_{1} \notin T x_{1}$. Assume that $T x_{1}$ is not a singleton, from (9), we have

$$
\begin{aligned}
& 0<p\left(x_{1}, T x_{1}\right) \leqslant H\left(S x_{0}, T x_{1}\right) \\
& \leqslant \max \left\{\psi_{1}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{2}\left(p\left(x_{0}, S x_{0}\right)\right), \psi_{3}\left(p\left(x_{1}, T x_{1}\right)\right)\right. \\
&\left.\frac{\psi_{4}\left(p\left(x_{0}, T x_{1}\right)-p\left(x_{0}, x_{0}\right)\right)+\psi_{5}\left(p\left(x_{1}, S x_{0}\right)-p\left(x_{1}, x_{1}\right)\right)}{2}\right\} \\
& \leqslant \max \left\{\psi_{1}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{2}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{3}\left(p\left(x_{1}, T x_{1}\right)\right),\right. \\
&\left.\frac{\psi_{4}\left(p\left(x_{0}, x_{1}\right)+p\left(x_{1}, T x_{1}\right)-p\left(x_{1}, x_{1}\right)-p\left(x_{0}, x_{0}\right)\right)}{2}\right\} \\
& \leqslant \max \left\{\psi_{1}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{2}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{3}\left(p\left(x_{1}, T x_{1}\right)\right)\right. \\
&\left.\max \left\{\psi_{4}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)\right\}\right\} \\
&= \max \left\{\psi_{4}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)\right\} .
\end{aligned}
$$

Now, if $\max \left\{\psi_{4}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)\right\}=\psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)$, then

$$
0<p\left(x_{1}, T x_{1}\right) \leqslant H\left(S x_{0}, T x_{1}\right) \leqslant \psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)<p\left(x_{1}, T x_{1}\right)
$$

which is a contradiction. Hence,

$$
\max \left\{\psi_{4}\left(p\left(x_{0}, x_{1}\right)\right), \psi_{4}\left(p\left(x_{1}, T x_{1}\right)\right)\right\}=\psi_{4}\left(p\left(x_{0}, x_{1}\right)\right)
$$

If $q>1$, then

$$
0<p\left(x_{1}, T x_{1}\right) \leqslant H\left(S x_{0}, T x_{1}\right)<q H\left(S x_{0}, T x_{1}\right)
$$

and hence there exists $x_{2} \in T x_{1}$ such that

$$
\begin{equation*}
0<p\left(x_{1}, x_{2}\right)<q H\left(S x_{0}, T x_{1}\right) \leqslant q \psi_{4}\left(p\left(x_{0}, x_{1}\right)\right) \tag{10}
\end{equation*}
$$

If $T x_{1}=\left\{x_{2}\right\}$ is a singleton, again by (9), we get

$$
0<p\left(x_{1}, x_{2}\right) \leqslant H\left(S x_{0}, T x_{1}\right) \leqslant \psi_{4}\left(p\left(x_{0}, x_{1}\right)\right)
$$

and so (10) holds. Note that $x_{1} \neq x_{2}$. Also, since the pair (S, T) is α_{*}-admissible with respect to η, then $\alpha_{*}\left(S x_{0}, T y_{1}\right) \geqslant \eta_{*}\left(S x_{0}, T y_{1}\right)$. This implies

$$
\begin{aligned}
\alpha\left(x_{1}, x_{2}\right) & \geqslant \alpha_{*}\left(S x_{0}, T x_{1}\right) \geqslant \eta_{*}\left(S x_{0}, T x_{1}\right) \geqslant \eta\left(x_{1}, x_{2}\right) \\
& \geqslant \inf _{y \in T x_{1}} \eta\left(x_{1}, y\right) \geqslant \Gamma\left(S x_{2}, T x_{1}\right)
\end{aligned}
$$

If $x_{2} \in S x_{2}$, then x_{2} is a common fixed point of S and T. Assume that $x_{2} \notin S x_{2}$ and that $S x_{2}$ is not a singleton, from (9), we have

$$
\begin{aligned}
& 0<p\left(x_{2}, S x_{2}\right) \leqslant H\left(S x_{2}, T x_{1}\right) \\
& \leqslant \max \left\{\psi_{1}\left(p\left(x_{2}, x_{1}\right)\right), \psi_{2}\left(p\left(x_{2}, S x_{2}\right)\right), \psi_{3}\left(p\left(x_{1}, T x_{1}\right)\right),\right. \\
&\left.\frac{\psi_{4}\left(p\left(x_{2}, T x_{1}\right)-p\left(x_{2}, x_{2}\right)\right)+\psi_{5}\left(p\left(x_{1}, S x_{2}\right)-p\left(x_{1}, x_{1}\right)\right)}{2}\right\} \\
& \leqslant \max \left\{\psi_{1}\left(p\left(x_{1}, x_{2}\right)\right), \psi_{2}\left(p\left(x_{2}, S x_{2}\right)\right), \psi_{3}\left(p\left(x_{1}, x_{2}\right)\right),\right. \\
&\left.\frac{\psi_{5}\left(p\left(x_{1}, x_{2}\right)+p\left(x_{2}, S x_{2}\right)-p\left(x_{2}, x_{2}\right)-p\left(x_{1}, x_{1}\right)\right)}{2}\right\} \\
& \leqslant \max \left\{\psi_{5}\left(p\left(x_{1}, x_{2}\right)\right), \psi_{5}\left(p\left(x_{2}, S x_{2}\right)\right)\right\} .
\end{aligned}
$$

Now, if $\max \left\{\psi_{5}\left(p\left(x_{1}, x_{2}\right)\right), \psi_{5}\left(p\left(x_{2}, S x_{2}\right)\right)\right\}=\psi_{5}\left(p\left(x_{2}, S x_{2}\right)\right)$, then

$$
0<p\left(x_{2}, S x_{2}\right) \leqslant H\left(S x_{2}, T x_{1}\right) \leqslant \psi_{5}\left(p\left(x_{2}, S x_{2}\right)\right)<p\left(x_{2}, S x_{2}\right)
$$

which is a contradiction. Hence,

$$
\begin{equation*}
0<p\left(x_{2}, S x_{2}\right) \leqslant H\left(S x_{2}, T x_{1}\right) \leqslant \psi_{5}\left(p\left(x_{1}, x_{2}\right)\right) \tag{11}
\end{equation*}
$$

The same is worth also if $S x_{2}$ is a singleton. Put $t_{0}=p\left(x_{0}, x_{1}\right)$. Then from (10), we have $p\left(x_{1}, x_{2}\right)<q \psi_{4}\left(t_{0}\right)$ where $t_{0}>0$. Now, since ψ_{5} is increasing, then $\psi_{5}\left(p\left(x_{1}, x_{2}\right)\right)<$ $\psi_{5}\left(q \psi_{4}\left(t_{0}\right)\right)$. Put

$$
q_{1}=\frac{\psi_{5}\left(q \psi_{4}\left(t_{0}\right)\right)}{\psi_{5}\left(p\left(x_{1}, x_{2}\right)\right)}>1
$$

Since $x_{2} \in T x_{1}$ or $x_{2}=T x_{1}$, we have

$$
0<p\left(x_{2}, S x_{2}\right) \leqslant H\left(S x_{2}, T x_{1}\right)<q_{1} H\left(S x_{2}, T x_{1}\right)
$$

and hence there exists $x_{3} \in S x_{2}$ or $x_{3}=S x_{2}$ such that

$$
0<p\left(x_{2}, x_{3}\right) \leqslant q_{1} H\left(S x_{2}, T x_{1}\right)
$$

Now, from (11), we deduce

$$
0<p\left(x_{2}, x_{3}\right)<q_{1} H\left(S x_{2}, T x_{1}\right) \leqslant q_{1} \psi_{5}\left(p\left(x_{1}, x_{2}\right)\right)=\psi_{5}\left(q \psi_{4}\left(t_{0}\right)\right)
$$

Clearly, $x_{2} \neq x_{3}$. Again, since the pair (S, T) is α_{*}-admissible with respect to η, then

$$
\begin{aligned}
\alpha\left(x_{2}, x_{3}\right) & \geqslant \alpha_{*}\left(T x_{1}, S x_{2}\right) \geqslant \eta_{*}\left(T x_{1}, S x_{2}\right) \geqslant \eta\left(x_{2}, x_{3}\right) \\
& \geqslant \inf _{y \in S x_{2}} \eta\left(x_{2}, y\right) \geqslant \Gamma\left(S x_{2}, T x_{3}\right) .
\end{aligned}
$$

If $x_{3} \in T x_{3}$ or $x_{3}=T x_{3}$, then x_{3} is a common fixed point of S and T. Assume that $x_{3} \notin T x_{3}$. Now, from (9) we deduce

$$
\begin{aligned}
& 0<p\left(x_{3}, T x_{3}\right) \leqslant H\left(S x_{2}, T x_{3}\right) \\
& \leqslant \max \left\{\psi_{1}\left(p\left(x_{2}, x_{3}\right)\right), \psi_{2}\left(p\left(x_{2}, S x_{2}\right)\right), \psi_{3}\left(p\left(x_{3}, T x_{3}\right)\right)\right. \text {, } \\
& \left.\frac{\psi_{4}\left(p\left(x_{2}, T x_{3}\right)-p\left(x_{2}, x_{2}\right)\right)+\psi_{5}\left(p\left(x_{3}, S x_{2}\right)-p\left(x_{3}, x_{3}\right)\right)}{2}\right\} \\
& \leqslant \max \left\{\psi_{1}\left(p\left(x_{2}, x_{3}\right)\right), \psi_{2}\left(p\left(x_{2}, x_{3}\right)\right), \psi_{3}\left(p\left(x_{3}, T x_{3}\right)\right),\right. \\
& \left.\frac{\psi_{4}\left(p\left(x_{2}, x_{3}\right)+p\left(x_{3}, T x_{3}\right)-p\left(x_{3}, x_{3}\right)-p\left(x_{2}, x_{2}\right)\right)}{2}\right\} \\
& \leqslant \max \left\{\psi_{4}\left(p\left(x_{2}, x_{3}\right)\right), \psi_{4}\left(p\left(x_{3}, T x_{3}\right)\right)\right\} . \\
& \text { If } \max \left\{\psi_{4}\left(p\left(x_{2}, x_{3}\right)\right), \psi_{4}\left(p\left(x_{3}, T x_{3}\right)\right)\right\}=\psi_{4}\left(p\left(x_{3}, T x_{3}\right)\right) \text {, then } \\
& 0<p\left(x_{3}, T x_{3}\right) \leqslant H\left(S x_{2}, T x_{3}\right) \leqslant \psi_{4}\left(p\left(x_{3}, T x_{3}\right)\right)<p\left(x_{3}, T x_{3}\right),
\end{aligned}
$$

which is a contradiction. Hence,

$$
\max \left\{\psi_{4}\left(p\left(x_{2}, x_{3}\right)\right), \psi_{4}\left(p\left(x_{3}, T x_{3}\right)\right)\right\}=\psi_{4}\left(p\left(x_{2}, x_{3}\right)\right)
$$

and so

$$
\begin{equation*}
0<p\left(x_{3}, T x_{3}\right) \leqslant H\left(S x_{2}, T x_{3}\right) \leqslant \psi_{4}\left(p\left(x_{2}, x_{3}\right)\right) \tag{12}
\end{equation*}
$$

Again, since ψ_{4} is increasing, we deduce that

$$
\psi_{4}\left(p\left(x_{2}, x_{3}\right)\right)<\psi_{4}\left(\psi_{5}\left(q \psi_{4}\left(t_{0}\right)\right)\right)
$$

Put

$$
q_{2}=\frac{\psi_{4}\left(\psi_{5}\left(q \psi_{4}\left(t_{0}\right)\right)\right)}{\psi_{4}\left(p\left(x_{2}, x_{3}\right)\right)}>1
$$

Then

$$
0<p\left(x_{3}, T x_{3}\right) \leqslant H\left(S x_{2}, T x_{3}\right)<q_{2} H\left(S x_{2}, T x_{3}\right)
$$

and hence there exists $x_{4} \in T x_{3}$ or $x_{4}=T x_{3}$ such that

$$
\begin{equation*}
0<p\left(x_{3}, x_{4}\right)<q_{2} H\left(S x_{2}, T x_{3}\right) \leqslant q_{2} \psi_{4}\left(p\left(x_{2}, x_{3}\right)\right) \tag{13}
\end{equation*}
$$

Now, from (12) and (13), we deduce that

$$
0<p\left(x_{3}, x_{4}\right)<q_{2} H\left(S x_{2}, T x_{3}\right) \leqslant q_{2} \psi_{4}\left(p\left(x_{2}, x_{3}\right)\right)=\psi_{4}\left(\psi_{5}\left(q \psi_{4}\left(t_{0}\right)\right)\right)
$$

By continuing this process, we obtain a sequence $\left\{x_{n}\right\}$ in X such that $x_{2 n} \in T x_{2 n-1}$, $x_{2 n+1} \in S x_{2 n}$ and

$$
\begin{aligned}
& p\left(x_{2 n-1}, x_{2 n}\right) \leqslant\left(\psi_{4} \psi_{5}\right)^{n-1}\left(q \psi_{4}\left(t_{0}\right)\right) \\
& p\left(x_{2 n}, x_{2 n+1}\right) \leqslant \psi_{5}\left[\left(\psi_{4} \psi_{5}\right)^{n-1}\left(q \psi_{4}\left(t_{0}\right)\right)\right]
\end{aligned}
$$

Now, for all $m>n$, we can write

$$
\begin{aligned}
p\left(x_{2 n}, x_{2 m}\right) & \leqslant \sum_{k=n}^{m-1} p\left(x_{2 k}, x_{2 k+1}\right)+\sum_{k=n}^{m-1} p\left(x_{2 k+1}, x_{2 k+2}\right) \\
& \leqslant \sum_{k=n}^{m-1} \psi_{5}^{k}\left(\psi_{4}^{k-1}\left(q \psi_{4}\left(t_{0}\right)\right)\right)+\sum_{k=n}^{m-1} \psi_{5}^{k}\left(\psi_{4}^{k}\left(q \psi_{4}\left(t_{0}\right)\right)\right) \\
& \leqslant 2 \sum_{k=n}^{m-1} \psi_{5}^{k}\left(q \psi_{4}\left(t_{0}\right)\right) .
\end{aligned}
$$

Since $\sum_{k=1}^{+\infty} \psi_{5}^{k}\left(q \psi_{4}\left(t_{0}\right)\right)<+\infty$, we get $\lim _{n \rightarrow+\infty} p\left(x_{2 n}, x_{2 m}\right)=0$. Similary, we obtain

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} p\left(x_{2 n+1}, x_{2 m+1}\right)=0, \quad \lim _{n \rightarrow+\infty} p\left(x_{2 n+1}, x_{2 m}\right)=0, \\
\lim _{n \rightarrow+\infty} p\left(x_{2 n}, x_{2 m+1}\right)=0 .
\end{gathered}
$$

This implies that $\lim _{n, m \rightarrow+\infty} p\left(x_{n}, x_{m}\right)=0$ and so $\left\{x_{n}\right\}$ is a 0 -Cauchy sequence. Since (X, p) is a 0 -complete partial metric space, then there exists $z \in X$ with $p(z, z)=0$ such that $x_{n} \rightarrow z$ as $n \rightarrow+\infty$. Then from (ii) either

$$
\inf _{u \in S y_{n}} \eta\left(y_{n}, u\right) \leqslant \alpha\left(y_{n}, z\right) \quad \text { or } \quad \inf _{v \in T z_{n}} \eta\left(z_{n}, v\right) \leqslant \alpha\left(z_{n}, z\right)
$$

holds for all $n \in \mathbb{N}$, where $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are two given sequences such that $y_{n} \in T x_{n}$ and $z_{n} \in S y_{n}$ for all $n \in \mathbb{N}$. Here $x_{2 n} \in T x_{2 n-1}$ and $x_{2 n+1} \in S x_{2 n}$. Therefore, either

$$
\inf _{u \in S x_{2 n}} \eta\left(x_{2 n}, u\right) \leqslant \alpha\left(x_{2 n}, z\right) \quad \text { or } \quad \inf _{v \in T x_{2 n+1}} \eta\left(x_{2 n+1}, v\right) \leqslant \alpha\left(x_{2 n+1}, z\right)
$$

holds for all $n \in \mathbb{N}$. So from (9) and $p(z, z)=0$ we have

$$
\begin{aligned}
0<p(z, T z) \leqslant & H\left(S x_{2 n}, T z\right)+p\left(x_{2 n+1}, z\right)-p\left(x_{2 n+1}, x_{2 n+1}\right) \\
\leqslant & \max \left\{\psi_{1}\left(p\left(x_{2 n}, z\right)\right), \psi_{2}\left(p\left(x_{2 n}, S x_{2 n}\right)\right), \psi_{3}(p(z, T z))\right. \\
& \left.\frac{\psi_{4}\left(p\left(x_{2 n}, T z\right)-p\left(x_{2 n}, x_{2 n}\right)\right)+\psi_{5}\left(p\left(z, S x_{2 n}\right)\right)}{2}\right\} \\
& +p\left(x_{2 n+1}, z\right)
\end{aligned}
$$

or

$$
\begin{aligned}
0<p(z, S z) \leqslant & H\left(T x_{2 n+1}, S z\right)+p\left(x_{2 n+2}, z\right)-p\left(x_{2 n+2}, x_{2 n+2}\right) \\
\leqslant & \max \left\{\psi_{1}\left(p\left(x_{2 n+1}, z\right)\right), \psi_{2}(p(z, S z)), \psi_{3}\left(p\left(x_{2 n+1}, T x_{2 n+1}\right)\right)\right. \\
& \left.\frac{\psi_{4}\left(p\left(z, T x_{2 n+1}\right)\right)+\psi_{5}\left(p\left(x_{2 n+1}, S z\right)-p\left(x_{2 n+1}, x_{2 n+1}\right)\right)}{2}\right\} \\
& +p\left(x_{2 n+2}, z\right)
\end{aligned}
$$

for all $n \in \mathbb{N}$. Taking limit as $n \rightarrow+\infty$ in above inequalities we get

$$
p(z, T z) \leqslant \psi_{4}(p(z, T z)) \quad \text { or } \quad p(z, S z) \leqslant \psi_{5}(p(z, S z))
$$

and hence $p(z, T z)=0$ or $p(z, S z)=0$. This implies that z is a fixed point of T or S, and hence z is a common fixed point of the mixed multi-valued mappings S and T.

Acknowledgments. The authors gratefully acknowledge Editor and anonymous Reviewer(s) for their carefully reading of the paper and helpful suggestions.

References

1. M. Abbas, B. Ali, C. Vetro, A Suzuki type fixed point theorem for a generalized multivalued mapping on partial Hausdorff metric spaces, Topology Appl., 160:553-563, 2013.
2. M. Abbas, T. Nazir, Fixed point of generalized weakly contractive mappings in ordered partial metric spaces, Fixed Point Theory Appl., 2012:1, 19 pp., 2012.
3. I. Altun, H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud., 1:1-8, 2008.
4. I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl., 157:2778-2785, 2010.
5. H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology Appl., 159:3234-3242, 2012.
6. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3:133-181, 1922.
7. I. Beg, A. Azam, Fixed points of multivalued locally contractive mappings, Boll. Unione Mat. Ital., Ser. VII, A, 4:227-233, 1990.
8. I. Beg, A. Azam, Fixed points of asymptotically regular multivalued mappings, J. Aust. Math. Soc. A, 53:313-326, 1992.
9. M.A. Bukatin, S.Yu. Shorina, Partial metrics and co-continuous valuations, in M. Nivat, et al. (Eds.), Foundations of Software Science and Computation Structure, Lect. Notes Comput. Sci., Vol. 1378, Springer, 1998, pp. 125-139.
10. Lj. Ćirić, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218:2398-2406, 2011.
11. B. Damjanovic, B. Samet, C. Vetro, Common fixed point theorems for multi-valued maps, Acta Math. Sci., Ser. B, Engl. Ed., 32:818-824, 2012.
12. F.S. De Blasi, J. Myjak, S. Reich, A.J. Zaslavski, Generic existence and approximation of fixed points for nonexpansive set-valued maps, Set-Valued Var. Anal., 17:97-112, 2009.
13. C. Di Bari, P. Vetro, Fixed points for weak φ-contractions on partial metric spaces, Int. J. of Engineering, Contemporary Mathematics and Sciences, 1:5-13, 2011.
14. R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Struct., 7:71-83, 1999.
15. M. Jleli, V. Čojbašić Rajić, B. Samet, C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl., 12:175-192, 2012.
16. S.G. Matthews, Partial metric topology, Proceedings of the 8th Summer Conference on General Topology and Applications, Ann. N. Y. Acad. Sci., 728:183-197, 1994.
17. S.B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30:475-488, 1969.
18. S.J. O'Neill, Partial metrics, valuations and domain theory, Proceeding of the 11th Summer Conference on General Topology and Applications, Ann. N. Y. Acad. Sci., 806:304-315, 1996.
19. D. Paesano, P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159:475-488, 2012.
20. D. Paesano, P. Vetro, Common fixed points in a partially ordered partial metric space, Int. J. Anal., 2013, Article ID 428561, 8 pp., 2013.
21. S. Reich, A.J. Zaslavski, Existence and approximation of fixed points for set-valued mappings, Fixed Point Theory Appl., 2010, Article ID 351531, 10 pp., 2010.
22. S. Reich, A.J. Zaslavski, Convergence of inexact iterative schemes for nonexpansive set-valued mappings, Fixed Point Theory Appl., 2010, Article ID 518243, 10 pp., 2012.
23. S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., 2010, Article ID 493298, 6 pp., 2010.
24. S. Romaguera, On Nadler's fixed point theorem for partial metric spaces, Math. Sci. Appl. E-Notes, 1:1-8, 2013.
25. S. Romaguera, O. Valero, A quantitative computational model for complete partial metric spaces via formal balls, Math. Struct. Comput. Sci., 19:541-563, 2009.
26. B. Samet, C. Vetro, Berinde mappings in orbitally complete metric spaces, Chaos Solitons Fractals, 44:1075-1079, 2011.
27. B. Samet, C. Vetro, F. Vetro, From metric spaces to partial metric spaces, Fixed Point Theory Appl., 2013:5, 2013.
28. M.P. Schellekens, The correspondence between partial metrics and semivaluations, Theor. Comput. Sci., 315:1075-1079, 2004.

[^0]: *The authors are supported by Università degli Studi di Palermo (Local University Project R.S. ex 60\%).

