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Abstract. In this paper, by using a continuation theorem of coincidence degree theory and
a differential inequality, we establish some sufficient conditions ensuring the existence and global
exponential stability of anti-periodic solutions for a class of fuzzy Cohen–Grossberg neural
networks with time-varying and distributed delays. In addition, we present an illustrative example
to show the feasibility of obtained results.
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1 Introduction

In 1983, Cohen and Grossberg (see [9]) proposed the following Cohen–Grossberg model:

dxi
dt

= −ai(xi)

[
bi(xi)−

n∑
j=1

tijsj(xj)− Ii

]
, i = 1, 2, . . . , n,

where n > 2 is the number of neurons in the network, xi(t) denotes the neuron state
variable; ai(·) is an amplification function; bi(·) denotes a behaved function; (tij)n×n
is the connection weight matrix, which denotes how the neurons are connected in the
network; the activation function is sj(x) and Ii is the external input. Since then, Cohen–
Grossberg neural networks (CGNNs) have been intensively studied due to their promising
potential applications in classification, parallel computation, associative memory and
optimization problems (see [2, 3, 5]). There have been many results on Cohen–Grossberg
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BAM neural networks. For example, in paper [23], authors established sufficient condi-
tions to guarantee the uniqueness and global exponential stability of periodic solutions for
a Cohen–Grossberg-type BAM neural networks by using suitable Lyapunov functions, the
properties ofM -matrix and some suitable mathematical transformation; the author in [26]
considered the existence and global attractively of the equilibrium point for a class of
Cohen–Grossberg neural networks based on M -matrix theory; authors in [14] studied the
stability and existence of periodic solutions to delayed Cohen–Grossberg BAM neural
networks with impulses on time scales. For other results on Cohen–Grossberg neural
networks, readers may see [4, 11, 13, 34, 38] and reference therein.

Moreover, in mathematical modeling of real world problems, we will encounter some
inconveniences, for example, the complexity and the uncertainty or vagueness. For the
sake of taking vagueness into consideration, the fuzzy theory is considered as a suitable
method. T. Yang and L. Yang proposed fuzzy cellular neural networks in 1996 ( [35]).
They integrated fuzzy logic into traditional cellular neural networks and maintained local
connectedness among cells. Fuzzy neural networks have fuzzy logic between their tem-
plate input and/or output besides the sum of product operation. Studies have revealed
that fuzzy neural networks are very useful for image processing problems, which is
a cornerstone in image processing and pattern recognition. In recent years, lots of results
on fuzzy neural networks have been derived by many scholars (see [30, 32, 37, 40] and
reference therein). For instance, authors in [15, 17, 19, 20, 22] obtained some sufficient
conditions for the existence and stability of unique equilibrium point or periodic solution
for some fuzzy neural networks; authors in [39, 41] studied the stability of fuzzy BAM
neural networks and fuzzy Cohen–Grossberg BAM neural networks, respectively.

Arising from problems in applied sciences, it is well-known that anti-periodic prob-
lems of nonlinear differential equations have been extensively studied by many authors
during the past twenty years (see [7, 8, 36] and reference therein) and the existence and
stability of anti-periodic solutions are an important topic in nonlinear differential equa-
tions. For example, anti-periodic trigonometric polynomials are important in the study
of interpolation problems (see [10, 12]) and anti-periodic wavelets are discussed in [6].
Since the signal transmission process of neural networks can often be described as an
anti-periodic process, anti-periodic solutions for different classes of neural networks were
discussed by many authors (see [16, 18, 21, 27, 28, 29, 33] and reference therein).

In this paper, we will integrate fuzzy operations into Cohen–Grossberg neural net-
works and maintain local connectedness among cells. By using a continuation theorem
of coincidence degree theory which does not need to compute the topological degree and
a differential inequality, we study the existence and global exponential stability of anti-
periodic solutions for the following fuzzy Cohen–Grossberg neural network with time-
varying and distributed delays:

dxi(t)

dt
= −ai

(
xi(t)

)[
bi
(
xi(t)

)
−

n∑
j=1

kij(t)fj
(
xj
(
t− τij(t)

))
−

n∧
j=1

αij(t)fj
(
xj
(
t− τij(t)

))
−

n∨
j=1

βij(t)fj −
(
xj
(
t− τij(t)

))
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−
n∑
j=1

eij(t)

+∞∫
0

vij(s)gj
(
xj(t− s)

)
ds

−
n∧
j=1

γij(t)

+∞∫
0

vij(s)gj
(
xj(t− s)

)
ds

−
n∨
j=1

ξij(t)

+∞∫
0

vij(s)gj
(
xj(t− s)

)
ds

−
n∑
j=1

δij(t)µj(t)−
n∧
j=1

Tij(t)µj(t)−
n∨
j=1

Hij(t)µj(t)− Ii(t)

]
, (1)

where i = 1, 2, . . . , n, n is the number of neurons, xi(t) denotes the activation of the ith
neuron at time t; ai(·) is amplification function; bi(·) represents the appropriately behaved
function; fj , gj denote the activation functions of the jth neuron; 0 6 τij(t) 6 τij
is the transmission delay; kij(t), eij(t) are elements of feedback templates at time t and
δij(t) is the element of feed-forward templates at time t; αij(t), γij(t) denote elements of
fuzzy feedback MIN templates at time t and βij(t), ξij(t) are elements of fuzzy feedback
MAX templates at time t; Tij(t) is the fuzzy feed-forward MIN template at time t and
Hij(t) is the fuzzy feed-forward MAX templates at time t, respectively; µj(t) denotes
the input of the jth neuron at time t; vij : (0,+∞)→ (0,+∞) corresponds to the delay
kernel function and satisfies

∫ +∞
0

vij(s) ds 6 v̄ij , where v̄ij is a positive constant; Ii(t)
denotes biases of the ith neuron at time t, respectively, i, j = 1, 2, . . . , n; ∧ and ∨ denote
the fuzzy AND and fuzzy OR operations, respectively. To the best of our knowledge,
there have been few papers published on the existence of anti-periodic solutions for fuzzy
Cohen–Grossberg neural networks by using the symmetry continuation theorem which is
used in this paper.

The initial condition of (1) is of the form

xi(s) = ϕi(s), s ∈ (−∞, 0], i = 1, 2, . . . , n,

where ϕi(·) denotes positive real-valued continuous functions on (−∞, 0].
Denote R+ = (0,+∞). Throughout this paper, we assume the following conditions

hold:

(H1) kij(t), αij(t), τij(t), Tij(t), βij(t), Hij(t), µj(t), Ii(t), eij(t), γij(t), ξij(t)
are ω/2-anti-periodic continuous functions for t ∈ R, i, j = 1, 2, . . . , n;

(H2) ai ∈ C(R,R+), ai(−u) = ai(u) and there exist positive constants ami , aMi
such that ami 6 ai(u) 6 aMi for all u ∈ R, i, j = 1, 2, . . . , n;

(H3) bi ∈ C(R,R) is differentiable, bi(0) = 0, bi(−u) = −bi(u) and there exist
positive constants ρi, δi such that 0 < ρi 6 b′i(u) 6 δi for all u ∈ R, i, j =
1, 2, . . . , n;

Nonlinear Anal. Model. Control, 20(3):395–416



398 Y. Li et al.

(H4) fj , gj ∈ C(R,R), fj(−u) = −fj(u), gj(−u) = −gj(u) and there exist
positive constants Lfj and Mj such that, for u, v ∈ R,∣∣fj(u)− fj(v)

∣∣ 6 Lfj |u− v| and
∣∣gj(u)

∣∣ 6Mj , i, j = 1, 2, . . . , n.

For convenience, we denote

h̄ = max
t∈[0,ω]

∣∣h(t)
∣∣, ‖h‖2 =

( ω∫
0

∣∣h(t)
∣∣2 dt

)1/2

,

where h is an ω/2-anti-periodic function, and we denote

Îi(t) =

n∑
j=1

δij(t)µj(t) +

n∧
j=1

Tij(t)µj(t) +

n∨
j=1

Hij(t)µj(t) + Ii(t),

i = 1, 2, . . . , n.
The organization of the rest of this paper is as follows: in Section 2, we introduce

some notations and preliminary results which are needed in later sections. In Sections 3
and 4, we establish some sufficient conditions for the existence and global exponential
stability of the anti-periodic solution of (1), respectively. In Section 5, as a special case
of our results obtained in Sections 3 and 4, we give sufficient conditions for the existence
and global exponential stability of the fuzzy Cohen–Grossberg BAM neural networks
with time-varying and distributed delays. In Section 6, we give an example to illustrate
the feasibility of our results obtained in previous sections.

2 Preliminaries

In this section, we state some notions and preliminary results.

Definition 1. Let u ∈ C(R,R). A function u(t) is said to be ω/2-anti-periodic on R if
u(t+ ω/2) = −u(t) for all t ∈ R,ω > 0 is a constant.

A matrix or a vector A > 0 (or A > 0) means that all the elements of A are greater
than or equal to (or greater than) zero. For matrices or vectors A, B, A > B (or A > B),
means that all entries of A are greater than or equal to (or greater than) corresponding
entries of B.

Definition 2. (See [1].) A real matrixA = (aij)n×n is said to be anM -matrix if aij 6 0,
i, j = 1, 2, . . . , n, i 6= j, and all successive principal minors of A are positive.

Lemma 1. (See [1].) Let A = (aij)n×n be an matrix with nonpositive off-diagonal
elements, then the following statements are equivalent:

(i) A is an M -matrix;
(ii) There exists a vector η > 0 such that Aη > 0;

(iii) There exists a vector ξ > 0 such that ξTA > 0.
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Lemma 2. (See [24].) Let matrix A > 0. Then the following statements are equivalent:
(i) ρ(A) < 1;

(ii) (E −A)−1 > 0, where E denotes the identity matrix;
(iii) There is a constant vector c > 0 such that c > cA;
(iv) There is a constant vector c > 0 such that c > cAT.

Lemma 3. (See [22].) Let fj be defined on R, j = 1, 2, . . . ,m. Then for any aij ∈ R,
i = 1, 2, . . . , n, j = 1, 2, . . . ,m, we have the following estimations:∣∣∣∣∣

m∧
j=1

aijfj(uj)−
m∧
j=1

aijfj(vj)

∣∣∣∣∣ 6
m∑
j=1

|aij |
∣∣fj(uj)− fj(vj)∣∣

and ∣∣∣∣∣
m∨
j=1

aijfj(uj)−
m∨
j=1

aijfj(vj)

∣∣∣∣∣ 6
m∑
j=1

|aij |
∣∣fj(uj)− fj(vj)∣∣,

where uj , vj ∈ R, j = 1, 2, . . . ,m.

Definition 3. The anti-periodic solution z∗(t) = (x∗1(t), x∗2(t), . . . , x∗n(t))T with initial
value φ∗(s) = (ϕ∗1(s), ϕ∗2(s), . . . , ϕ∗n(s))T of (1) is said to be globally exponentially
stable, if for any solution z(t) = (x1(t), x2(t), . . . , xn(t))T with initial value φ(s) =
(ϕ1(s), ϕ2(s), . . . , ϕn(s))T of (1), there exist constants δ > 0 and r > 1 such that

n∑
i=1

∣∣xi(t)− x∗i (t)∣∣ 6 re−δt‖ϕ− ϕ∗‖1

holds for all t > 0, where ‖ϕ− ϕ∗‖1 =
∑n
i=1 sups∈(−∞,0] |ϕi(s)− x∗i (s)|.

Lemma 4. (See [31].) Let z(t) = (x1(t), x2(t), . . . , xn(t))T be a solution of the differ-
ential inequality

D+z(t) 6 Cz(t) +Dz̄(t), t > 0,

where z̄(t) = (x̄1(t), x̄2(t), . . . , x̄n(t))T, x̄i(t) = sup−∞6s6t{xi(s)}, i = 1, 2, . . . , n.
If the conditions

(i) C = (cij)n×n, cij > 0 (i 6= j), i, j = 1, 2, . . . , n;
∑n
k=1 z̄k(0) > 0;

(ii) −(C +D) is an M -matrix

hold, then there exist constants δ > 0, rk > 1 (k = 1, 2, . . . , n) such that

zk(t) 6 rk

n∑
k=1

z̄k(0)e−δt, t > 0.

The following fixed point theorem of coincidence degree is crucial in the arguments
of our main results.
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Lemma 5. (See [25].) Let X, Y be two Banach spaces, Ω ⊂ X be open bounded and
symmetric with 0 ∈ Ω. Suppose that L : D(L) ⊂ X → Y is a linear Fredholm operator
of index zero withD(L)∩Ω̄ 6= ∅ andN : Ω̄ → Y is L-compact. Further, we also assume
that:

(H) Lx−Nx 6= λ(−Lx−N(−x)) for all x ∈ D(L) ∩ ∂Ω, λ ∈ (0, 1].

Then equation Lx = Nx has at least one solution on D(L) ∩ Ω̄.

3 Existence of anti-periodic solutions

Theorem 1. Assume that (H1)–(H4) hold. Suppose further that

(H5) G := G1−G2 is an M -matrix, where G1 = diag(ami − θiami aMi ω)n×n, G2 =

(νij)n×n, νij = aMi (1/ρi+ami ω)
∑m
j=1(k̄ji+ ᾱji+ β̄ji)L

f
j , i, j = 1, 2, . . . , n.

Then (1) has at least one ω/2-anti-periodic solution.

Proof. LetCk[0, ω] = {u = (x1, x2, . . . , xn)T : [0, ω]→ Rn|uk(t) is a continuous map},
k = 0, 1. Take

X = Y =

{
u ∈ C[0, ω]: u

(
t+

ω

2

)
= −u(t) for all t ∈

[
0,
ω

2

]}
,

then X and Y are Banach spaces with the norm ‖u‖X = ‖u‖Y =
∑n
i=1 |xi|0, in which

|xi|0 = maxt∈[0,ω] |xi(t)|, i = 1, 2, . . . , n. Set

L : DomL ∩X → Y, u→ u′,

where

DomL =

{
u ∈ C1[0, ω]: u

(
t+

ω

2

)
= −u(t) for all t ∈

[
0,
ω

2

]}
and

N : X → Y, Nu =
(
A1(t), A2(t), . . . , An(t)

)T
,

where

Ai(t) = −ai
(
xi(t)

)[
bi(xi(t))−

n∑
j=1

kij(t)fj
(
xj
(
t−τij(t)

))
−

n∧
j=1

αij(t)fj
(
xj
(
t−τij(t)

))
−

n∨
j=1

βij(t)fj
(
xj
(
t−τij(t)

))

−
n∑
j=1

eij(t)

+∞∫
0

vij(s)gj
(
xj(t−s)

)
ds−

n∧
j=1

γij(t)

+∞∫
0

vij(s)gj
(
xj(t−s)

)
ds

−
n∨
j=1

ξij(t)

+∞∫
0

vij(s)gj
(
xj(t−s)

)
ds− Îi(t)

]
, i = 1, 2, . . . , n.
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It is easy to see that

KerL = {0} and ImL =

{
z ∈ Y :

ω∫
0

z(s) ds = 0

}
≡ Y.

Thus dim KerL = 0 = codim ImL, and L is a linear Fredholm operator of index zero.
Define the continuous projector P : X → KerL and the averaging projector Q :

Y → Y by

Pu =

ω∫
0

u(s) ds = 0, Qz =
1

ω

ω∫
0

z(s) ds.

Hence ImP = KerL and KerQ = ImL = Im(I − Q). Denoting by L−1P : ImL →
DomL ∩KerP the inverse of L|D(L)∩KerP , we have

L−1P z =

t∫
0

z(s) ds− 1

2

ω/2∫
0

z(s) ds. (2)

Similar to the proof of Theorem 3.1 in [14], it is not difficult to show that QN(Ω̄),
L−1P (I − Q)N(Ω̄) are relatively compact for any open bounded set Ω ⊂ X . Therefore,
N is L-compact on Ω̄ for any open bounded set Ω ⊂ X .

In order to apply Lemma 5, we need to find an appropriate open bounded subset Ω
in X . Corresponding to the operator equation Lu−Nu = λ(−Lu−N(−u)), λ ∈ (0, 1],
we have

x′i(t) =
1

1 + λ
Gi(t, x)− λ

1 + λ
Gi(t,−x), i = 1, 2, . . . , n, (3)

where

Gi(t, x) = −ai
(
xi(t)

)[
bi
(
xi(t)

)
−

n∑
j=1

kij(t)fj
(
xj
(
t− τij(t)

))
−

n∧
j=1

αij(t)fj
(
xj
(
t− τij(t)

))
−

n∨
j=1

βij(t)fj
(
xj
(
t− τij(t)

))

−
n∑
j=1

eij(t)

+∞∫
0

vij(s)gj
(
xj(t− s)

)
ds

−
n∧
j=1

γij(t)

+∞∫
0

vij(s)gj
(
xj(t− s)

)
ds

−
n∨
j=1

ξij(t)

+∞∫
0

vij(s)gj
(
xj(t− s)

)
ds− Îi(t)

]
, i = 1, 2, . . . , n,
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and

Gi(t,−x) = −ai
(
−xi(t)

)[
bi
(
−xi(t)

)
−

n∑
j=1

kij(t)fj
(
−xj

(
t− τij(t)

))
−

n∧
j=1

αij(t)fj
(
−xj

(
t− τij(t)

))
−

n∨
j=1

βij(t)fj
(
−xj

(
t− τij(t)

))

−
n∑
j=1

eij(t)

+∞∫
0

vij(s)gj
(
−xj(t− s)

)
ds

−
n∧
j=1

γij(t)

+∞∫
0

vij(s)gj
(
−xj(t− s)

)
ds

−
n∨
j=1

ξij(t)

+∞∫
0

vij(s)gj
(
−xj(t− s)

)
ds− Îi(t)

]
, i = 1, 2, . . . , n.

In view of the first equation of (3), for i = 1, 2, . . . , n, we get from (H2)–(H4) and
Lemma 3 that

ω∫
0

∣∣x′i(t)∣∣dt =

ω∫
0

∣∣∣∣ 1

1 + λ
Gi(t, x)− λ

1 + λ
Gi(t,−x)

∣∣∣∣dt
6

[
1

1 + λ
+

λ

1 + λ

] ω∫
0

max
{∣∣Gi(t, x)

∣∣, ∣∣Gi(t,−x)
∣∣} dt

6 aMi

[ ω∫
0

∣∣bi(xi(t))∣∣dt+

n∑
j=1

k̄ij

ω∫
0

∣∣fj(xj(t− τij(t)))∣∣dt
+

ω∫
0

n∧
j=1

ᾱij |fj
(
xj
(
t− τij(t)

))∣∣dt+

ω∫
0

n∨
j=1

β̄ij
∣∣fj(xj(t− τij(t)))∣∣ dt

+

n∑
j=1

ēij

ω∫
0

+∞∫
0

vij(s)
∣∣gj(xj(t− s))∣∣dsdt

+

ω∫
0

n∧
j=1

γ̄ij

+∞∫
0

vij(s)
∣∣gj(xj(t− s))∣∣ dsdt

+

ω∫
0

n∨
j=1

ξ̄ij

+∞∫
0

vij(s)
∣∣gj(xj(t− s))∣∣dsdt+

¯̂
Iiω

http://www.mii.lt/NA



Anti-periodic solution for fuzzy Cohen–Grossberg neural networks 403

6 aMi

[ ω∫
0

∣∣bi(xi(t))∣∣dt+

n∑
j=1

k̄ij

ω∫
0

∣∣fj(xj(t− τij(t)))− fj(0)
∣∣dt

+

n∑
j=1

ᾱij

ω∫
0

∣∣fj(xj(t− τij(t)))− fj(0)
∣∣ dt

+

n∑
j=1

ω∫
0

β̄ij
∣∣fj(xj(t− τij(t)))− fj(0)

∣∣dt+
¯̂
Iiω

+

n∑
j=1

(
(b̄ij + ᾱij + β̄ij)ω

∣∣fj(0)
∣∣+ (ēij + γ̄ij + ξ̄ij)v̄ijωMj

)]

6 aMi

[
θi
√
ω‖xi‖2 +

n∑
j=1

(k̄ij + ᾱji + β̄ij)L
f
j

√
ω ‖xj‖2 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]
. (4)

Integrating (3) from 0 to ω, for i = 1, 2, . . . , n, we have that∣∣∣∣
ω∫

0

[
ai(xi(t))bi(xi(t))

1 + λ
− λai(−xi(t))bi(−xi(t))

1 + λ

]
dt

∣∣∣∣
=

∣∣∣∣∣
ω∫

0

[
ai(xi(t))bi(xi(t))

1 + λ
+
λai(xi(t))bi(xi(t))

1 + λ

]
dt

∣∣∣∣∣ =

∣∣∣∣∣
ω∫

0

ai
(
xi(t)

)
bi
(
xi(t)

)
dt

∣∣∣∣∣
6 aMi

ω∫
0

[
n∑
j=1

k̄ij
∣∣fj(xj(t− τij(t)))− fj(0)

∣∣
+

n∑
j=1

ᾱij
∣∣fj(xj(t− τij(t)))− fj(0)

∣∣+
¯̂
Ii

+

n∑
j=1

β̄ij
∣∣fj(xj(t− τij(t)))− fj(0)

∣∣] dt

+ aMi

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+ aMi

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

6 aMi

[
n∑
j=1

(k̄ij + ᾱij + β̄ij
)
Lfj
√
ω ‖xj‖2 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]
.
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By the mean value theorem of integration and (H3), for i = 1, 2, . . . , n, we obtain that

∣∣∣∣∣
ω∫

0

ai
(
xi(t)

)
xi(t) dt

∣∣∣∣ 6 aMi
ρi

[
n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j

√
ω ‖xj‖2 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣
+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]
. (5)

For any ζi, ηi ∈ [0, ω], i = 1, 2, . . . , n, we have

ω∫
0

ai
(
xi(t)

)
xi(t) dt 6

ω∫
0

ai
(
xi(t)

)
xi(ζi) dt+

ω∫
0

ai
(
xi(t)

)( ω∫
0

∣∣x′i(t)∣∣dt
)

dt,

and
ω∫

0

ai
(
xi(t)

)
xi(t) dt >

ω∫
0

ai
(
xi(t)

)
xi(ηi) dt−

ω∫
0

ai
(
xi(t)

)( ω∫
0

∣∣x′i(t)∣∣dt
)

dt,

where i = 1, 2, . . . , n. Dividing by
∫ ω
0
ai(xi(t)) dt on the two sides of above two

inequalities, respectively, we obtain that, for i = 1, 2, . . . , n,

xi(ζi) >
1∫ ω

0
ai(xi(t)) dt

ω∫
0

ai
(
xi(t)

)
xi(t) dt−

ω∫
0

∣∣x′i(t)∣∣dt, (6)

and

xi(ηi) 6
1∫ ω

0
ai(xi(t)) dt

ω∫
0

ai
(
xi(t)

)
xi(t) dt+

ω∫
0

∣∣x′i(t)∣∣dt. (7)

Let ti, ti ∈ [0, ω] such that xi(ti) = maxt∈[0,ω] xi(t), xi(ti) = mint∈[0,ω] xi(t), by the
arbitrariness of ζi, ηi, we obtain from (4)–(7) that for i = 1, 2, . . . , n,

xi(ti) >
1∫ ω

0
ai(xi(t)) dt

ω∫
0

ai
(
xi(t)

)
xi(t) dt−

ω∫
0

∣∣x′i(t)∣∣dt
> − 1∫ ω

0
ai(xi(t)) dt

∣∣∣∣∣
ω∫

0

ai(xi(t))xi(t) dt

∣∣∣∣∣−
ω∫

0

∣∣x′i(t)∣∣dt
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> − aMi
ami ρiω

[
n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j

√
ω ‖xj‖2 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]

− aMi

[
θi
√
ω ‖xi‖2 +

n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j

√
ω ‖xj‖2 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]
and

xi(ti) 6
1∫ ω

0
ai(xi(t)) dt

ω∫
0

ai
(
xi(t)

)
xi(t) dt+

ω∫
0

∣∣x′i(t)∣∣dt
6

1∫ ω
0
ai
(
xi(t)

)
dt

∣∣∣∣∣
ω∫

0

ai
(
xi(t)

)
xi(t) dt

∣∣∣∣∣+

ω∫
0

∣∣x′i(t)∣∣ dt
6

aMi
ami ρiω

[
n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j

√
ω ‖xj‖2 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]

+ aMi

[
θi
√
ω ‖xi‖2 +

n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j

√
ω ‖xj‖2 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]
.

Thus, we have that for i = 1, 2, . . . , n,

|xi|0 = max
t∈[0,ω]

∣∣xi(t)∣∣ 6 aMi
ami ρiω

[
n∑
j=1

(k̄ij + ᾱji + β̄ij)L
f
j

√
ω ‖xj‖2 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]

+ aMi

[
θi
√
ω ‖xi‖2 +

n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j

√
ω ‖xj‖2 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]
. (8)
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In addition, we have that

‖xi‖2 =

( ω∫
0

∣∣xi(s)∣∣2 ds

)1/2

6
√
ω max
t∈[0,ω]

∣∣xi(t)∣∣ =
√
ω |xi|0, i = 1, 2, . . . , n.

By (8), we have for i = 1, 2, . . . , n,

ami ω|xi|0 6
aMi
ρi

[
n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j

√
ω ‖xj‖2

+
¯̂
Iiω +

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]

+ ami ωa
M
i

[
θi
√
ω ‖xi‖2 +

n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j

√
ω ‖xj‖2 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]

6
aMi
ρi

[
n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j ω|xj |0 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]

+ ami ωa
M
i

[
θiω|xi|0 +

n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j ω|xj |0 +

¯̂
Iiω

+

n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj

]
,

which imply that

(
ami − θiami aMi ω

)
|xi|0 − aMi

(
1

ρi
+ ami ω

) n∑
j=1

(k̄ij + ᾱij + β̄ij)L
f
j |xj |0

6 aMi

(
1

ρi
+ ami ω

)( n∑
j=1

(k̄ij + ᾱij + β̄ij)ω
∣∣fj(0)

∣∣
+

n∑
j=1

(ēij + γ̄ij + ξ̄ij)v̄ijωMj +
¯̂
Ii

)
, Ni, i = 1, 2, . . . , n. (9)

Denote

|u|0 =
(
|x1|0, |x2|0, . . . , |xn|0

)T
and N = (N1, N2, . . . , Nn)T.
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Then (9) can be rewritten in the matrix form

E|u|0 6 N.

Since E is a nonsingular M matrix, we have that

|u|0 6 E−1N , (Q1, Q2, . . . , Qn)T.

LetQ =
∑n
k=1Qi+1 (clearly,Q is independent of λ). TakeΩ = {u ∈ X: ‖u‖X < Q}.

It is clear that Ω satisfies all the requirements in Lemma 5 and condition (H) is satisfied.
Hence, we conclude from Lemma 5 that system (1) has at least one ω/2-anti-periodic
solution. This completes the proof.

4 Exponential stability of anti-periodic solution

In this section, we study the global exponential stability of the anti-periodic solution of
(1) obtained in Section 2.

Theorem 2. Let (H1)–(H5) hold. Suppose further that:

(H6) There exist positive constants Mf
j such that |fj(u)| 6 Mf

j for all u ∈ R,
j = 1, 2, . . . , n;

(H7) There exist positive constants Lai such that∣∣ai(u)− ai(v)
∣∣ 6 Lai |u− v| ∀u, v ∈ R, i = 1, 2, . . . , n;

(H8) There exist positive constants lai such that(
ai(u)bi(u)− ai(v)bi(v)

)
(u− v) > 0,∣∣ai(u)bi(u)− ai(v)bi(v)
∣∣ > lai |u− v|,

for all u, v ∈ R, i = 1, 2, . . . , n;
(H9) Γ := A − CFTL is an M -matrix, where A = diag(ζi)n×n, ζi = lai +

Lai (
∑n
j=1(k̄ij + ᾱij + β̄ij)M

f
j +

¯̂
Ii), C = diag(aM1 , a

M
2 , . . . , a

M
n )n×n, F =

(Fij)n×n, Fij = ēij + γ̄ij + ξ̄ij , L = diag(Lf1 , L
f
2 , . . . , L

f
n)n×n, i, j =

1, 2, . . . , n.

Then (1) has one ω/2-anti-periodic solution, which is globally exponentially stable.

Proof. From Theorem 1, it is clear that (1) has at least one ω/2-anti-periodic solution.
We denote this anti-periodic solution by z∗(t) = (x∗1(t), x∗2(t), . . . , x∗n(t))T and the
initial condition by φ∗(s) = (ϕ∗1(s), ϕ∗2(s), . . . , ϕ∗n(s))T. Next, we will use a differential
inequality to study the global exponential stability of this anti-periodic solution.

Suppose that z(t) = (x1(t), x2(t), . . . , xn(t))T is an arbitrary solution of (1) with ini-
tial value φ(s) = (ϕ1(s), ϕ2(s), . . . , ϕn(s))T. Let Θ(t) = (u1(t), u2(t), . . . , un(t))T =
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z(t)− z∗(t), where ui(t) = xi(t)− x∗i (t), i = 1, 2, . . . , n. Then (1) can be rewritten as

dui(t)

dt
= −

[
ai
(
xi(t)

)
bi
(
xi(t)

)
− ai

(
x∗i (t)

)
bi
(
x∗i (t)

)]
+
[
ai
(
xi(t)

)
− ai

(
x∗i (t)

)][ n∑
j=1

kij(t)fj
(
xj
(
t−τij(t)

))
+

n∧
j=1

αij(t)fj
(
xj
(
t−τij(t)

))
+

n∨
j=1

βij(t)fj
(
xj
(
t−τij(t)

))

+

n∑
j=1

eij(t)

+∞∫
0

vij(s)gj
(
xj(t−s)

)
ds+

n∧
j=1

γij(t)

+∞∫
0

vij(s)gj
(
xj(t−s)

)
ds

+

n∨
j=1

ξij(t)

+∞∫
0

vij(s)gj
(
xj(t−s)

)
ds

]

+ ai
(
x∗i (t)

)[ n∑
j=1

kij(t)f̃j
(
wj
(
t−τij(t)

))
+

n∧
j=1

αij(t)f̃j
(
wj
(
t−τij(t)

))

+

n∨
j=1

βij(t)f̃j
(
wj
(
t−τij(t)

))
+

n∑
j=1

eij(t)

+∞∫
0

vij(s)g̃j
(
xj(t−s)

)
ds

+

n∧
j=1

γij(t)

+∞∫
0

vij(s)g̃j
(
xj(t−s)

)
ds+

n∨
j=1

ξij(t)

+∞∫
0

vij(s)g̃j
(
xj(t−s)

)
ds

]

+
[
ai
(
xi(t)

)
− ai

(
x∗i (t)

)]
Îi(t), i = 1, 2, . . . , n, (10)

where

f̃j
(
wj
(
t− τij(t)

))
= fj

(
xj
(
t− τij(t)

))
− fj

(
x∗j
(
t− τij(t)

))
and

g̃j
(
xi(s)

)
= gj

(
xj(s)

)
− gj

(
x∗j (s)

)
.

The initial condition of (10) is the following:

ui(s) = ϕi(s)− ϕ∗i (s), s ∈ (−∞, 0], i = 1, 2, . . . , n.

Calculating the upper right derivative of D+(|ui(t)|), by (H2)–(H8), we have

D+
(∣∣ui(t)∣∣) 6 −lai ∣∣ui(t)∣∣+ Lai

[
n∑
j=1

(k̄ij + ᾱij + β̄ij)M
f
j +

¯̂
Ii

]∣∣ui(t)∣∣
+ aMi

n∑
j=1

(k̄ij + ᾱij + β̄ij)v̄ijL
g
j

∣∣ūj(t)∣∣
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= −

[
lai + Lai

(
n∑
j=1

(k̄ij + ᾱij + β̄ij)M
f
j +

¯̂
Ii

)]∣∣ui(t)∣∣
+ aMi

n∑
j=1

(k̄ij + ᾱij + β̄ij)v̄ijL
g
j

∣∣ūj(t)∣∣, i = 1, 2, . . . , n.

Let Λ(t) = [Θ(t)]+, where [Θ(t)]+ = (|u1(t)|, |u2(t)|, . . . , |un(t)|)T. Then, we have the
following inequality:

D+Λ(t) 6 −AΛ(t) + CFTLΛ̄(t),

where Λ̄(t) = (Λ̄1(t), Λ̄2(t), . . . , Λ̄n(t))T, Λ̄i(t) = sup06s6+∞{|ui(t − s)|}, i =
1, 2, . . . , n. According to Lemma 4, there exist constants δ > 0 and rk > 1 (k =
1, 2, . . . , n) such that

Λk(t) =
∣∣zk(t)− z∗k(t)

∣∣ 6 rk

n∑
k=1

∣∣z̄k(0)− z∗k(0)
∣∣e−δt, t > 0,

that is ∣∣zk(t)− z∗k(t)
∣∣ 6 r̄‖φ− φ∗‖1e−δt, r̄ = max

16k6n
{rk}, t > 0.

Hence, we have
n∑
i=1

∣∣xi(t)− x∗i (t)∣∣ 6 re−δt‖ϕ− ϕ∗‖1, r = (n)r̄,

holds for all t > 0. That is, the anti-periodic solution z∗(t) = (x∗1(t), x∗2(t), . . . , x∗n(t))T

of (1) is globally exponentially stable. This completes the proof.

5 Anti-periodic solution for fuzzy Cohen–Grossberg BAM neural
networks

Consider the following fuzzy Cohen–Grossberg BAM neural networks with time-varying
and distributed delays

dxi(t)

dt
= −ai

(
xi(t)

)[
bi
(
xi(t)

)
−

m∑
j=1

kji(t)fj
(
yj
(
t−τji(t)

))
−

m∧
j=1

αji(t)fj
(
yj
(
t−τji(t)

))
−

m∨
j=1

βji(t)fj
(
yj
(
t−τji(t)

))

−
m∑
j=1

eji(t)

+∞∫
0

vji(s)gj
(
yj(t−s)

)
ds

−
m∧
j=1

γji(t)

+∞∫
0

vji(s)gj
(
yj(t−s)

)
ds
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−
m∨
j=1

ξji(t)

+∞∫
0

vji(s)gj
(
yj(t−s)

)
ds−

m∑
j=1

δji(t)µj(t)

−
m∧
j=1

Tji(t)µj(t)−
m∨
j=1

Hji(t)µj(t)− Ii(t)

]
, i = 1, 2, . . . , n, (111)

dyj(t)

dt
= −cj

(
yj(t)

)[
dj
(
yj(t)

)
−

n∑
i=1

pij(t)hi
(
xi
(
t−θij(t)

))
−

n∧
i=1

ζij(t)hi
(
yi
(
t−θij(t)

))
−

n∨
i=1

qij(t)hi
(
yi
(
t−θij(t)

))
−

n∑
i=1

rij(t)

+∞∫
0

νij(s)h̃i
(
yi(t−s)

)
ds

−
n∧
i=1

γ̃ij(t)

+∞∫
0

νij(s)h̃i
(
yi(t−s)

)
ds

−
n∨
i=1

ξ̃ij(t)

+∞∫
0

νij(s)h̃i
(
yi(t−s)

)
ds−

n∑
i=1

δ̃ij(t)µi(t)

−
n∧
i=1

T̃ij(t)µ̃i(t)−
n∨
i=1

H̃ij(t)µ̃i(t)− Jj(t)

]
, j = 1, 2, . . . ,m, (112)

where n,m are the number of neurons in layers, xi(t) and yj(t) denote the activations of
the ith neuron and the jth neuron at time t; ai(·) and cj(·) are amplification functions;
bi(·) and dj(·) represent appropriately behaved functions; fj , gj , hi, h̃i denote the activa-
tion functions of the jth neuron from FY and the ith neuron from FX , respectively; 0 6
τji(t) 6 τji and 0 6 θij(t) 6 θij are transmission delays; kji(t), eji(t), pij(t), rij(t) are
elements of feedback templates at time t and δji(t), δ̃ij(t) are elements of feed-forward
templates at time t; αji(t), γji(t), ζij(t), γ̃ij(t) denote elements of fuzzy feedback MIN
templates at time t and βji(t), ξji(t), qij(t), ξ̃ij(t) are elements of fuzzy feedback MAX
templates at time t; Tji(t), T̃ij(t) are fuzzy feed-forward MIN templates at time t and
Hji(t), H̃ij(t) are fuzzy feed-forward MAX templates at time t, respectively; µj(t),
µ̃i(t) denote the input of the ith neuron and the jth neuron at time t; Ii(t), Jj(t) denote
biases of the ith neuron and the jth neuron at time t, respectively; vji, νij : (0,+∞) →
(0,+∞) correspond to the delay kernel functions and satisfy

∫ +∞
0

vji(s) ds 6 v̄ji and∫ +∞
0

νij(s) ds 6 ν̄ij , where v̄ji and ν̄ij are positive constants; i = 1, 2, . . . , n, j =
1, 2, . . . ,m; ∧ and ∨ denote the fuzzy AND and fuzzy OR operations, respectively.

In view of the proof of Theorem 1 and Theorem 2, since fuzzy Cohen–Grossberg
BAM neural network is a special case of fuzzy Cohen–Grossberg neural network, many
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results of fuzzy Cohen–Grossberg BAM neural networks can be directly obtained from
the ones of fuzzy Cohen–Grossberg neural networks, needing no repetitive discussions.
We have the following corollaries.

Corollary 1. Suppose that the following conditions hold:
(A1) kji(t), αji(t), τji(t), Tji(t), βji(t), Hji(t), µj(t), Ii(t), eji(t), γji(t), ξji(t),

δji(t), pij(t), ζij(t), θij(t), T̃ij(t), qij(t), H̃ij(t), µ̃i(t), Jj(t), rij(t), γ̃ij(t),
ξ̃ij(t), δ̃ij(t) are ω/2-anti-periodic continuous functions on t ∈ R, i = 1, 2,
. . . , n, j = 1, 2, . . . ,m;

(A2) ai, cj ∈ C(R,R+), ai(−u) = ai(u), cj(−u) = cj(u) and there exist positive
constants ami , aMi , cmj , cMj such that ami 6 ai(u) 6 aMi and cmj 6 cj(u) 6 cMj
for all u ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . ,m;

(A3) bi, dj ∈ C(R,R) are differentiable, bi(0) = 0, dj(0) = 0, bi(−u) = −bi(u),
dj(−u) = −dj(u) and there exist positive constants ρi, δi, εj , ϑj such that
0 < ρi 6 b′i(u) 6 δi and 0 < εj 6 d′j(u) 6 ϑj for all u ∈ R, i = 1, 2, . . . , n,
j = 1, 2, . . . ,m;

(A4) fj , gj , hi, h̃i ∈ C(R,R), fj(−u) = −fj(u), gj(−u) = −gj(u), hi(−u) =
−hi(u), h̃i(−u) = −h̃i(u) and there exist positive constants Lfj , Mj , Lhi and
σi such that ∣∣fj(u)− fj(v)

∣∣ 6 Lfj |u− v|,
∣∣gj(u)

∣∣ 6Mj ,∣∣hi(u)− hi(v)
∣∣ 6 Lhi |u− v|,

∣∣hi(u)
∣∣ 6 σi

for all u, v ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . ,m;

(A5) G :=
(
G1 −G2

−G3 G4

)
is an M -matrix, where G1 = diag(ami − θiami aMi ω)n×n,

G2 = (ν̃ij)n×m, G3 = (%ji)m×n, G4 = diag(cmi − ϑjcmj cMj ω)m×m, ν̃ij =

aMi (1/ρi+a
m
i ω)

∑m
j=1(k̄ji+ᾱji+β̄ji)L

f
j , %ji = cMj (1/εj+c

m
j ω)

∑n
i=1(p̄ij+

ζ̄ij + q̄ij)L
h
i , i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Then system (11) has one ω/2-anti-periodic solution.

Corollary 2. Assume that (A1)–(A5) hold. Suppose further that:
(A6) There exist positive constants Mf

j , Mh
i such that |fj(u)| 6 Mf

j and |hi(u)| 6
Mh
i for all u ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . ,m;

(A7) There exist positive constants Lai , Lcj such that∣∣ai(u)− ai(v)
∣∣ 6 Lai |u− v|,

∣∣cj(u)− cj(v)
∣∣ 6 Lcj |u− v|

for all u, v ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . ,m;
(A8) There exist positive constants lai , lcj such that(

ai(u)bi(u)− ai(v)bi(v)
)
(u− v) > 0,∣∣ai(u)bi(u)− ai(v)bi(v)
∣∣ > lai |u− v|,
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(
cj(u)dj(u)− cj(v)dj(v)

)
(u− v) > 0,∣∣cj(u)dj(u)− cj(v)dj(v)
∣∣ > lcj |u− v|,

for all u, v ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . ,m;
(A9) Γ :=

(
A −CFTL

−DKTH B

)
is anM -matrix, is anM -matrix, whereA=diag(ζi)n×n,

ζi = lai + Lai (
∑m
j=1(k̄ji + ᾱji + β̄ji)M

f
j +

¯̂
Ii), B = diag(ρj)m×m, ρj =

lcj + Lcj(
∑n
i=1(p̄ij + ζ̄ij + q̄ij)M

h
i +

¯̂
Jj , C = diag(aM1 , a

M
2 , . . . , a

M
n )n×n,

D = diag(cM1 , c
M
2 , . . . , c

M
m )m×m, F = (Fji)m×n, Cji = k̄ji + ᾱji + β̄ji,

L = diag(Lf1 , L
f
2 , . . . , L

f
m)m×m, K = (Kij)n×m, Fij = p̄ij + ζ̄ij + q̄ij ,

H = diag(Lh1 , L
h
2 , . . . , L

h
n)n×n, i = 1, 2, . . ., n, j = 1, 2, . . . ,m.

Then system (11) has one ω/2-anti-periodic solution, which is globally exponentially
stable.

6 An example

In this section, we present an example to illustrate the feasibility of our results obtained
in Sections 3 and 4.

Example. Let n = 2. Consider the following fuzzy Cohen–Grossberg neural network

dxi(t)

dt
= −ai(xi(t))

[
bi
(
xi(t)

)
−

2∑
j=1

kij(t)fj
(
xj
(
t− τij(t)

))
−

n∧
j=1

αij(t)fj
(
xj
(
t− τij(t)

))
−

2∨
j=1

βij(t)fj
(
xj
(
t− τij(t)

))
−

2∑
j=1

eij(t)

+∞∫
0

vij(s)gj
(
xj(t− s)

)
ds

−
2∧
j=1

γij(t)

+∞∫
0

vij(s)gj
(
xj(t− s)v) ds

−
2∨
j=1

ξij(t)

+∞∫
0

vij(s)gj
(
xj(t− s)

)
ds

−
2∑
j=1

δij(t)µj(t)−
2∧
j=1

Tij(t)µj(t)−
2∨
j=1

Hij(t)µj(t)− Ii(t)

]
, (12)

where

(ai)2×1 =

(
1.2 + 2

π arctan |u|
1.1 + 2

π arctan |u|

)
, (bi)2×1 =

1

20π

(
u
u

)
, vij(s) = e−2s,
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(fj)2×1 = (gj)2×1 =

(
0.5 sinu

0.4 sinu

)
, (kij)2×2 =

1

20π

(
sin t cos t

cos t sin t

)
,

(
αij(t)

)
2×2 =

(
1
10 cos t 1

20 sin t

0 1
5 cos t

)
,
(
βij(t)

)
2×2 =

(
− 1

10 sin t 0
1
5 cos t 1

20 sin t

)
,

(
δij(t)

)
2×2 =

(
1
5 cos t 0

0 1
10 cos t

)
,
(
Tij(t)

)
2×2 =

(
0 1

10 cos t
1
4 cos t 0

)
,

(
Hij(t)

)
2×2 =

(
0 1

20 sin t
1
5 sin t 0

)
,

(
eij(t)

)
2×2 =

(
1
5 cos t 0

− 1
10 sin t 1

5 sin t

)
,

(
γij(t)

)
2×2 =

(
1
5 sin t 1

10 sin t
1
10 cos t 1

20 sin t

)
,
(
ξij(t)

)
2×2 =

(
0 1

5 sin t
1
10 cos t 1

10 cos t

)
.

By calculation, we have

G =

(
0.04 −0.125
−0.06 0.675

)
, Γ =

(
−0.3 −0.42
−0.26 −0.437

)
andG, Γ areM -matrices. We can verify that all the assumptions in Theorems 1 and 2 are
satisfied. Therefore, (12) has a π-anti-periodic solution, which is globally exponentially
stable (see Figs. 1 and 2).
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Fig. 1. Responds of x1, x2 with time t.
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