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Abstract. Recently, Samet et al. introduced the notion of α–ψ-contractive type mappings and
established some fixed point theorems in complete metric spaces. Successively, Asl et al. introduced
the notion of α∗–ψ-contractive multi-valued mappings and gave a fixed point result for these multi-
valued mappings. In this paper, we establish results of fixed point for α∗-admissible mixed multi-
valued mappings with respect to a function η and common fixed point for a pair (S, T ) of mixed
multi-valued mappings, that is, α∗-admissible with respect to a function η in partial metric spaces.
An example is given to illustrate our result.
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1 Introduction

The study of iterative schemes for various classes of contractive and nonexpansive map-
pings is a central topic in metric fixed point theory. This research started with the work of
Banach [6] who proved a classical theorem, known as the Banach contraction principle,
for the existence of a unique fixed point for a contraction. The importance of this result is
also in the fact that it gives the convergence of an iterative scheme to a unique fixed point.
Since Banach’s result, there has been a lot of activity in this area and many developments
have been taken place (see also [26]). Some authors have also provided results dealing
with the existence and approximation of fixed points of certain classes of contractive
multi-valued mappings [7, 8, 12, 17, 21, 22].

Let (X, d) be a metric space and let CB(X) denote the collection of all nonempty
closed and bounded subsets of X . For A,B ∈ CB(X), define

H(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
,
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where d(x,A) := inf{d(x, a): a ∈ A} is the distance of a point x to the setA. It is known
that H is a metric on CB(X), called the Hausdorff metric induced by the metric d.

Definition 1. Let (X, d) be a metric space. An element x in X is said to be a fixed point
of a multi-valued mapping T : X → CB(X) if x ∈ Tx.

We recall that T : X → CB(X) is said to be a multi-valued contraction mapping if
there exists k ∈ [0, 1) such that

H(Tx, Ty) 6 kd(x, y) for all x, y ∈ X.

The study of fixed points for multi-valued contractions using the Hausdorff metric
was initiated by Nadler [17] who proved the following theorem.

Theorem 1. (See [17].) Let (X, d) be a complete metric space and T : X → CB(X) be
a multi-valued contraction mapping. Then there exists x ∈ X such that x ∈ Tx.

Later on, an interesting and rich fixed point theory was developed. The theory of
multi-valued mappings has application in control theory, convex optimization, differential
equations and economics (see also [11,15]). On the other hand, Matthews [16] introduced
the concept of a partial metric as a part of the study of denotational semantics of dataflow
networks. He gave a modified version of the Banach contraction principle, more suitable
in this context (see also [2, 3, 10, 13, 19, 20, 27]). In fact, (complete) partial metric spaces
constitute a suitable framework to model several distinguished examples of the theory
of computation and also to model metric spaces via domain theory (see, [9, 14, 16, 23,
25, 28]). More recently, Aydi et al. [5] introduced a notion of partial Hausdorff metric
type, associated to a partial metric, and proved an analogous to the well known Nadler’s
fixed point theorem [17] in the setting of partial metric spaces. Very recently, Romaguera
[24] introduced the concept of mixed multi-valued mappings, so that both a self mapping
T : X → X and a multi-valued mapping T : X → CBp(X) (the family of all non-
empty, closed and bounded subsets of a partial metric space X), are mixed multi-valued
mappings. In this paper, we establish results of fixed point for α∗-admissible mixed multi-
valued mappings with respect to a function η. Also, we prove results of common fixed
point for a pair (S, T ) of multi-valued mappings, that is, α∗-admissible with respect to
a function η in the setting of partial metric spaces.

In the sequel, the letters R and N will denote the set of all real numbers and the set of
all positive integer numbers, respectively.

2 Preliminaries

First, we recall some definitions of partial metric spaces that can be found in [10, 16, 18,
19, 23]. A partial metric on a nonempty set X is a function p : X ×X → [0,+∞) such
that for all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(p2) p(x, x) 6 p(x, y);
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(p3) p(x, y) = p(y, x);
(p4) p(x, y) 6 p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial
metric on X . It is clear that if p(x, y) = 0, then from (p1) and (p2) it follows that x = y.
But if x = y, p(x, y) may not be 0. A basic example of partial metric space is the pair
([0,+∞), p), where p(x, y) = max{x, y}.

Each partial metric p on X generates a T0 topology τp on X , which has as a base the
family of open p-balls {Bp(x, ε): x ∈ X, ε > 0}, where

Bp(x, ε) =
{
y ∈ X: p(x, y) < p(x, x) + ε

}
(1)

for all x ∈ X , ε > 0.
Let (X, p) be a partial metric space. A sequence {xn} in (X, p) converges to a point

x ∈ X if and only if p(x, x) = limn→+∞ p(x, xn).
A sequence {xn} in (X, p) is called a Cauchy sequence if there exists (and is finite)

limn,m→+∞ p(xn, xm). A partial metric space (X, p) is said to be complete if every
Cauchy sequence {xn} in X converges, with respect to τp, to a point x ∈ X such that
p(x, x) = limn,m→+∞ p(xn, xm).

A sequence {xn} in (X, p) is called 0-Cauchy if limn,m→+∞ p(xn, xm) = 0. We say
that (X, p) is 0-complete if every 0-Cauchy sequence in X converges, with respect to τp,
to a point x ∈ X such that p(x, x) = 0.

Now, we recall the definition of partial Hausdorff metric and some properties that can
be found in [1]. Let CBp(X) be the family of all nonempty, closed and bounded subsets
of the partial metric space (X, p), induced by the partial metric p. Note that closedness is
taken from (X, τp) and boundedness is given as follows: A is a bounded subset in (X, p)
if there exist x0 ∈ X and M > 0 such that for all a ∈ A, we have a ∈ Bp(x0,M), that
is, p(x0, a) < p(x0, x0) +M .

For A,B ∈ CBp(X) and x ∈ X , define

p(x,A) = inf
{
p(x, a): a ∈ A

}
,

δp(A,B) = sup
{
p(a,B): a ∈ A},

δp(B,A) = sup
{
p(b, A): b ∈ B

}
.

Remark 1. (See [4].) Let (X, p) be a partial metric space and A any nonempty set in
(X, p), then

a ∈ Ā if and only if p(a,A) = p(a, a), (2)

where Ā denotes the closure ofAwith respect to the partial metric p. Note thatA is closed
in (X, p) if and only if A = Ā.

In the following proposition, we bring some properties of the mapping δp : CBp(X)×
CBp(X)→ [0,+∞).

Proposition 1. (See [1, Prop. 2.2].) Let (X, p) be a partial metric space. For any A,B,
C ∈ CBp(X), we have the following:
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(i) δp(A,A) = sup{p(a, a): a ∈ A};
(ii) δp(A,A) 6 δp(A,B);

(iii) δp(A,B) = 0 implies that A ⊆ B;
(iv) δp(A,B) 6 δp(A,C) + δp(C,B)− infc∈C p(c, c).

Let (X, p) be a partial metric space. For A,B ∈ CBp(X), define

Hp(A,B) = max
{
δp(A,B), δp(B,A)

}
.

In the following proposition, we bring some properties of the mapping Hp.

Proposition 2. (See [1, Prop. 2.3].) Let (X, p) be a partial metric space. For allA,B,C ∈
CBp(X), we have:

(h1) Hp(A,A) 6 Hp(A,B);
(h2) Hp(A,B) = Hp(B,A);
(h3) Hp(A,B) 6 Hp(A,C) +Hp(C,B)− infc∈C p(c, c).

Corollary 1. (See [1, Cor. 2.4].) Let (X, p) be a partial metric space. For A,B ∈
CBp(X) the following holds:

Hp(A,B) = 0 implies that A = B.

Remark 2. The converse of Corollary 1 is not true in general as shown by the following
example.

Example 1. (See [1, Ex. 2.6].) Let X = [0, 1] be endowed with the partial metric p :
X ×X → [0,+∞) defined by

p(x, y) = max{x, y} for all x, y ∈ X.

From (i) of Proposition 1, we have

Hp(X,X) = δp(X,X) = sup{x : 0 6 x 6 1} = 1 6= 0.

In view of Proposition 2 and Corollary 1, we call the mapping Hp : CBp(X) ×
CBp(X)→ [0,+∞), a partial Hausdorff metric induced by p.

Remark 3. It is easy to show that any Hausdorff metric is a partial Hausdorff metric. The
converse is not true (see Example 1).

3 Main results

In [24], Romaguera introduced the concept of mixed multi-valued mappings as follows.

Definition 2. Let (X, p) be a partial metric space. T : X → X ∪ CBp(X) is called
a mixed multi-valued mapping on X if T is a multi-valued mapping on X such that for
each x ∈ X , Tx ∈ X or Tx ∈ CBp(X).
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As said above, both a self mapping T : X → X and a multi-valued mapping T :
X → CBp(X), are mixed multi-valued mappings. This approach is motivated, in part,
by the fact that CBp(X) may be empty.

Now, we consider the family

Ψ =
{

(ψ1, . . . , ψ5): ψi : [0,+∞)→ [0,+∞), i = 1, . . . , 5
}

such that:
(i) ψ2, ψ5 are nondecreasing and ψ4 is increasing;

(ii) ψ1(t), ψ2(t), ψ3(t) 6 ψ4(t) for all t > 0;
(iii) ψ4(s+ t) 6 ψ4(s) + ψ4(t) for all s, t > 0;
(iv) ψ1(t), ψ2(t), ψ5(t) are continuous in t = 0 and ψ1(0) = ψ2(0) = ψ5(0) = 0;
(v)

∑+∞
n=1 ψ

n
4 (t) < +∞ for all t > 0.

The following lemma is obvious.

Lemma 1. If (ψ1, . . . , ψ5) ∈ Ψ , then ψ4(t) < t for all t > 0.

Let (X, p) be a partial metric space and α, η : X ×X → [0,+∞) be two functions
with η bounded. In the sequel we denote

α∗(A,B) = inf
x∈A, y∈B

α(x, y) and η∗(A,B) = sup
x∈A, y∈B

η(x, y)

for every A,B ⊂ X .

Definition 3. Let (X, p) be a partial metric space, T : X → X∪CBp(X) a mixed multi-
valued mapping and α : X×X → [0,+∞) a function. We say that T is an α∗-admissible
mixed multi-valued mapping if

α(x, y) > 1 implies α∗(Tx, Ty) > 1, x, y ∈ X.

Definition 4. Let (X, p) be a partial metric space, S, T : X → X ∪ CBp(X) be two
mixed multi-valued mappings and α, η : X × X → [0,+∞) be two functions with η
bounded. We say that the pair (S, T ) is α∗-admissible with respect to η if:

α(x, y) > η(x, y) implies α∗(Sx, Ty) > η∗(Sx, Ty), x, y ∈ X.

We say that T is an α∗-admissible mixed multi-valued mapping with respect to η if the
pair (T, T ) is α∗-admissible with respect to η.

If we take, η(x, y) = 1 for all x, y ∈ X , then the definition of α∗-admissible mixed
multi-valued mapping with respect to η reduces to Definition 3.

The following theorem is one of our main results.

Theorem 2. Let (X, p) be a 0-complete partial metric space and let T : X → X ∪
CBp(X) be a mixed multi-valued mapping. Assume that there exist (ψ1, . . . , ψ5) ∈ Ψ
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and two functions α, η : X ×X → [0,+∞) with η bounded, such that

inf
u∈Tx

η(x, u) 6 α(x, y) implies

H(Tx, Ty) 6 max

{
ψ1

(
p(x, y)

)
, ψ2

(
p(x, Tx)

)
, ψ3

(
p(y, Ty)

)
,

ψ4(p(x, Ty)) + ψ5(p(y, Tx)− p(y, y))

2

}
(3)

for all x, y ∈ X . Also suppose that the following assertions hold:

(i) T is an α∗-admissible mixed multi-valued mapping with respect to η;
(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > η(x0, x1);

(iii) for a sequence {xn} ⊂ X such that α(xn, xn+1) > η(xn, xn+1) for all n ∈ N
and xn → x as n→ +∞, then either

inf
un∈Tyn

η(yn, un) 6 α(yn, x) or inf
vn∈Tzn

η(zn, vn) 6 α(zn, x)

holds for all n ∈ N, where {yn} and {zn} are two given sequences such that
yn ∈ Txn and zn ∈ Tyn for all n ∈ N.

Then T has a fixed point.

Proof. By (ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > η(x0, x1). This
implies that α(x0, x1) > η(x0, x1) > infy∈Tx0

η(x0, y). If x0 = x1 or x1 ∈ Tx1, then
x1 is a fixed point of T . Assume that x1 /∈ Tx1 and that Tx1 is not a singleton. Therefore,
from (3), we have

0 < p(x1, Tx1) 6 H(Tx0, Tx1)

6 max

{
ψ1

(
p(x0, x1)

)
, ψ2(p(x0, Tx0)), ψ3(p(x1, Tx1)),

ψ4(p(x0, Tx1)) + ψ5(p(x1, Tx0)− p(x1, x1))

2

}
6 max

{
ψ1

(
p(x0, x1)

)
, ψ2

(
p(x0, x1)

)
, ψ3

(
p(x1, Tx1)

)
,

ψ4(p(x0, x1)) + ψ4(p(x1, Tx1))

2

}
6 max

{
ψ1

(
p(x0, x1)

)
, ψ2

(
p(x0, x1)

)
, ψ3

(
p(x1, Tx1)

)
,

max
{
ψ4

(
p(x0, x1)

)
, ψ4(p(x1, Tx1)

)}}
= max

{
ψ4

(
p(x0, x1)

)
, ψ4

(
p(x1, Tx1)

)}
.

Now, if

max
{
ψ4

(
p(x0, x1)

)
, ψ4

(
p(x1, Tx1)

)}
= ψ4

(
p(x1, Tx1)

)
,
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then

0 < p(x1, Tx1) 6 H(Tx0, Tx1) 6 ψ4

(
p(x1, Tx1)

)
< p(x1, Tx1),

which is a contradiction. Hence,

0 < p(x1, Tx1) 6 H(Tx0, Tx1) 6 ψ4

(
p(x0, x1)

)
.

If q > 1, then

0 < p(x1, Tx1) < qH(Tx0, Tx1) 6 qψ4

(
p(x0, x1)

)
.

So there exists x2 ∈ Tx1 such that

0 < p(x1, x2) < qH(Tx0, Tx1) 6 qψ4

(
p(x0, x1)

)
. (4)

If Tx1 = {x2} is a singleton, again by (3), we get

0 < p(x1, x2) 6 H(Tx0, Tx1) 6 ψ4

(
p(x0, x1)

)
and so (4) holds.

Note that x1 6= x2. Also, since T is α∗-admissible with respect to η, we have
α∗(Tx0, Tx1) > η∗(Tx0, Tx1). This implies

α(x1, x2) > α∗(Tx0, Tx1) > η∗(Tx0, Tx1) > η(x1, x2) > inf
y∈Tx1

η(x1, y).

Therefore, from (3), we have

H(Tx1, Tx2) 6 max

{
ψ1

(
p(x1, x2)

)
, ψ2

(
p(x1, Tx1)

)
, ψ3

(
p(x2, Tx2)

)
,

ψ4(p(x1, Tx2)) + ψ5(p(x2, Tx1)− p(x2, x2))

2

}
6 ψ4

(
p(x1, x2)

)
. (5)

Put t0 = p(x0, x1) > 0. Then from (4), we deduce that p(x1, x2) < qψ4(t0). Now,
since ψ4 is increasing, we deduce ψ4(p(x1, x2)) < ψ4(qψ4(t0)). Put

q1 =
ψ4(qψ4(t0))

ψ4(p(x1, x2))
> 1.

If x2 ∈ Tx2, then x2 is a fixed point of T . Hence, we suppose that x2 /∈ Tx2. Then

0 < p(x2, Tx2) 6 H(Tx1, Tx2) < q1H(Tx1, Tx2).

So there exists x3 ∈ Tx2 (obviously x3 = Tx2 if Tx2 is a singleton) such that

0 < p(x2, x3) < q1H(Tx1, Tx2)
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and from (5), we get

0 < p(x2, x3) < q1H(Tx1, Tx2) 6 q1ψ4

(
p(x1, x2)

)
= ψ4

(
qψ4(t0)

)
.

Again, since ψ4 is increasing, then ψ4(p(x2, x3)) < ψ4(ψ4(qψ4(t0))). Put

q2 =
ψ4(ψ4(qψ4(t0)))

ψ4(p(x2, x3))
> 1.

If x3 ∈ Tx3, then x3 is a fixed point of T . Hence, we assume that x3 /∈ Tx3. Then

0 < p(x3, Tx3) 6 H(Tx2, Tx3) < q2H(Tx2, Tx3).

So there exists x4 ∈ Tx3 (obviously x4 = Tx3 if Tx3 is a singleton) such that

0 < p(x3, x4) < q2H(Tx2, Tx3). (6)

Clearly, x2 6= x3. Again, since T is α∗-admissible with respect to η,

α(x2, x3) > α∗(Tx1, Tx2) > η∗(Tx1, Tx2) > η(x2, x3) > inf
y∈Tx2

η(x2, y).

Then from (3), we have

H(Tx2, Tx3) 6 max

{
ψ1

(
p(x2, x3)

)
, ψ2

(
p(x2, Tx2)

)
, ψ3

(
p(x3, Tx3)

)
,

ψ4(p(x2, Tx3)) + ψ5(p(x3, Tx2)− p(x3, x3))

2

}
6 ψ4

(
p(x2, x3)

)
. (7)

Thus from (6) and (7), we deduce that

0 < p(x3, x4) < q2H(Tx2, Tx3) 6 q2ψ4

(
p(x2, x3)

)
= ψ4

(
ψ4

(
qψ4(t0)

))
.

By continuing this process, we obtain a sequence {xn} ⊂ X such that xn ∈ Txn−1,
xn 6= xn−1, α(xn−1, xn) > η(xn−1, xn) and p(xn, xn+1) 6 ψn−1

4 (qψ4(t0)) for all
n ∈ N. Now for all m > n, we can write

p(xn, xm) 6
m−1∑
k=n

p(xk, xk+1) 6
m−1∑
k=n

ψk−1
4

(
qψ4(t0)

)
.

Therefore, {xn} is a 0-Cauchy sequence. Since, (X, p) is a 0-complete partial metric
space, then there exists z ∈ X such that p(xn, z)→ p(z, z) = 0 as n→ +∞. Then from
(iii), either

inf
un∈Tyn

η(yn, un) 6 α(yn, z) or inf
vn∈Tzn

η(zn, vn) 6 α(zn, z)
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holds for all n ∈ N, where {yn} and {zn} are two given sequences such that yn ∈ Txn
and zn ∈ Tyn for all n ∈ N. Here xn−1 ∈ Txn−2 and xn ∈ Txn−1.

Therefore, either

inf
un∈Txn−1

η(xn−1, un) 6 α(xn−1, z) or inf
vn∈Txn

η(xn, vn) 6 α(xn, z)

holds for all n ∈ N. If p(z, Tz) > 0, from (3), we have

p(z, Tz) 6 H(Txn−1, T z) + p(xn, z)− p(xn, xn)

6 max

{
ψ1

(
p(xn−1, z)

)
, ψ2

(
p(xn−1, Txn−1)

)
, ψ3

(
p(z, Tz)

)
,

ψ4(p(xn−1, T z)) + ψ5(p(z, Txn−1))

2

}
+ p(xn, z)

6 max

{
ψ1

(
p(xn−1, z)

)
, ψ2

(
p(xn−1, xn)

)
, ψ3

(
p(z, Tz)

)
,

ψ4(p(xn−1, z) + p(z, Tz)) + ψ5(p(z, xn))

2

}
+ p(xn, z)

or
p(z, Tz) 6 H(Txn, T z) + p(xn+1, z)− p(xn+1, xn+1)

6 max

{
ψ1

(
p(xn, z)

)
, ψ2

(
p(xn, Txn)

)
, ψ3

(
p(z, Tz)

)
,

ψ4(p(xn, T z)) + ψ5(p(z, Txn))

2

}
+ p(xn+1, z)

6 max

{
ψ1

(
p(xn, z)

)
, ψ2

(
p(xn, xn+1)

)
, ψ3

(
p(z, Tz)

)
,

ψ4(p(xn, z) + p(z, Tz)) + ψ5(p(z, xn+1))

2

}
+ p(xn+1, z)

for all n ∈ N. Taking limit as n→ +∞ in the above inequalities, we get

p(z, Tz) 6 ψ4

(
p(z, Tz)

)
< p(z, Tz)

a contradiction. Thus p(z, Tz) = 0. If Tz is a singleton, then z = Tz. If Tz is not
a singleton, from p(z, Tz) = 0 = p(z, z), by Remark 1, we deduce z ∈ Tz. Thus z is
a fixed point of T .

If in Theorem 2, we assume η(x, y) = 1 for all x, y ∈ X , then we obtain the following
corollary.

Corollary 2. Let (X, p) be a 0-complete partial metric space and let T : X → X ∪
CBp(X) be a mixed multi-valued mapping. Assume that there exist (ψ1, . . . , ψ5) ∈ Ψ
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and a function α : X ×X → [0,+∞), such that

H(Tx, Ty) 6 max

{
ψ1

(
p(x, y)

)
, ψ2

(
p(x, Tx)

)
, ψ3

(
p(y, Ty)

)
,

ψ4(p(x, Ty)) + ψ5(p(y, Tx)− p(y, y))

2

}
(8)

for all x, y ∈ X with α(x, y) > 1. Also suppose the following assertions hold:
(i) T is an α∗-admissible mixed multi-valued mapping;

(ii) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1;
(iii) for a sequence

{
xn
}
⊂ X such that α(xn, xn+1) > 1 for all n ∈ N and xn → x

as n→ +∞, then either

α(yn, x) > 1 or α(zn, x) > 1

holds for all n ∈ N where {yn} and {zn} are two given sequences such that
yn ∈ Txn and zn ∈ Tyn for all n ∈ N.

Then T has a fixed point.

Example 2. Let X = {1, 2, 3, 4} and p : X × X → [0,+∞) be defined by p(1, 1) =
p(2, 2) = p(4, 4) = 1/6, p(3, 3) = 0, p(1, 2) = p(1, 4) = p(2, 4) = p(3, 4) = 1/2,
p(1, 3) = 1/4, p(2, 3) = 1/3 and p(x, y) = p(y, x) for all x, y ∈ X . Let T : X →
CBp(X) be defined by T1 = {3}, T2 = {1}, T3 = {3} and T4 = {1, 4}. Clearly,
(X, p) is a 0-complete partial metric space and Tx is a bounded closed subset of X
for all x ∈ X . Let α : X × X → [0,+∞) be defined by α(1, 1) = α(1, 3) =
α(2, 3) = α(3, 3) = α(3, 1) = α(3, 2) = 1 and α(x, y) = 0 otherwise. Now, let
ψ1, ψ2, ψ3, ψ4, ψ5 : [0,+∞) → [0,+∞) be defined by ψ1(t) = t/2, ψ2(t) = 2t/3,
ψ3(t) = t/2, ψ4(t) = 3t/4 and ψ5(t) = 5t/6, then (ψ1, ψ2, ψ3, ψ4, ψ5) ∈ Ψ .

Now, we have:

H(T1, T1) = H
(
{3}, {3}

)
= 0 6 ψ1

(
p(1, 1)

)
,

H(T1, T3) = H
(
{3}, {3}

)
= 0 6 ψ1

(
p(1, 3)

)
,

H(T2, T3) = H
(
{1}, {3}

)
= 0.25 6 ψ3

(
p
(
2, {1}

))
,

H(T3, T3) = H
(
{3}, {3}

)
= 0 6 ψ1

(
p(3, 3)

)
.

This implies

H(Tx, Ty) 6 max

{
ψ1

(
p(x, y)

)
, ψ2

(
p(x, Tx)

)
, ψ3

(
p(y, Ty)

)
,

ψ4(p(x, Ty)) + ψ5[p(y, Tx)− p(y, y)]

2

}
for all x, y ∈ X with α(x, y) > 1. T is an α∗-admissible mixed multi-valued mapping
and x0 = 1 satisfies condition (ii). Now, we note that for a sequence {xn} ⊂ X such that
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α(xn, xn+1) > 1 for all n ∈ N and xn → x as n→ +∞, we have x = 3 and this ensures
that (iii) holds. Thus, by Corollary 2 the mixed multi-valued mapping T has a fixed point.

We note that

H(T2, T4) =
1

2
> max

{
ψ1

(
p(2, 4)

)
, ψ2

(
p(2, T2)

)
, ψ3

(
p(4, T4)

)
,

ψ4(p(2, T4)) + ψ5(p(4, T2)− p(4, 4))

2

}
.

4 Common fixed point results

Let (X, p) be a partial metric space, let α, η : X ×X → [0,+∞) be two functions with
η bounded and let S, T : X → 2X be two multi-valued mappings on X . We denote

Γ (Sx, Ty) = min
{

inf
u∈Sx

η(x, u), inf
v∈Ty

η(y, v)
}

= Γ (Ty, Sx).

Let Φ =
{

(ψ1, . . . , ψ5): ψi : [0,+∞)→ [0,+∞), i = 1, . . . , 5
}

such that:

(i) ψ2, ψ3 are nondecreasing and ψ4, ψ5 are increasing;
(ii) ψ1(t), ψ2(t), ψ3(t) 6 min{ψ4(t), ψ5(t)} for all t > 0;

(iii) ψi(s+ t) 6 ψi(s) + ψi(t) (i = 4, 5) for all s, t > 0;
(iv) ψ1(t), ψ2(t) and ψ3(t) are continuous in t = 0 and ψ1(0) = ψ2(0) =

ψ3(0) = 0;
(v)

∑+∞
n=1 ψ

n
5 (t) < +∞ for all t > 0;

(vi) ψ4(t) < t for all t > 0;
(vii) ψ4(ψ5(t)) = ψ5(ψ4(t)) for all t > 0.

The following theorem is our main result on the existence of common fixed point for
multi-valued mappings.

Theorem 3. Let (X, p) be a 0-complete partial metric space and let S, T :X →
X ∪ CBp(X) be two mixed multi-valued mappings on X . Assume that there exist
(ψ1, . . . , ψ5) ∈ Φ and two functions α, η : X × X → [0,+∞) with η bounded such
that

H(Sx, Ty) 6 max

{
ψ1

(
p(x, y)

)
, ψ2

(
p(x, Sx)

)
, ψ3

(
p(y, Ty)

)
,

ψ4(p(x, Ty)− p(x, x)) + ψ5(p(y, Tx)− p(y, y))

2

}
(9)

for all x, y ∈ X with α(x, y) > Γ (Sx, Ty). Also suppose the following assertions hold:

(i) the pair (S, T ) is α∗-admissible with respect to η;
(ii) there exist x0 ∈ X and x1 ∈ Sx0 such that α(x0, x1) > η(x0, x1);

(iii) α(x, x) > Γ (Sx, Tx) for all x ∈ X , which is a fixed point of S or T ;
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(iv) for a sequence {xn} ⊂ X such that α(xn, xn+1) > η(xn, xn+1) for all n ∈ N
and xn → x as n→ +∞, then either

inf
un∈Syn

η(yn, un) 6 α(yn, x) or inf
vn∈Tzn

η(zn, vn) 6 α(zn, x)

holds for all n ∈ N where {yn} and {zn} are two given sequences such that
yn ∈ Txn and zn ∈ Syn for all n ∈ N.

Then S and T have a common fixed point.

Proof. From (iii) and (9) it follows that the mixed multi-valued mappings S and T have
the same fixed points. Let x0 ∈ X and x1 ∈ Sx0 be such that α(x0, x1) > η(x0, x1),
then

α(x0, x1) > η(x0, x1) > inf
u∈Sx0

η(x0, u) > Γ (Sx0, Tx1).

If x0 = x1, then x0 is a common fixed point of S and T . The same holds if x1 ∈ Tx1.
Hence, we assume that x0 6= x1 and x1 /∈ Tx1. Assume that Tx1 is not a singleton,
from (9), we have

0 < p(x1, Tx1) 6 H(Sx0, Tx1)

6 max

{
ψ1

(
p(x0, x1)

)
, ψ2

(
p(x0, Sx0)

)
, ψ3

(
p(x1, Tx1)

)
,

ψ4(p(x0, Tx1)− p(x0, x0)) + ψ5(p(x1, Sx0)− p(x1, x1))

2

}
6 max

{
ψ1

(
p(x0, x1)

)
, ψ2

(
p(x0, x1)

)
, ψ3

(
p(x1, Tx1)

)
,

ψ4(p(x0, x1) + p(x1, Tx1)− p(x1, x1)− p(x0, x0))

2

}
6 max

{
ψ1

(
p(x0, x1)

)
, ψ2

(
p(x0, x1)

)
, ψ3

(
p(x1, Tx1)

)
,

max
{
ψ4

(
p(x0, x1)

)
, ψ4

(
p(x1, Tx1)

)}}
= max

{
ψ4

(
p(x0, x1)

)
, ψ4

(
p(x1, Tx1)

)}
.

Now, if max{ψ4(p(x0, x1)), ψ4(p(x1, Tx1))} = ψ4(p(x1, Tx1)), then

0 < p(x1, Tx1) 6 H(Sx0, Tx1) 6 ψ4

(
p(x1, Tx1)

)
< p(x1, Tx1),

which is a contradiction. Hence,

max
{
ψ4

(
p(x0, x1)

)
, ψ4

(
p(x1, Tx1)

)}
= ψ4

(
p(x0, x1)

)
.

If q > 1, then
0 < p(x1, Tx1) 6 H(Sx0, Tx1) < qH(Sx0, Tx1)
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and hence there exists x2 ∈ Tx1 such that

0 < p(x1, x2) < qH(Sx0, Tx1) 6 qψ4

(
p(x0, x1)

)
. (10)

If Tx1 = {x2} is a singleton, again by (9), we get

0 < p(x1, x2) 6 H(Sx0, Tx1) 6 ψ4

(
p(x0, x1)

)
and so (10) holds. Note that x1 6= x2. Also, since the pair (S, T ) is α∗-admissible with
respect to η, then α∗(Sx0, T y1) > η∗(Sx0, Ty1). This implies

α(x1, x2) > α∗(Sx0, Tx1) > η∗(Sx0, Tx1) > η(x1, x2)

> inf
y∈Tx1

η(x1, y) > Γ (Sx2, Tx1).

If x2 ∈ Sx2, then x2 is a common fixed point of S and T . Assume that x2 /∈ Sx2 and
that Sx2 is not a singleton, from (9), we have

0 < p(x2, Sx2) 6 H(Sx2, Tx1)

6 max

{
ψ1

(
p(x2, x1)

)
, ψ2

(
p(x2, Sx2)

)
, ψ3

(
p(x1, Tx1)

)
,

ψ4(p(x2, Tx1)− p(x2, x2)) + ψ5(p(x1, Sx2)− p(x1, x1))

2

}
6 max

{
ψ1

(
p(x1, x2)

)
, ψ2

(
p(x2, Sx2)

)
, ψ3

(
p(x1, x2)

)
,

ψ5(p(x1, x2) + p(x2, Sx2)− p(x2, x2)− p(x1, x1))

2

}
6 max

{
ψ5

(
p(x1, x2)

)
, ψ5

(
p(x2, Sx2)

)}
.

Now, if max{ψ5(p(x1, x2)), ψ5(p(x2, Sx2))} = ψ5(p(x2, Sx2)), then

0 < p(x2, Sx2) 6 H(Sx2, Tx1) 6 ψ5

(
p(x2, Sx2)

)
< p(x2, Sx2),

which is a contradiction. Hence,

0 < p(x2, Sx2) 6 H(Sx2, Tx1) 6 ψ5

(
p(x1, x2)

)
. (11)

The same is worth also if Sx2 is a singleton. Put t0 = p(x0, x1). Then from (10), we have
p(x1, x2) < qψ4(t0) where t0 > 0. Now, since ψ5 is increasing, then ψ5(p(x1, x2)) <
ψ5(qψ4(t0)). Put

q1 =
ψ5(qψ4(t0))

ψ5(p(x1, x2))
> 1.

Since x2 ∈ Tx1 or x2 = Tx1, we have

0 < p(x2, Sx2) 6 H(Sx2, Tx1) < q1H(Sx2, Tx1)
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and hence there exists x3 ∈ Sx2 or x3 = Sx2 such that

0 < p(x2, x3) 6 q1H(Sx2, Tx1).

Now, from (11), we deduce

0 < p(x2, x3) < q1H(Sx2, Tx1) 6 q1ψ5

(
p(x1, x2)

)
= ψ5

(
qψ4(t0)

)
.

Clearly, x2 6= x3. Again, since the pair (S, T ) is α∗-admissible with respect to η, then

α(x2, x3) > α∗(Tx1, Sx2) > η∗(Tx1, Sx2) > η(x2, x3)

> inf
y∈Sx2

η(x2, y) > Γ (Sx2, Tx3).

If x3 ∈ Tx3 or x3 = Tx3, then x3 is a common fixed point of S and T . Assume that
x3 /∈ Tx3. Now, from (9) we deduce

0 < p(x3, Tx3) 6 H(Sx2, Tx3)

6 max

{
ψ1

(
p(x2, x3)

)
, ψ2

(
p(x2, Sx2)

)
, ψ3

(
p(x3, Tx3)

)
,

ψ4(p(x2, Tx3)− p(x2, x2)) + ψ5(p(x3, Sx2)− p(x3, x3))

2

}
6 max

{
ψ1

(
p(x2, x3)

)
, ψ2

(
p(x2, x3)

)
, ψ3

(
p(x3, Tx3)

)
,

ψ4(p(x2, x3) + p(x3, Tx3)− p(x3, x3)− p(x2, x2))

2

}
6 max

{
ψ4

(
p(x2, x3)

)
, ψ4

(
p(x3, Tx3)

)}
.

If max{ψ4(p(x2, x3)), ψ4(p(x3, Tx3))} = ψ4(p(x3, Tx3)), then

0 < p(x3, Tx3) 6 H(Sx2, Tx3) 6 ψ4

(
p(x3, Tx3)

)
< p(x3, Tx3),

which is a contradiction. Hence,

max
{
ψ4

(
p(x2, x3)

)
, ψ4

(
p(x3, Tx3)

)}
= ψ4

(
p(x2, x3)

)
and so

0 < p(x3, Tx3) 6 H(Sx2, Tx3) 6 ψ4

(
p(x2, x3)

)
. (12)

Again, since ψ4 is increasing, we deduce that

ψ4

(
p(x2, x3)

)
< ψ4

(
ψ5

(
qψ4(t0)

))
.

Put

q2 =
ψ4(ψ5(qψ4(t0)))

ψ4(p(x2, x3))
> 1.
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Then
0 < p(x3, Tx3) 6 H(Sx2, Tx3) < q2H(Sx2, Tx3)

and hence there exists x4 ∈ Tx3 or x4 = Tx3 such that

0 < p(x3, x4) < q2H(Sx2, Tx3) 6 q2ψ4

(
p(x2, x3)

)
. (13)

Now, from (12) and (13), we deduce that

0 < p(x3, x4) < q2H(Sx2, Tx3) 6 q2ψ4

(
p(x2, x3)

)
= ψ4

(
ψ5

(
qψ4(t0)

))
.

By continuing this process, we obtain a sequence {xn} in X such that x2n ∈ Tx2n−1,
x2n+1 ∈ Sx2n and

p(x2n−1, x2n) 6 (ψ4ψ5)n−1
(
qψ4(t0)

)
p(x2n, x2n+1) 6 ψ5

[
(ψ4ψ5)n−1

(
qψ4(t0)

)]
.

Now, for all m > n, we can write

p(x2n, x2m) 6
m−1∑
k=n

p(x2k, x2k+1) +

m−1∑
k=n

p(x2k+1, x2k+2)

6
m−1∑
k=n

ψk
5

(
ψk−1
4

(
qψ4(t0)

))
+

m−1∑
k=n

ψk
5

(
ψk
4

(
qψ4(t0)

))
6 2

m−1∑
k=n

ψk
5

(
qψ4(t0)

)
.

Since
∑+∞

k=1 ψ
k
5 (qψ4(t0))<+∞, we get limn→+∞ p(x2n, x2m)=0. Similary, we obtain

lim
n→+∞

p(x2n+1, x2m+1) = 0, lim
n→+∞

p(x2n+1, x2m) = 0,

lim
n→+∞

p(x2n, x2m+1) = 0.

This implies that limn,m→+∞ p(xn, xm) = 0 and so
{
xn
}

is a 0-Cauchy sequence.
Since (X, p) is a 0-complete partial metric space, then there exists z ∈ X with p(z, z) = 0
such that xn → z as n→ +∞. Then from (ii) either

inf
u∈Syn

η(yn, u) 6 α(yn, z) or inf
v∈Tzn

η(zn, v) 6 α(zn, z)

holds for all n ∈ N, where {yn} and {zn} are two given sequences such that yn ∈ Txn
and zn ∈ Syn for all n ∈ N. Here x2n ∈ Tx2n−1 and x2n+1 ∈ Sx2n. Therefore, either

inf
u∈Sx2n

η(x2n, u) 6 α(x2n, z) or inf
v∈Tx2n+1

η(x2n+1, v) 6 α(x2n+1, z)

holds for all n ∈ N. So from (9) and p(z, z) = 0 we have
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0 < p(z, Tz) 6 H(Sx2n, T z) + p(x2n+1, z)− p(x2n+1, x2n+1)

6 max

{
ψ1

(
p(x2n, z)

)
, ψ2

(
p(x2n, Sx2n)

)
, ψ3

(
p(z, Tz)

)
,

ψ4(p(x2n, T z)− p(x2n, x2n)) + ψ5

(
p(z, Sx2n)

)
2

}
+ p(x2n+1, z)

or
0 < p(z, Sz) 6 H(Tx2n+1, Sz) + p(x2n+2, z)− p(x2n+2, x2n+2)

6 max

{
ψ1

(
p(x2n+1, z)

)
, ψ2

(
p(z, Sz)

)
, ψ3

(
p(x2n+1, Tx2n+1)

)
,

ψ4(p(z, Tx2n+1)) + ψ5(p(x2n+1, Sz)− p(x2n+1, x2n+1))

2

}
+ p(x2n+2, z)

for all n ∈ N. Taking limit as n→ +∞ in above inequalities we get

p(z, Tz) 6 ψ4

(
p(z, Tz)

)
or p(z, Sz) 6 ψ5

(
p(z, Sz)

)
and hence p(z, Tz) = 0 or p(z, Sz) = 0. This implies that z is a fixed point of T or S,
and hence z is a common fixed point of the mixed multi-valued mappings S and T .

Acknowledgments. The authors gratefully acknowledge Editor and anonymous Re-
viewer(s) for their carefully reading of the paper and helpful suggestions.

References

1. M. Abbas, B. Ali, C. Vetro, A Suzuki type fixed point theorem for a generalized multivalued
mapping on partial Hausdorff metric spaces, Topology Appl., 160:553–563, 2013.

2. M. Abbas, T. Nazir, Fixed point of generalized weakly contractive mappings in ordered partial
metric spaces, Fixed Point Theory Appl., 2012:1, 19 pp., 2012.

3. I. Altun, H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math.
Stud., 1:1–8, 2008.

4. I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl.,
157:2778–2785, 2010.

5. H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler’s fixed point theorem on
partial metric spaces, Topology Appl., 159:3234–3242, 2012.

6. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations
intégrales, Fund. Math., 3:133–181, 1922.

http://www.mii.lt/NA



On fixed points for α–η–ψ-contractive multi-valued mappings 393

7. I. Beg, A. Azam, Fixed points of multivalued locally contractive mappings, Boll. Unione Mat.
Ital., Ser. VII, A, 4:227–233, 1990.

8. I. Beg, A. Azam, Fixed points of asymptotically regular multivalued mappings, J. Aust. Math.
Soc. A, 53:313–326, 1992.

9. M.A. Bukatin, S.Yu. Shorina, Partial metrics and co-continuous valuations, in M. Nivat, et al.
(Eds.), Foundations of Software Science and Computation Structure, Lect. Notes Comput. Sci.,
Vol. 1378, Springer, 1998, pp. 125–139.
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