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Abstract. This paper studies the Kadomtsev–Petviashvili–Benjamin–Bona–Mahoney equation
with power law nonlinearity. The traveling wave solution reveals a non-topological soliton solution
with a couple of constraint conditions. Subsequently, the dynamical system approach and the
bifurcation analysis also reveals other types of solutions with their corresponding restrictions in
place.
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1 Introduction

The study of nonlinear evolution equations (NLEEs) has been going on for quite a few
decades now [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. There has been
several improvements that are noticed. For example, various techniques of integrating
these NLEEs have been developed. In the past, there were essentially a handful few
methods that were available to carry out the integration of these NLEEs. Some of them
are Inverse Scattering Transform method, Bäcklund transform, Hirota’s bilinear method
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and a couple of others. Today it is a different scenario. There are plentiful integration tools
that are available and are being readily applied to integrate and compute several solutions
to these equations.

In this paper, there will be one such method of integration that will be applied to ex-
tract a non-topological soliton solution of the Kadomtsev–Petviashvili–Benjamin–Bona–
Mahoney (KP–BBM) equation. This is the traveling wave solution. Subsequently, the
bifurcation analysis will be applied to carry out the qualitative theory of the dynamical
system that is going to be obtained by the traveling wave hypothesis. The special cases of
the KP–BBM equation and the modified KP–BBM equation has already been studied in
the past [9, 14]. This paper generalizes those studies and thus encompasses the previous
results, since this paper addresses the power law nonlinearity.

From a historical and practical perspective, KP–BBM equation governs the dynamics
of two-dimensional shallow water flow. This is analogous to the regular KP equation. The
dynamics of (1+1)-dimensional shallow water waves is governed by the Korteweg-de
Vries (KdV) equation. Later a different model was proposed in early 1970s by Benjamin,
Bona, Mahoney that was later popularly known as the BBM equation. The difference from
KdV equation is that a drifting term is introduced and the spatial dispersion term qxxx is
replaced by spatio-temporal dispersion, qxxt. Earlier in 1960s this model was proposed by
Peregrine and therefore BBM equation is also alternatively referred to Peregrine equation.
Now, KP equation is the two-dimensional analogue of KdV equation that models solitons
in 2-dimensions along sea shores. On a similar setting, KP–BBM equation is the two-
dimensional analogue of BBM equation that also models solitons in 2-dimensions. In
other words KP–BBM equation is analogue of KP equation. The generalization to power
law nonlinearity is carried out to get a broader picture from a mathematical perspective in
order to secure a deeper mathematical insight.

2 Governing equation

The dimensionless form of the KP–BBM equation that is going to be studied in this paper
is given by {

qt + aqx − b
(
qn
)
x
+ cqxxt

}
x
+ dqyy = 0. (1)

In (1), q(x, y, t) is the dependent variable while x and y are the spatial variables and
t is the temporal variable. Also, a, b, c and d are constants. The power law nonlinearity
parameter is n. The special cases of this equation for n = 2 and n = 3 are already studied
before. It needs to be noted that it is necessary to have n 6= 0, 1 since these cases fall
outside the category of NLEEs.

2.1 Traveling wave solution

In order to solve (1) by the traveling wave hypothesis, the starting ansatz is

q(x, y, t) = g(B1x+B2y − vt) = g(s), (2)
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where B1 and B2 are the inverse width of the soliton solution that is being sought, while
v is the velocity of the soliton. Also,

s = B1x+B2y − vt. (3)

Substituting (2) into (1) and integrating twice, while choosing the integration constant to
be zero, since the search is for a soliton solution leads to,

cvB3
1g
′′ −

(
aB2

1 − vB1 + dB2
2

)
g + bB2

1g
n = 0, (4)

where g′ = dg/ds and g′′ = d2g/ds2. Then, multiplying both sides of (3) by g′ and
integrating again, after choosing the integration constant to be zero, yields, after simplifi-
cation

dg

ds
=

√
2b

(n+ 1)cvB1
g

(√
(n+ 1)(aB2

1 − vB1 + dB2
2)

2bB2
1

− gn−1
)
. (5)

Now, separating variables in (5) and integrating reveals the non-topological 1-soliton
solution as

q(x, y, t) = g(B1x+B2y − vt) = A sech1/(n−1)
[
B(B1x+B2y − vt)

]
, (6)

where the amplitude of the soliton is given by

A =

[
(n+ 1)(aB2

1 − vB1 + dB2
2)

2bB2
1

]1/(2(n−1))
(7)

and the parameter B is given by

B = (n− 1)

√
2b

(n+ 1)cvB1
.

The amplitude and the parameter pose the constraint conditions given by

bcvB1 > 0 (8)
and

b
(
aB2

1 − vB1 + dB2
2

)
> 0. (9)

Thus, the non-topological 1-soliton of the KP–BBM equation is given by (6), where the
amplitude A is given by (7) along with the restrictions given by (8) and (9) that must stay
valid in order for the soliton solutions to exist.

3 Bifurcation analysis

This section will carry out the bifurcation analysis of the KP–BBM equation with power
law nonlinearity. Initially, the phase portraits will be obtained and the corresponding
qualitative analysis will be discussed. Several interesting properties of the solution struc-
ture will be obtained based on the parameter regimes. Subsequently, the traveling wave
solutions will be discussed from the bifurcation analysis.
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3.1 Bifurcation phase portraits and qualitative analysis

Setting g′ = z, α = b/(cvB1) and β = (aB2
1 − vB1+ dB

2
2)/(cvB

3
1), then via (4) we get

the following planar system:

dg

ds
= z,

dz

ds
= −αgn + βg. (10)

Obviously, the above system (10) is a Hamiltonian system with Hamiltonian function

H(g, z) = z2 +
2α

n+ 1
gn+1 − βg2.

In order to investigate the phase portrait of (10), set

f(g) = −αgn + βg.

Obviously, when n is odd number and αβ > 0, f(g) has three zero points, g−, g0 and g+,
which are given as follows:

g− = −
(
β

α

)1/(n−1)

, g0 = 0, g+ =

(
β

α

)1/(n−1)

.

When n is even number, f(g) has two zero points, g0 and g∗, which are given as follows:

g0 = 0, g∗ =

(
β

α

)1/(n−1)

.

Letting (gi, 0) be one of the singular points of system (10), then the characteristic values
of the linearized system of system (10) at the singular points (gi, 0) are

λ± = ±
√
f ′(gi).

From the qualitative theory of dynamical systems, we know that:

(1) If f ′(gi) > 0, (gi, 0) is a saddle point.
(2) If f ′(gi) < 0, (gi, 0) is a center point.
(3) If f ′(gi) = 0, (gi, 0) is a degenerate saddle point.

Therefore, we obtain the bifurcation phase portraits of system (10) in Figs. 1 and 2.
Let

H(g, z) = h,

where h is Hamiltonian. Next, we consider the relations between the orbits of (10) and
the Hamiltonian h.

Set
h∗ =

∣∣H(g+, 0)
∣∣ = ∣∣H(g−, 0)

∣∣ = ∣∣H(g∗, 0)
∣∣.

According to Fig. 1, we get the following propositions.
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Fig. 1. The bifurcation phase portraits of system (10) when n is odd number: (I) α > 0, β > 0; (II) α < 0,
β > 0; (III) α < 0, β < 0; (IV) α > 0, β < 0.

Proposition 1. When n is odd number, α > 0 and β > 0, we have:

(1) When h > 0, system (10) has a periodic orbit Γ1.
(2) When h = 0, system (10) has two homoclinic orbits Γ2 and Γ ∗2 .
(3) When −h∗ < h < 0, system (10) has two periodic orbits Γ3 and Γ ∗3 .
(4) When h 6 −h∗, system (10) does not any closed orbit.

Proposition 2. When n is odd number, α < 0 and β < 0, we have:

(1) When h = 0, system (10) has two periodic orbits Γ4 and Γ ∗4 .
(2) When 0 < h < h∗, system (10) has three periodic orbits Γ5, Γ ∗5 and Γ ?5 .
(3) When h = h∗, system (10) has two heteroclonic orbits Γ6 and Γ ∗6 .
(4) When h < 0 or h > h∗, system (10) does not any closed orbit.

According to Fig. 2, we get the following propositions.

Proposition 3. When n is even number, α > 0 and β > 0, we have:

(1) When h = 0, system (10) has a homoclinic orbit Γ7.
(2) When −h∗ < h < 0, system (10) has two periodic orbits Γ8 and Γ ∗8 .
(3) When h = −h∗, system (10) has a periodic orbit Γ9.
(4) When h < −h∗ or h > 0, system (10) does not any closed orbit.

Nonlinear Anal. Model. Control, 20(3):417–427
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Fig. 2. The bifurcation phase portraits of system (10) when n is even number: (I) α > 0, β > 0; (II) α < 0,
β > 0; (III) α < 0, β < 0; (IV) α > 0, β < 0.

Proposition 4. When n is even number, α < 0 and β > 0, we have:

(1) When h = 0, system (10) has a homoclinic orbit Γ10.
(2) When −h∗ < h < 0, system (10) has two periodic orbits Γ11 and Γ ∗11.
(3) When h = −h∗, system (10) has a periodic orbit Γ12.
(4) When h < −h∗ or h > 0, system (10) does not any closed orbit.

Proposition 5. When n is even number, α < 0 and β < 0, we have:

(1) When h = h∗, system (10) has a homoclinic orbit Γ13.
(2) When 0 < h < h∗, system (10) has two periodic orbits Γ14 and Γ ∗14.
(3) When h = 0, system (10) has a periodic orbits Γ15.
(4) When h < 0 or h > h∗, system (10) does not any closed orbit.

Proposition 6. When n is even number, α > 0 and β < 0, we have:

(1) When h = h∗, system (10) has a homoclinic orbit Γ16.
(2) When 0 < h < h∗, system (10) has two periodic orbits Γ17 and Γ ∗17.
(3) When h = 0, system (10) has a periodic orbits Γ18.
(4) When h < 0 or h > h∗, system (10) does not any closed orbit.

From the qualitative theory of dynamical systems, we know that a smooth solitary
wave solution of a partial differential system corresponds to a smooth homoclinic orbit
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of a traveling wave equation. A smooth kink wave solution or a unbounded wave solu-
tion corresponds to a smooth heteroclinic orbit of a traveling wave equation. Similarly,
a periodic orbit of a traveling wave equation corresponds to a periodic traveling wave so-
lution of a partial differential system. According to above analysis, we have the following
propositions.

Proposition 7. When n is odd number, α > 0 and β > 0, we have:

(1) When h > 0, (1) has two periodic wave solutions (corresponding to the periodic
orbits Γ1 in Fig. 1).

(2) When h = 0, (1) has two solitary wave solutions (corresponding to the homoclinic
orbits Γ2 and Γ ∗2 in Fig. 1).

(3) When −h∗ < h < 0, (1) has two periodic wave solutions (corresponding to the
periodic orbits Γ3 and Γ ∗3 in Fig. 1).

Proposition 8. When n is odd number, α < 0 and β < 0, we have:

(1) When h = 0, (1) has four periodic blow-up wave solutions (corresponding to the
periodic orbit Γ4 and Γ ∗4 in Fig. 1).

(2) When 0 < h < h∗, (1) has four periodic blow-up wave solutions and a periodic
wave solution (corresponding to the periodic orbits Γ5, Γ ∗5 and Γ ?5 in Fig. 1).

(3) When h = h∗, (1) has two kink profile solitary wave solutions and two unbounded
wave solutions (corresponding to the heteroclinic orbits Γ6 and Γ ∗6 in Fig. 1).

Proposition 9. When n is even number, α > 0 and β > 0, we have:

(1) When h = 0, (1) has a solitary wave solution (corresponding to the homoclinic
orbit Γ7 in Fig. 2).

(2) When −h∗ < h < 0, (1) has a periodic wave solution and two periodic blow-up
wave solutions (corresponding to the periodic orbits Γ8 and Γ ∗8 in Fig. 2).

(3) When h = −h∗, (1) has two periodic blow-up wave solutions (corresponding to
the periodic orbit Γ9 in Fig. 2).

Proposition 10. When n is even number, α < 0 and β > 0, we have:

(1) When h = 0, (1) has a solitary wave solution (corresponding to the homoclinic
orbit Γ10 in Fig. 2).

(2) When −h∗ < h < 0, (1) has a periodic wave solution and two periodic blow-up
wave solutions (corresponding to the periodic orbits Γ11 and Γ ∗11 in Fig. 2).

(3) When h = −h∗, (1) has two periodic blow-up wave solutions (corresponding to
the periodic orbit Γ12 in Fig. 2).

Proposition 11. When n is even number, α < 0 and β < 0, we have:

(1) When h = h∗, (1) has a solitary wave solution (corresponding to the homoclinic
orbit Γ13 in Fig. 2).

(2) When 0 < h < h∗, (1) has a periodic wave solution and two periodic blow-up
wave solutions (corresponding to the periodic orbits Γ14 and Γ ∗14 in Fig. 2).
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(3) When h = 0, (1) has two periodic blow-up wave solutions (corresponding to the
periodic orbit Γ15 in Fig. 2).

Proposition 12. When n is even number, α > 0 and β < 0, we have:

(1) When h = h∗, (1) has a solitary wave solution (corresponding to the homoclinic
orbit Γ16 in Fig. 2).

(2) When 0 < h < h∗, (1) has a periodic wave solution and two periodic blow-up
wave solutions (corresponding to the periodic orbits Γ17 and Γ ∗17 in Fig. 2).

(3) When h = 0, (1) has two periodic blow-up wave solutions (corresponding to the
periodic orbit Γ18 in Fig. 2).

3.2 Traveling wave solutions

Firstly, we will obtain the explicit expressions of traveling wave solutions for the (1)
when n is odd number, α > 0 and β > 0. From the phase portrait, we see that there
are two symmetric homoclinic orbits Γ2 and Γ ∗2 connected at the saddle point (0, 0). In
(g, z)-plane, the expressions of the homoclinic orbits are given as

z = ±
√
− 2α

n+ 1
gn+1 + βg2. (11)

Substituting (11) into dg/(ds) = z and integrating them along the orbits Γ10 and Γ11,
we have

±
g∫

g1

1√
− 2α
n+1ξ

n+1 + βξ2
dξ =

s∫
0

dξ,

±
g∫

g2

1√
− 2α
n+1ξ

n+1 + βξ2
dξ =

s∫
0

dξ,

Completing above integrals, we obtain

g = ±
(

(n+ 1)β

α(1− cosh((n− 1)
√
βs))

)1/(n−1)

.

Using the notations of (2) and (3), we get the following singular solitary wave solutions

q1±(x, y, t) = ±
(

(n+ 1)β

α(1− cosh((n− 1)
√
βs))

)1/(n−1)

,

where s = B1x+B2y − vt, α = b/(cvB1) and β = (aB2
1 − vB1 + dB2

2)/(cvB
3
1).

Similarly, when n is even number, substituting (11) into dg/(ds) = z and integrating
them along the orbits Γ7 (or Γ11), we get the solitary wave solution q1+(x, y, t) (or
q1−(x, y, t)).
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Secondly, we will obtain the explicit expressions of traveling wave solutions for (1)
when n is odd number, α < 0 and β < 0. From the phase portrait, we note that there
are two special orbits Γ4 and Γ ∗4 , which have the same hamiltonian with that of the center
point (0, 0). In (g, z)-plane the expressions of the orbits are given as

z = ±
√
− 2α

n+ 1
gn+1 + βg2. (12)

Substituting (12) into dg/(ds) = z and integrating them along the two orbits Γ4 and Γ5,
it follows that

±
g∫

g3

1√
− 2α
n+1ξ

n+1 + βξ2
dξ =

s∫
0

dξ,

±
g∫

g4

1√
− 2α
n+1ξ

n+1 + βξ2
dξ =

s∫
0

dξ,

±
∞∫
g

1√
− 2α
n+1ξ

n+1 + βξ2
dξ =

s∫
0

dξ.

Completing above integrals, we obtain

g = ±
(
(n+ 1)β

2α
sec2

(
(n− 1)

√
−β

2
s

))1/(n−1)

,

g = ±
(
(n+ 1)β

2α
csc2

(
(n− 1)

√
−β

2
s

))1/(n−1)

.

From the notations of (2) and (3), we get the following periodic blow-up wave solutions:

q2±(x, y, t) = ±
(
(n+ 1)β

2α
sec2

(
(n− 1)

√
−β

2
s

))1/(n−1)

,

q3±(x, y, t) = ±
(
(n+ 1)β

2α
csc2

(
(n− 1)

√
−β

2
s

))1/(n−1)

,

where s = B1x+B2y − vt, α = b/(cvB1) and β = (aB2
1 − vB1 + dB2

2)/(cvB
3
1).

Similarly, when n is even number, substituting (11) into dg/(ds) = z and integrating
them along the orbits Γ15(or Γ18), we get the periodic blow-up wave solutions q2+(x, y, t)
(or q2−(x, y, t)) and q3+(x, y, t) (or q3−(x, y, t)).

4 Conclutions

This paper studies the KP–BBM equation with power law nonlinearity. The traveling wave
hypothesis is applied to obtain a direct 1-soliton solution to this equation. Subsequently,
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the bifurcation analysis is carried out to study this equation from a dynamical system
point of view. The phase portraits are obtained corresponding to the appropriate param-
eter regimes. Finally, this bifurcation analysis also extracts a few more traveling wave
solutions to this equation. This analysis is very useful in the future study of this equation.
In future, the perturbed KP–BBM equation will be considered. Several mathematical
analysis will be carried out in presence of perturbation terms and those results will be
reported for publication, in future elsewhere.

References

1. S. Abasbandy, The first integral method for modified Benjamin–Bona–Mahoney equation,
Commun. Nonlinear Sci. Numer. Simul., 15(7):1759–1754, 2010.

2. K. Al-Khaled, S. Momani, A. Alawneh, Approximate wave solutions for generalized
Benjamin–Bona–Mahoney–Burgers equations, Appl. Math. Comput., 171(1):281–292, 2005.

3. X. Liu, L. Tian, Y. Wu, Exact solutions for four generalized Benjamin–Bona–Mahoney
equations with any order, Appl. Math. Comput., 218(17):8602–8613, 2012.

4. K. Omrani, The convergence of fully discretre Galerkin approximations for the Benjamin–
Bona–Mahoney (BBM) equation, Appl. Math. Comput., 180(2):614–621, 2006.

5. A.S.A. Rady, E.S. Osman, M. Khalfallah, The homogeneous balance method and its
applications to the Benjamin–Bona–Mahoney (BBM) equation, Appl. Math. Comput.,
217(4):1385–1390, 2010.

6. M.A. Rincon, J. Limaco, R. Vale, Analysis and numerical solution of Benjamin–Bona–
Mahoney equation with moving boundary, Appl. Math. Comput., 216(1):138–148, 2010.

7. K. Singh, R.K. Gupta, S. Kumar, Benjamin–Bona–Mahoney (BBM) equation with variable
coefficients: Similarity reductions and Painleve analysis, Appl. Math. Comput., 217(16):7021–
7027, 2011.

8. M. Song, B.S. Ahmed, A. Biswas, Domain wall and bifurcation analysis of the Klein–Gordon
Zakharov equation (1+2)-dimensions with power law nonlinearity, Chaos, 23, 033115, 6 pp.,
2013.

9. M. Song, Z. Liu, Periodic wave solutions and their limits for the generalized KP–BBM
equation, J. Appl. Math., 2012, Article ID 363879, 25 pp., 2012.

10. M. Song, Z. Liu, Qualitative analysis and explicit traveling wave solutions for the Davey–
Stewartson equation, Math. Methods Appl. Sci., 37:393–401, 2014.

11. M. Song, Z. Liu, E. Zerrad, A. Biswas, Singular solition solution and bifurcation analysis of the
Klein-Gordon equation with power law nonlinearity, Front. Math. China, 8(1):191–201, 2013.

12. M. Song, C. Yang, Exact traveling wave solutions of the Zakharov–Kuznetsov–Benjamin–
Bona–Mahoney equation, Appl. Math. Comput., 216(11): 3234–3243, 2010.

13. M. Song, C. Yang, B. Zhang, Exact solitary wave solutions of the Kadomtsev–Petviashvili–
Benjamin–Bona–Mahoney equation, Appl. Math. Comput., 217(4):1334–1339, 2010.

http://www.mii.lt/NA



KP–BBM equation with power law nonlinearity 427

14. S. Tang, X. Huang, W. Huang, Bifurcations and traveling wave solutions for the generalized
KP–BBM equation, Appl. Math. Comput., 216(10):2881–2890, 2010.

15. A.M. Wazwaz, Exact solutions with compact and non-compact structures for the one-
dimensional generalized Benjamin–Bona–Mahoney equation, Commun. Nonlinear Sci. Numer.
Simul., 10(8):855–867, 2005.

16. A.M. Wazwaz, Compact and noncompact physical structures for the ZK–BBM equation, Appl.
Math. Comput., 169(1):713–725, 2005.

17. Z. Wen, Z. Liu, M. Song, New exact solutions for the classical Drinfel’d–Sokolov–Wilson
equation, Appl. Math. Comput., 215(6):2349–2358, 2009.

18. F. Yan, H. Liu, Z. Liu, The bifurcation and exact traveling wave solutions for the
modified Benjamin–Bona–Mahoney (mBBM) equation, Commun. Nonlinear Sci. Numer.
Simul., 17(7):2824–2832, 2012.

19. X. Zhao, W. Xu, Traveling wave solutions for a class of generalized Benjamin–Bona–Mahoney
equations, Appl. Math. Comput., 192(2):507–519, 2007.

20. X. Zhao, W. Xu, S. Li, J. Shen, Bifurcations of traveling wave solutions for a class of the
generalized Benjamin–Bona–Mahoney equation, Appl. Math. Comput., 175(2):1760–1774,
2006.

Nonlinear Anal. Model. Control, 20(3):417–427


	Introduction
	Governing equation
	Traveling wave solution

	Bifurcation analysis
	Bifurcation phase portraits and qualitative analysis
	Traveling wave solutions

	Conclutions

