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Abstract. In the current study, numerical investigation of pulsating magnetohydrodynamic mixed
convection over a backward facing step is carried out for the range of parameters; Reynolds number
(25 6 Re 6 100), Hartmann number (0 6 Ha 6 60), Strouhal number (0.1 6 St 6 1) and
Gr number is kept at Gr = 104. The governing equations are solved with a general purpose
finite element based solver. The effects of various parameters on the fluid flow and heat transfer
characteristics are numerically studied. It is observed that the flow field and heat transfer rate are
influenced by the variations of Reynolds, Hartmann and Strouhal numbers. Furthermore, recurrence
plot analysis is applied for the analysis of the time series (spatial averaged Nusselt number along the
bottom wall downstream of the step) and for a combination of different parameters, the systems are
identified using recurrence quantification analysis parameters including recurrence rate, laminarity,
determinism, trapping time and entropy.

Keywords: backward facing step, MHD flow, recurrence quantification analysis, nonlinear time
series.

1 Introduction

The flow over a backward facing or forward facing step is an important problem in
many engineering applications such as flow around airfoils, buildings, combustors and
collectors of power systems. A comprehensive review is presented in [1] for laminar
mixed convection over vertical, horizontal and inclined backward- and forward-facing
steps studied in the open literature. In this review, the effects of pertinent parameters such
as Reynolds number, Prandtl number and expansion ratio on the fluid flow and thermal
characteristics is also presented.

A vast amount of literature is dedicated to that subject either numerically [6,7,16,30,
32,33] or experimentally [2,4,37,39]. 3D linear stability analysis of flow over a backward-
facing step for Reynolds numbers between 450 and 1050 was studied in [7]. Velocity
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distribution and reattachment length using Laser-Doppler measurement for flow down-
stream of a backward facing step in a two-dimensional channel was reported in [4]. Their
results showed separation length varies with Reynolds number and various flow regimes
are characterized by variations of the separation length.

Mixed convection magnetohydrodynamics flows of electrically conducting fluid has
many industrial applications such as coolers of nuclear reactors, micro-electronic devices,
purification of molten metals many others. Due to the effect of the magnetic field, the
fluid flow experiences a Lorentz force. Employing an external magnetic field can be
used as a control method since magnetic field can suppress the convective flow field
Rahman10, [34, 35, 36]. Mixed convection with a magnetic field in a top sided lid-driven
cavity heated by a corner heater was studied in ref. [27]. They showed that heat transfer
decreases with increasing the Hartmann number and magnetic field plays an important
role to control heat transfer and fluid flow. Steady laminar magnetohydrodynamic mixed
convection heat transfer about a vertical slender cylinder was analyzed in [5]. A uniform
magnetic field was applied perpendicular to the cylinder. They observed that the local
skin friction coefficient and the local heat transfer coefficient increase, increasing the
Richardson number, electric field parameter and magnetic parameter. Steady, laminar
natural convection in the presence of a magnetic field in a tilted enclosure heated from
below was numerically studied in [28]. Their results showed that for a given inclination
angle, as the value of Hartmann number increases, the convection heat transfer reduces.
Steady magnetohydrodynamic mixed convection flow adjacent to a vertical surface with
prescribed heat flux was investigated in [19]. They found that magnetic parameter plays
an important role in controlling the boundary layer separation.

In the present study, numerical investigation of pulsating magnetohydrodynamic
mixed convection over a backward facing step is carried out for a range of Reynolds
number, Hartmann number and Strouhal numbers. The effects of these parameters on the
flow and heat transfer are investigated. Furthermore, time series data obtained from spatial
averaged Nusselt number along the bottom wall of the cavity downstream of the step is
analyzed using recurrence plots. Recurrence quantification analysis parameters including
recurrence rate, laminarity, determinism, trapping time and entropy are also provided
to quantify the nonlinear time series of Nusselt numbers for different combinations of
Reynolds, Hartmann and Strouhal numbers.

2 Numerical simulation

2.1 Problem description

A schematic description of the physical problem considered in this study is shown in
Fig. 1. A channel with a backward facing step is considered. The step size of backward
facing step is H and channel height is 2H . Total length of the channel is 1 m. At the
inlet of the channel, a parabolic velocity with a sinusoidal time dependent part (u =
u0 + 0.75u0 sin(2πft)) and a uniform temperature (T = 300 K) is imposed. It was
confirmed from numerical simulation that, the flow is developed before reaching the step.
The downstream length starting from the edge of the step to the exit of the channel is
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Fig. 1. Geometry with boundary conditions.

16H to ensure that the recirculation length downstream of the step is independent of
the computational domain. The downstream bottom surface of the backward facing step
is maintained at T = 310 K, while the other walls of the channel are assumed to be
adiabatic. Working fluid is air with a Prandtl number of Pr = 0.71. It is assumed that
thermo-physical properties of the fluid is temperature independent. Fluid properties are
taken at the average temperature of 305 K. The variations of the physical properties with
temperate are neglected. Only 2.5% of maximum deviation is observed with constant
property assumption.

The flow is assumed to be two dimensional, Newtonian, incompressible and in the
laminar flow regime. The three dimensional effects of the flow over a backward facing step
have been studied in references [9,41]. [29] have studied the MHD mixed convection in an
open channel with a square cavity which has a partially or fully heated on left side using
finite element method. The range of parameters studied by [29] was: 104 6 Ra 6 106;
0 6 Ha 6 100 and Re = 100. In our study, Gr = 104, Re = 100 and 0 6 Ha 6 60.
Therefore, our model problem is also treated as two dimensional. The three dimensional
effects and the possible effect of the presence of side walls on flow field and heat transfer
are out of the scope of the present paper. [12] and [18] have studied the the transition
in wall bounded unsteady flow. They proposed to use Reynolds number based on Stokes
layer thickness which is given as

δ =

(
2ν

ω

)1/2

, (1)

where ν and ω denote kinematic viscosity of the fluid and dimensional pulsation fre-
quency, respectively. The smallest value of Strouhal number is 0.1 and based on this
Reδ = 300 which is less than the critical value for the transition. Therefore, laminar
behavior of the flow is justified.

A uniform magnetic field with strength B0 is applied in the direction of the velocity.
The field induced by the fluid motion is considered to be negligible compared to the
applied field. A term is added in the momentum equation which corresponds to the
Lorentz force induced by the interaction of the magnetic field with the convective motion.
Hall effect of magnetohydrodynamics is assumed to be negligible and magnetic Reynolds
number is assumed to be small [29].
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By using the dimensionless parameters

(U, V ) =
(u, v)

u0
, (X,Y ) =

(x, y)

H
, P =

p̄

ρu02
, θ =

T − Tc
Th − Tc

(2)

for a two dimensional, incompressible, laminar and unsteady case, the continuity, mo-
mentum and energy equations can be expressed in the nondimensional form as in the
following [29]:

∂U

∂X
+
∂V

∂Y
= 0, (3)

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1

Re

(
∂2U

∂X2
+
∂2U

∂Y 2

)
, (4)

∂V

∂τ
+ U

∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1

Re

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+

Gr

Re2
Θ − Ha2

Re
V, (5)

∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y
=

1

RePr

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
. (6)

The relevant physical nondimensional numbers are Reynolds number (Re), Grashof
number (Gr ), Hartmann number (Ha) and Strouhal number (St):

Re =
u0H

ν
, Gr =

gβ(Th − Tc)H3

ν2
, Ha = B0H

√
σ

ρµ
, St =

fH

u0
. (7)

The boundary conditions for the considered problem in dimensional form can be
expressed as:

• At the inlet, velocity is unidirectional sinusoidal, temperature and velocity are
uniform (u = u0(1 +A sin(2πft)), v = 0, T = Tc).

• At the bottom wall, downstream of the step, temperature is constant (T = Th).
• At the channel exit, outlet boundary condition (pressure, no viscous stress),

(µ(∇u + (∇u)T)n = 0, p = p0) and convective flux (n(−k∇T )) boundary
condition were used.

• On the channel walls (except the downstream of the step), adiabatic wall with no-
slip boundary conditions are assumed, (u = 0, v = 0, ∂T/∂n = 0).

Local Nusselt number is defined as

Nux,t =
hx,tL

k
= −

(
∂θ

∂n

)
S

, (8)

where hx,t represent the local heat transfer coefficient and k denote the thermal conductiv-
ity of air. Spatial averaged Nusselt number is obtained after integrating the local Nusselt
number along the bottom wall downstream of the step as

Nut =
1

L

L∫
0

Nux,t dx. (9)
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Time and spatial averaged Nusselt number is obtained after integrating spatial aver-
aged Nusselt number along the bottom wall downstream of the step for one period of the
oscillation τ as

Num =
1

τ

τ∫
0

Nut dt. (10)

Equations (3)–(6) along with the boundary conditions are solved with COMSOL
Multiphysics (a general purpose finite element solver [11]). Lagrange finite elements of
different orders are used to discretize velocity components, pressure and temperature.
The finite element formulation is obtained by establishing the weak form the govern-
ing equations with Galerkin procedure. The computational domain is divided into non-
overlapping regions within each of the flow variables are approximated by using the
interpolation functions. In order to avoid the need for stabilizing convective terms in
momentum equations, meshes are resolved fine enough. COMSOL solver adds artificial
diffusion with the streamline upwind Petrov–Galerkin method (SUPG) to handle local
numerical instabilities. Segregated parametric solvers are used for fluid flow and heat
transfer variables. Biconjugate gradient stabilized iterative method solver (BICGStab) is
used for fluid flow and heat transfer modules of this software.

The unstructured body-adapted mesh of appropriate size consists of only triangu-
lar elements. In order to avoid the need for stabilizing convective terms in momentum
equations, meshes are resolved fine enough. The computational domain is divided into
30799 triangular elements. The mesh is finer near the walls to resolve the high gradi-
ents in the thermal and hydrodynamic boundary layer and in the vicinity of the step
for the recirculation region downstream of the step. Mesh independence study is also
carried out to obtain an optimal grid distribution with accurate results and minimal com-
putational time. Five different grid sizes are tested and the convergence in the length-
averaged Nusselt number (along the bottom wall downstream of the step) is checked.
The results at Reynolds number of 100, Ha = 60 are tabulated in Table 1. From this
table, grid size of 30799 is decided to be fine enough to resolve the flow and thermal
field.

The numerical code is first checked against the benchmarked results of backward
facing step reported in the literature [3, 10, 13, 15, 22]. Table 2 shows the results of the
reattachment length divided by step height at Reynolds number of 100 for expansion ratio
of 2. Minimum deviation for the percentage in the error is obtained for the results of [3]
which is −0.2 percent. The agreement between the other sources is less than 5 percent,
only −6.8 percent error is obtained for the results of [10]. The present code is further
validated with the results computed in [21]. Local Nusselt number along the bottom wall
downstream of the step is shown in Fig. 2 for various Reynolds numbers and the overall
trend is similar.

Steady simulation results are used as the initial condition for the unsteady computa-
tions. Time step size independence study is carried out. Considering both accuracy and
computational time of the simulation a time step size of (1/100)th of the period of the
pulsating flow is chosenin this study.
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Table 1. Length averaged Nusselt numbers on the bottom
wall downstream of the step for different grid densities.

Grid size Averaged Grid size Averaged
Nusselt number Nusselt number

3463 0.6203 30779 0.6084
7456 0.6108 62288 0.6084

15170 0.6081

Table 2. Reported values for the reattachment lengths XR

at Reynolds number 100 (expansion ratio of 2).

XR/S Error (%)
Present 4.98 0
Acharya et al. [3] 4.97 −0.2
Lin et al. [22] 4.91 −1.4
Dyne et al. [13] 4.89 −1.8
El-Refaee et al. [15] 4.77 −4.21
Cochran et al. [10] 5.32 6.82

(a) ref. [21]

(b) present code

Fig. 2. Comparison of local Nusselt numbers computed in [21] and computed with the present code.
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3 Nonlinear time series analysis

The nonlinear time series analysis methods can be used to study and gain an understand-
ing of the complicated nonlinear dynamical system. The time sequence of the acoustic
velocity at the heater location (u0, . . . , un) is obtained from the numerical simulation.
According to [38], the reconstructed attractor of the original system is given by

U(i) = (ui, ui+τ , . . . , ui+(m−1)τ ) (11)

with τ and m representing the embedding delay and embedding dimension, respectively.
The attractor constructed using the above equation will have the same mathematical
features of the original system, such as dimension, Lyapunov exponents, etc. The delayed
variable ui+τ carries information about the influences of all other variables during time τ .
One can introduce the third ui+2τ and mth ui+(m−1)τ variable and obtain the whole
m-dimensional phase space where the variables incorporate all the influences of the
original system provided that m is large enough.

To get an estimate for delay term τ autocorrelation function or average mutual in-
formation function can be used. The latter takes into account the nonlinear correlations
as well. In the mutual information function method τ is the first minimum of the func-
tion [17]

I(τ) = −
N∑
h=1

N∑
k=1

Ph,k(τ) ln
Ph,k(τ)

PhPk
, (12)

where Ph and Pk represent the probabilities that the variables assumes a value inside the
hth and kth bins, respectively. Ph,k(τ) denote the joint probability that xi is in bin h and
xi+τ is in bin k.

To obtain an estimate for the proper embedding dimension m, the method of false
nearest neighbor (FNN) can be used [20]. In this method, for each point i in the time
series, look for its nearest neighbor in the m dimensional space and compute the ratio of
the distances between these points in m and m+ 1 dimension as

ρi,m =
|U(i)− U(j)|m+1

|U(i)− U(j)|m
, (13)

where U(i), U(j) denote the state vectors at points i and j, and Euclidean norm is used.
If this ratio is larger than a given threshold, then Ui is marked as having a false neighbor.
The proper embedding dimension m is the value where FNN is close to zero.

4 Recurrence plots

The recurrence plots introduced by [14] is a graphical tool used for analyzing the dynam-
ical properties of a time series obtained either from numerical simulation or experimental
test rig. A recurrence plot (RP) is obtained from the recurrence matrix R whose entries
can be given as

Rij = θ
(
ε− ‖yi − yj‖

)
, i, j = 1, . . . N, (14)
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where ‖·‖ denote the distance between the two state vectors, ε is the predefined threshold
value and θ is the Heaviside function. Depending on the value of the entries of R, either
a black dot is drawn or a blank space is left in the RP. For computing the distance ‖·‖,
different norms can be used (2-norm, max- norm). Dynamical features of the time series
data can be extracted from the RPs [8, 25, 26]. For example, a periodic signal with mono-
frequency are represented as equally spaced parallel lines (parallel to the main diagonal
line) in RP. The RP of white noise is a homogeneous RP with no structure. Abrupt changes
in the dynamics, laminarity of the time series and short term dynamics can be obtained
from RPs [23, 25, 40]. The deterministic patterns of RPs based on the statics of the
vertical and diagonal lines can be quantified using numbers with the method of Recurrence
Quantification Analysis (RQA). The dynamics of the system can be identified using RQA
method. In order to quantify the complexity of the RPs, we will use the following RQA
parameters [23, 40]:

Reccurence rate (RR):

RR =
1

N2

N∑
i,j=1

Ri,j ; (15)

Determinism (DET ):

DET =

∑N
l=lmin

lP (l)∑N
i,j=1Ri,j

; (16)

Entropy (ENT ):

ENT = −
N∑

l=lmin

p(l) ln
(
p(l)

)
; (17)

Laminarity (LAM ):

LAM =

∑N
v=vmin

vP (v)∑N
v=1 vP (v)

; (18)

Averaged diagonal line length (L)

L =

∑N
l=lmin

lP (l)∑N
l=lmin

P (l)
; (19)

Trapping time (TT )

TT =

∑N
v=vmin

vP (v)∑N
v=vmin

P (v)
. (20)

P (l), P (v) represent the distribution of the lengths of diagonal lines and vertical lines,
respectively. lmin, vmin denote e the minimum values of the diagonal and vertical line
lengths, respectively. RR denotes the fraction of recurrence points in RPs. DET repre-
sents the fraction of recurrence points that form the diagonal lines. It gives a measure for
predictability of the time series data. ENT is the Shannon entropy based the distribution
of the lengths of diagonal lines. It captures the complexity of diagonal lines in RPs. For
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higher values of ENT , the deterministic structure is more complex. LAM is the fraction
of the points which form the vertical lines and represents the occurrence of laminar states
in the system. TT is the trapping time which shows the average length of vertical lines.
This gives an estimate for the mean time that the system will be trapped at a specific state.

5 Results and discussion

In the current study of pulsating magnetohydrodynamic mixed convection flow over
a backward facing step, numerical simulation is performed for the range of parameters
25 6 Re 6 100, 0 6 Ha 6 60 and 0 6 St 6 1. Grashof number is kept at constant
value of Gr = 104. Amplitude of the forcing at the inlet is set to 0.75.

5.1 CFD results

Length averaged Nusselt number along the bottom wall downstream of the step plots are
shown in Fig. 3 at Strouhal number of 0.1 for Re = 25 (top) and Re = 100 (bottom).
The Nu values corresponding to different Ha numbers (Ha = 0, Ha = 20, Ha = 60) are
plotted on each other. The time evolutions of the Nusselt numbers show that heat transfer
is augmented and system reaches periodic steady state after certain time. Heat transfer
enhancement is less effective as the Hartmann number increases. This could be attributed
to the fact that flow velocity decreases as the Hartman number increases since magnetic
field retards the convection. The time for the systems to reach periodic states (from initial
transients) will increase when increasing the Reynolds number (Fig. 2 (bottom)). The
convective time scale will decrease with increase in Reynolds number and the period
of oscillation will increase with the increase in Reynolds number for the same Strouhal
number. Another observation is that as Hartmann number increases, nonlinear distortions
from a pure sinusoids will be suppressed more.

Figure 4 shows the time evolution of the averaged-Nusselt number along the bottom
wall for Strouhal number of 1. The same trends as for St = 0.1 (Fig. 3) is also seen
for different Ha numbers and Re numbers. When compared to the case at St = 0.1 for
Re = 25 (Fig. 3 – top), the responses contain more harmonic contents at the same Ha
numbers and for Re = 100 (Fig. 4 – bottom), the response is much weaker compared to
cases for Ha = 0, Ha = 20.

Figure 5 shows several time instances within a period for the oscillation of the aver-
aged Nusselt number at Re = 100, Ha = 0 and St = 0.5. The streamline plots for the
time instances in Fig. 5 are depicted in Fig. 6. During the acceleration phase (Figs. 6a–
6c), the core of the primary recirculation zone formed behind the step moves towards the
step. At the point when the peak in the Nusselt number is achieved, the cell behind the step
diminishes in size and gets more distorted from the upper part. Then the structure of the
streamline patterns changes periodically. The isotherm plots for the same flow conditions
and at the time instances according to Fig. 6 are shown in Fig. 7. The steepest temperature
gradients are seen around the flow reattachment points. There is considerable change for
shape of the isotherms in the vicinity of step. The level and direction of of distortions of
the isotherms change from point to point (points of Fig. 5).
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Fig. 3. Time evolution of the length averaged Nusselt number along the bottom wall downstream of the step for
different Hartmann numbers at Strouhal number of 0.1 and at Re = 25 (top) and at Re = 100 (bottom).
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Fig. 4. Time evolution of the length averaged Nusselt number along the bottom wall downstream of the step for
different Hartmann numbers at Strouhal number of 1 and at Re = 25 (top) and at Re = 100 (bottom).

Time-spatial averaged Nusselt number along the bottom wall downstream of the step
(normalized with steady state values) versus Hartmann number plots are shown in Fig. 8
for various different Strouhal numbers at Re = 25 (top) and at Re = 100 (bottom).
As the Hartmann number increases, heat transfer enhancement (HTE) decreases. The
damping of the fluid motion and decrease in Nusselt number with increasing magnetic
parameter is also supported with the studies given in [29]. HTE is more effective at
Strouhal number of 0.1. This may be due to the adaptation of the system to its new
flow condition with increasing frequency which decreases the heat transfer response of
the system. The resonant type behavior of the heat transfer rate versus Strouhal number
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Fig. 5. Time instances within a period when the system reaches periodic steady state oscillation for parameter
set (Re = 100, Ha = 0, St = 0.5).

(a) (b) (c)

(d) (e) (f)

Fig. 6. Streamlines at the time instances according to Fig. 4 at (Re = 100, Ha = 0, St = 0.5).

(a) (b) (c)

(d) (e) (f)

Fig. 7. Isotherms at the time instances according to Fig. 4 at (Re = 100, Ha = 0, St = 0.5).

for pulsating flow of backward facing step is already observed in [31]. The heat transfer
behavior for the considered range of range of St number in this study, (between 0.1 and 1)
is supported with the results given in [31]. The maximum and minimum HTE are 242
percent and −1 percent at the set of parameters (Re = 25, Ha = 0 and St = 0.1) and
(Re = 100, Ha = 60 and St = 1).
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Fig. 8. Variation of the normalized averaged Nusselt number along the bottom wall for different Strouhal
numbers at Re = 25 (top) and Re = 100 (bottom).

5.2 Nonlinear time series results

In this part, dynamical analysis of the MHD pulsating flow in backward facing step geom-
etry is conducted. The FFT plots for the nonlinear time series data of the averaged Nusselt
numbers when the initial transients are removed (when the system reaches periodic steady
states) are shown for different Ha and Re numbers in Fig. 9 for Strouhal number of
0.1 and in Fig. 10 for Strouhal number of 1. In Fig. 9, at the parameter set (Re = 25,
Ha = 0, St = 0.1), there exists higher harmonic contents in the periodic signal which are
at the integer multiples of forcing frequency (Fig. 9a). As the Hartmann number increases,
nonlinearity decreases and the amplitude of the higher harmonics decreases (Fig. 9b). At
the parameter set (Re = 100, Ha = 0, St = 0.1), there exist a peak which is not
the integer multiple of fundamental harmonic. The results in Fig. 10 shows that only at
the parameter set (Re = 100, Ha = 60, St = 1), the fundamental harmonic appears
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Fig. 9. Frequency spectrum of the time series data (averaged Nusselt number along the bottom wall) for different
Reynolds and Hartmann numbers at Strouhal number of 0.1.

Nonlinear Anal. Model. Control, 20(3):428–446



440 F. Selimefendigil

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
Re=25, Ha=0, St=1

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2
Re=25, Ha=60, St=1

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1
Re=100, Ha=0, St=1

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

x 10
−3

freq

P
S

D

Re=100, Ha=60, St=1

f

f
1
=f/10

f
2

f
1
=0.07f

f
1

f
2
=2f

1

f

Fig. 10. Frequency spectrum of the time series data (averaged Nusselt number along the bottom wall) for
different Reynolds and Hartmann numbers at Strouhal number of 1.

Table 3. Optimal embedding dimensions (m) and emb-
edding delays (τ ) for different combination of parameters.

Parameters Embedding Embedding
Re Ha St delay dimension
25 0 0.1 1 3
25 60 0.1 2 3

100 0 0.1 2 3
100 60 0.1 3 3
25 0 1 6 6
25 60 1 10 5

100 0 1 22 5
100 60 1 3 3

whereas for the other combination of parameters at St = 1, incommensurate frequencies
are seen and the fundamental frequency disappears. These results show the complicated
interaction of the magnetic field and pulsating flow for a backward facing step geometry.

The proper embedding dimensionm and embedding delay τ parameters are calculated
as described in the previous sections for each of the parameter sets and are tabulated in
Table 3. Fig. 11 depicts the mutual information function for parameter sets (Re = 25,
Ha = 0, St = 0.1) and (Re = 25, Ha = 60, St = 0.1) with respect to delay parameter
and as can be seen the first minimum of the functions are seen at τ = 2 and τ = 3. The
percentage of false neighbors (fnn) calculated for increasing reconstruction dimensions
are shown in Fig. 12 for parameter sets (Re = 25, Ha = 0, St = 0.1) and (Re = 25,
Ha = 60, St = 0.1). These plots show for embedding dimension of 3, these percentages
go very close to zero. These plots show that the dynamics of oscillations in is restricted
to a three-dimensional phase space.
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Fig. 11. Proper embedding delay determination for left – (Re = 100, Ha = 0, St = 0.1) and right –
(Re = 100, Ha = 60, St = 0.1). The first minimum of the mutual informations are seen at τ = 2 and τ = 3.

Fig. 12. Minimal required embedding dimension determination for top – (Re = 100 , Ha = 0, St = 0.1) and
bottom – (Re = 100, Ha = 60, St = 0.1). False nearest neighbors (fnn) drop to zero at m = 3.

Figures 13 and 14 show the RPs of the nonlinear time series for the averaged Nusselt
number along the bottom wall for different Hartmann numbers and Strouhal numbers
at Re = 25 and Re = 100, respectively. The RPs and RQA are carried out using
the software developed by [24]. In the RPs, equally spaced diagonal lines represent the
presence of a single frequency in the oscillation. In Figs. 13a, b, a series of lines with
parallel to the main diagonal which indicate a more regular oscillatory behavior is seen.

Nonlinear Anal. Model. Control, 20(3):428–446
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Fig. 13. Recurrence plots of the averaged Nusselt number time series at Re = 25 for different Hartmann and
Strouhal numbers.
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Fig. 14. Recurrence plots of the averaged Nusselt number time series at Re = 100 for different Hartmann and
Strouhal numbers.
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Table 4. RQA parameter values for different combinations of Re , Ha and St
numbers.

Parameters
Re Ha St RR DET L ENT LAM TT
25 0 0.1 0.0467 0.827 5.59 1.69 0.25 2.58
25 60 0.1 0.0445 0.684 14.59 2.25 0.09 2.01

100 0 0.1 0.0251 0.846 12.35 2.37 0.008 2.01
100 60 0.1 0.0679 0.978 16.81 1.64 0.082 2.03
25 0 1 0.0067 0.921 7.01 1.94 0.764 2.78
25 60 1 0.0114 0.961 7.67 2.23 0.88 3.34

100 0 1 0.0227 0.998 26.91 3.47 0.99 7.58
100 60 1 0.126 0.961 14.71 2.15 0.99 4.04

The presence of a second frequency which is not at integer multiple of the fundamental
frequency translates the diagonal lines parallel to main diagonal but separated by un-
equal vertical spacing. The structures in Figs. 13c, d shows a content of high frequency
oscillations. In Fig. 14b, the presence of a dominant frequency is seen with the lines
parallel to the main diagonal. In Fig. 14a, the separation of diagonally orientated lines by
unequal vertical spacing indicates the presence of a second frequency. The RP structure
for Strouhal number of 1 at Re = 100 (Figs. 14c, d) is different compared to other
RPs. In Fig. 14c, the paling of the plot away from the diagonal during 400 time samples
indicate the non-stationarity of the data set and then diagonally oriented lines indicate the
periodicity of the data set.

Table 4 shows the QRA analysis results for different combinations of parameters.
A higher ENT value indicates higher structural complexity and its value increases with
increasing Reynolds number and Strouhal numbers. ENT attains its largest value at
parameter set (Re = 100, Ha = 0, St = 1). The smallest value of TT indicates
the shortest time in the laminar phase in the intermittent dynamics which is obtained
at Strouhal number of 0.1. The largest values of LAM are obtained for Strouhal number
of 1. The higher values of DET represents the higher predictability of the system. These
results show that dynamical behavior of the complex system with MHD and pulsating
flow over a backward facing step can be identified by using RQA method.

6 Conclusions

In this study, pulsating magnetohydrodynamic mixed convection over a backward facing
step is numerically investigated for a range of Reynolds, Hartmann and Strouhal num-
bers and recurrence quantification analysis is employed for the time series data of the
averaged-Nusselt number along the bottom wall of the cavity. The obtained results can be
summarized as:

• As the Hartmann number increases, heat transfer enhancement (HTE) decreases.
• As the pulsating frequency increases, HTE decreases due to the adaptation of the

system to its new flow condition with increasing frequency.
• At the parameter set (Re = 100, Ha = 60, St = 1), the fundamental forcing

frequency appears wheres for the other combination of parameters at St = 1,

Nonlinear Anal. Model. Control, 20(3):428–446
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incommensurate frequencies are seen and the fundamental frequency disappears.
• As the Hartmann number increases, nonlinearity (for the input (pulsating velocity

at the inlet)-output (averaged Nusselt number along the bottom wall downstream of
the step) relation) decreases and the amplitude of the higher harmonics decreases.

• Pulsating flow and magnetic field parameters can be utilized to control the heat
transfer and fluid flow for the backward facing step configuration.

• The recurrence plots for time series data of averaged Nusselt number shows differ-
ent structures in the plots indicating different dynamic features of the systems.

• The recurrence quantification analysis for the time series of Nusselt number reveals
different parameters quantifying structural complexity, predictability and time in
the laminar phase in the intermittent dynamic for different combinations of param-
eters.
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