Distributional boundary values of analytic functions and positive definite distributions*

Saulius Norvidas
Institute of Mathematics and Informatics, Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
Mykolas Romeris University
Ateities str. 20, LT-08303 Vilnius, Lithuania
norvidas@gmail.com

Received: March 12, 2014 / Revised: October 20, 2014 / Published online: December 4, 2014

Abstract

We propose necessary and sufficient conditions for a distribution (generalized function) f of several variables to be positive definite. For this purpose, certain analytic extensions of f to tubular domains in complex space \mathbb{C}^{n} are studied. The main result is given in terms of the Cauchy transform and completely monotonic functions.

Keywords: positive definite functions, positive definite distributions, Cauchy transform, analytic representations of distributions, completely monotonic functions, convex cones, complex tubular domains, Plemelj formulas.

1 Introduction

A complex-valued function f on \mathbb{R}^{n} is said to be positive definite if

$$
\begin{equation*}
\sum_{j, k=1}^{n} f\left(x_{j}-x_{k}\right) c_{j} \bar{c}_{k} \geqslant 0 \tag{1}
\end{equation*}
$$

for any finite sets $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$ and for any $c_{1}, \ldots, c_{n} \in \mathbb{C}$. The Bochner theorem (see, e.g., [5, p. 293] and [2, p. 58]) states that continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is positive definite if and only if it is the Fourier transform of a positive finite measure μ on \mathbb{R}^{n}, i.e.,

$$
f(x)=\hat{\mu}(x)=\int_{\mathbb{R}^{n}} \mathrm{e}^{\mathrm{i}(x, t)} \mathrm{d} \mu(t),
$$

$x \in \mathbb{R}^{n}$. Here and later, for z and λ in \mathbb{R}^{n} or in \mathbb{C}^{n}, we write $(z, \lambda)=z_{1} \overline{\lambda_{1}}+\cdots+z_{n} \overline{\lambda_{n}}$.

[^0]Definition (1) cannot carry over to distributions (to generalized functions). Therefore, it is convenient to replace (1) by

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x)\left(\varphi * \varphi^{\star}\right)(x) \mathrm{d} x \geqslant 0, \quad \varphi^{\star}(x):=\overline{\varphi(-x)}, \tag{2}
\end{equation*}
$$

where φ runs over $L^{1}\left(\mathbb{R}^{n}\right)$ or φ runs over all continuous functions on \mathbb{R}^{n} with compact support. Here $u * v$ denotes the convolution

$$
u * v(x)=\int_{\mathbb{R}^{n}} u(x-t) v(t) \mathrm{d} t
$$

If f is continuous, then (2) is equivalent to (1) (see, e.g., [19, p. 420]). Property (2) can be taken as a definition for positive definite distributions. Let us recall some notion. We shall follow [21].

The Schwartz space $S\left(\mathbb{R}^{n}\right)$ consists of infinitely differentiable functions ω such that

$$
\sup _{x \in \mathbb{R}^{n},|u| \leqslant k}\left|\left(1+\|x\|_{2}\right)^{s} D_{x}^{u} \omega(x)\right|<\infty
$$

for all $k, s \in \mathbb{N}$. Here u is a non-negative integer multi-index, $|u|=\sum_{j=1}^{n} u_{j}$,

$$
\|x\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
$$

and $D_{x}^{u}=D_{x_{1}}^{u_{1}} \cdots D_{x_{n}}^{u_{n}}$, where

$$
D_{x_{j}}=\frac{\partial}{\partial x_{j}}
$$

The set of continuous linear functionals on $S\left(\mathbb{R}^{n}\right)$ is denoted by $S^{\prime}\left(\mathbb{R}^{n}\right)$. Each $f \in$ $S^{\prime}\left(\mathbb{R}^{n}\right)$ is called a tempered distribution and the action of f on a test function $\omega \in S\left(\mathbb{R}^{n}\right)$ is written as (f, ω).

Let $D\left(\mathbb{R}^{n}\right)$ be the subspace of $S\left(\mathbb{R}^{n}\right)$ consisting of functions with a compact support. The topology on $D\left(\mathbb{R}^{n}\right)$ is introduced as usual (see [21]). The elements of $D^{\prime}\left(\mathbb{R}^{n}\right)$ are called distributions. Note that $D\left(\mathbb{R}^{n}\right) \subset S\left(\mathbb{R}^{n}\right)$ and $S^{\prime}\left(\mathbb{R}^{n}\right) \subset D^{\prime}\left(\mathbb{R}^{n}\right)$ are true in the sense of topological spaces.

A distribution $f \in D^{\prime}\left(\mathbb{R}^{n}\right)$ is said to be positive definite if

$$
\begin{equation*}
\left(f, \varphi * \varphi^{\star}\right) \geqslant 0 \tag{3}
\end{equation*}
$$

for all $\varphi \in D\left(\mathbb{R}^{n}\right)$. The Bochner-Schwartz theorem [21, p. 125] states that $f \in D^{\prime}\left(\mathbb{R}^{n}\right)$ is positive definite if and only if f is the Fourier transform of a non-negative tempered measure on \mathbb{R}^{n}. Recall that a non-negative measure η on \mathbb{R}^{n} is said to be tempered if there exists $\alpha, 0 \leqslant \alpha<\infty$ such that

$$
\int_{\mathbb{R}^{n}}\left(1+\|x\|_{2}^{2}\right)^{-\alpha} \mathrm{d} \eta(x)<\infty
$$

There are many characterizations of positive definite functions (see, e.g., [8, pp. 7083]). As far as we known, it is perhaps surprising that there are almost no such results for positive definite distributions. We mention only [17], where attention has been paid to positive definite measures on \mathbb{R}, i.e., to distributions of order zero, with applications to a Volterra equation. See also [4] and [7].

Tillmann [20] proved that any $f \in S^{\prime}(\mathbb{R})$ with a compact support has a decomposition into a positive and a negative distributional frequency parts

$$
\begin{equation*}
f=f_{(+)}-f_{(-)} \tag{4}
\end{equation*}
$$

Here $f_{(+)}$is the boundary value (on \mathbb{R}), in the sense of convergence in $S^{\prime}(\mathbb{R})$, of certain $g_{(+)}$that is analytic in the open upper half-plane $\mathbb{C}_{(+)}$. Similarly, $f_{(-)}$is the boundary value of $g_{(-)}$that is analytic in $\mathbb{C}_{(-)}=-\mathbb{C}_{(+)}$. Note that (4) is a distributional counterpart of the first Plemelj formula (see [12, p. 358], [1, pp. 155-157], and [13, pp. 4-5]). Then $\left\{g_{(-)}, g_{(+)}\right\}$defines a sectionally analytic function on $\mathbb{C} \backslash \mathbb{R}$. It is called an analytic representation of $f \in S^{\prime}(\mathbb{R})$. Note that an analytic representation of f is not unique and differs from other representations by at most an entire function.

Let $f \in S^{\prime}(\mathbb{R})$. If, in addition, f has a compact support, then

$$
\begin{equation*}
K(f)(z)=\frac{1}{2 \pi i}\left(f_{t}, \frac{1}{t-z}\right):=\frac{1}{2 \pi i}\left(f(\cdot), \frac{1}{\cdot-z}\right) \tag{5}
\end{equation*}
$$

is well defined for all $z \in \mathbb{C} \backslash \mathbb{R}$. The function $K(f)(z)$ is called the Cauchy transform of f and gives an analytic representations for f (see, e.g., [3, p. 73]). Unfortunately, $K(f)$ does not exist, in general, for all $f \in S^{\prime}(\mathbb{R})$ (see [1, p. 156]). Even so, any $f \in S^{\prime}(\mathbb{R})$ has a finite order ϱ_{f} (see [21, p. 77]). Therefore, if $m \geqslant \varrho_{f}$, then the following generalized Cauchy transform $\left(f,(z-t)^{-(m+1)}\right)$ is well defined. We derived in [9] necessary and sufficient conditions for $f \in S^{\prime}(\mathbb{R})$ to be a positive definite distribution in terms of this generalized transform and completely monotonic functions. Let us recall that a function $\theta:(a, b) \rightarrow \mathbb{R},-\infty \leqslant a<b \leqslant \infty$, is said to be completely monotonic if it is infinitely differentiable and for its nth derivative functions $\theta^{(n)}$

$$
(-1)^{n} \theta^{(n)}(y) \geqslant 0
$$

for each $y \in(a, b)$ and all $n=0,1,2, \ldots$ Further, $\theta(y)$ is said to be absolutely monotonic on (a, b) if a $\theta(-y)$ is completely monotonic on $(-b,-a)$.

Theorem 1. (See [9, Thm. 1.3].) Let $f \in S^{\prime}(\mathbb{R})$ and let n be an integer such that $2 n \geqslant \varrho_{f}$. Suppose $a_{1}, a_{2} \in \mathbb{R}$ and $a_{1} \neq a_{2}$. Let

$$
\begin{equation*}
\widetilde{K}(f, j)(z)=(-1)^{n} \frac{\mathrm{i}}{\pi}\left(\mathrm{e}^{\mathrm{i} a_{j} t} f_{t}, \frac{1}{(z-t)^{2 n+1}}\right) \tag{6}
\end{equation*}
$$

for $z \in \mathbb{C} \backslash \mathbb{R}$ and $j=1,2$. Then f is positive definite if and only if:
(i) $y \rightarrow \widetilde{K}(f, j)(\mathrm{i} y), j=1,2$, are completely monotonic functions for $y \in(0, \infty)$;
(ii) $y \rightarrow-\widetilde{K}(f, j)(\mathrm{i} y), j=1,2$, are absolutely monotonic functions for $y \in$ $(-\infty, 0)$.

Although the Cauchy kernel $(t-z)^{-1} \notin S(\mathbb{R})$, it belongs to another Schwartz test functions spaces $D_{L_{p}}(\mathbb{R})$ for each $1<p \leqslant \infty$ (we give a precise definition later). Thus, the usual Cauchy representation (5) seems possible for all $f \in D_{L_{p}}^{\prime}(\mathbb{R}) \subset S^{\prime}(\mathbb{R})$ (see, e.g., [10, p. 457]). For this reason, we investigate in this paper positive definite distributions in $D_{L_{p}}^{\prime}\left(\mathbb{R}^{n}\right)$.

Let $D_{L^{p}}\left(\mathbb{R}^{n}\right), 1 \leqslant p \leqslant \infty$ (see [15, pp. 199-205]), denote the space of complexvalued functions φ on \mathbb{R}^{n} such that $D_{x}^{u} \varphi(x) \in L_{p}\left(\mathbb{R}^{n}\right)$ for all non-negative integer multiindexes u. Obviously,

$$
\begin{equation*}
D\left(\mathbb{R}^{n}\right) \subset S\left(\mathbb{R}^{n}\right) \subset D_{L^{p}}\left(\mathbb{R}^{n}\right) \tag{7}
\end{equation*}
$$

The topology of $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ is given in terms of countably family of seminorms

$$
\begin{equation*}
\|\varphi\|_{p, u}=\left\|D_{x}^{u} \varphi(x)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{8}
\end{equation*}
$$

Since $\|\cdot\|_{p, 0}$ is a norm, it follows that the family (8) defines on $D_{L^{p}}\left(\mathbb{R}^{n}\right)$ a sequentially complete locally convex topology.

Suppose $1<p, q<\infty, 1 / p+1 / q=1$. According to Schwartz [15, p. 200], we define $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ as the dual space of $D_{L^{q}}\left(\mathbb{R}^{n}\right)$. Note that if $\varphi \in D_{L^{p}}\left(\mathbb{R}^{n}\right)$ and $1 \leqslant p<\infty$, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} D_{x}^{u} \varphi(x)=0 \tag{9}
\end{equation*}
$$

for all u (see [15, p. 200]). Hence, convergence in $D\left(\mathbb{R}^{n}\right)$ or in $S\left(\mathbb{R}^{n}\right)$ implies convergence in $D_{L^{p}}\left(\mathbb{R}^{n}\right), 1 \leqslant p<\infty$. This means that (7) is also true in the sense of topological spaces. Hence, any $f \in D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ can be identified with a distribution in $S^{\prime}\left(\mathbb{R}^{n}\right)$. Thus, for any $1<p<\infty$, we get

$$
\begin{equation*}
D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right) \subset S^{\prime}\left(\mathbb{R}^{n}\right) \subset D^{\prime}\left(\mathbb{R}^{n}\right) \tag{10}
\end{equation*}
$$

We wish to study the Cauchy transform of $f \in D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ as an analytic representation of f. For this purpose, let us define at first the Cauchy kernel of several variables. This definition is related to a notion of convex cone. A set $\Gamma \subset \mathbb{R}^{n}$ is said to be a cone (with vertex at zero) if $x \in \Gamma$ implies $\alpha x \in \Gamma$ for all $\alpha>0$. The dual cone of Γ is defined by

$$
\Gamma^{*}=\left\{t \in \mathbb{R}^{n}:(x, t) \geqslant 0 \text { for all } x \in \Gamma\right\} .
$$

Γ^{*} is always closed convex cone and $\left(\Gamma^{*}\right)^{*}=\overline{\operatorname{ch} \Gamma}$, where ch Γ denotes the convex hull of Γ. We say that Γ is salient (acute) if $\overline{\operatorname{ch} \Gamma}$ does not contain any line (one-dimension subspace of \mathbb{R}^{n}). This is equivalent to the statement that the interior set of Γ^{*} is nonempty. A cone Γ is said to be regular if Γ is an open salient convex cone.

Let $\left\{\Lambda_{j}\right\}_{1}^{m}$ be a family of regular cones. We say that $\left\{\Lambda_{j}\right\}_{1}^{m}$ covers \mathbb{R}^{n} exactly if

$$
\begin{equation*}
\overline{\bigcup_{j=1}^{m} \Lambda_{j}}=\mathbb{R}^{n} \tag{11}
\end{equation*}
$$

and the Lebesgue measure of $\overline{\Lambda_{i}} \cap \overline{\Lambda_{j}}$ is equal to zero whenever $i \neq j$. Any $\omega=$ $\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{R}^{n}$ whose entries ω_{k} are -1 or 1 defines the cone $Q_{\omega}=\left\{x \in \mathbb{R}^{n}\right.$:
$x_{k} \omega_{k}>0$ for $\left.k=1, \ldots, n\right\}$. This cone Q_{ω} is called a quadrant in \mathbb{R}^{n} and the collection of all 2^{n} cones $\left\{Q_{\omega}\right\}_{\omega}$ covers \mathbb{R}^{n} exactly. Note that $Q_{(1, \ldots, 1)}$ is called the positive quadrant in \mathbb{R}^{n} and is denoted by \mathbb{R}_{+}^{n}.

For an open cone Γ, the set $T_{\Gamma}=\mathbb{R}^{n}+\mathrm{i} \Gamma=\left\{z=x+\mathrm{i} y: x \in \mathbb{R}^{n}, y \in \Gamma\right\}$ is called a tube domain in \mathbb{C}^{n}. If Γ is regular, then the Cauchy kernel of Γ (or with respect to Γ) is defined as

$$
\begin{equation*}
K_{\Gamma}(z)=\int_{\Gamma^{*}} \mathrm{e}^{\mathrm{i}(z, t)} \mathrm{d} t, \quad z \in T_{\Gamma} \tag{12}
\end{equation*}
$$

K_{Γ} is analytic on T_{Γ} [21, p. 143].
If f is a distribution on \mathbb{R}^{n}, then

$$
\begin{equation*}
K_{\Gamma}(f)(z)=\frac{1}{(2 \pi)^{n}}\left(f(\cdot), K_{\Gamma}(z-\cdot)\right)=\frac{1}{(2 \pi)^{n}}\left(f_{t}, K_{\Gamma}(z-t)\right), \quad z \in T_{\Gamma} \tag{13}
\end{equation*}
$$

is called the Cauchy (or Cauchy-Bochner) transform of f. For example, if $n=1$, then there are only two regular cones $(-\infty, 0)$ and $(0, \infty)$ in \mathbb{R}. If $\Gamma=(0, \infty)$, then we see that (13) coincides with the usual definition of the Cauchy transform (5).

The notion of completely monotonic functions on $(0, \infty)$ generalizes also to the case of several variables. Note that cones are the natural domain for these functions. Let Γ be a regular cone in \mathbb{R}^{n}. The directional derivation and the directional difference of a function $\theta: \Gamma \rightarrow \mathbb{C}$ along $a=\left(a_{1}, \ldots, a_{n}\right) \in \Gamma$ are defined as follows: $D_{a} \theta(y)=\left(a_{1} D_{y_{1}}+\cdots+\right.$ $\left.a_{n} D_{y_{n}}\right) \theta(y)$, and $\Delta_{a} \theta(y)=\theta(y+a)-\theta(y)$, respectively. Now θ is called completely monotonic on Γ if

$$
(-1)^{k} \Delta_{\gamma_{1}} \Delta_{\gamma_{2}} \ldots \Delta_{\gamma_{k}} \theta(y) \geqslant 0, \quad k=0,1, \ldots
$$

for each $y \in \Gamma$ and all $\gamma_{1}, \ldots, \gamma_{k} \in \Gamma$. These conditions are equivalent to that $\theta \in$ $C^{\infty}(\Gamma)$ and

$$
\begin{equation*}
(-1)^{k} D_{\gamma_{1}} D_{\gamma_{2}} \ldots D_{\gamma_{k}} \theta(y) \geqslant 0, \quad y \in \Gamma, \gamma_{1}, \ldots, \gamma_{k} \in \Gamma, k=0,1, \ldots \tag{14}
\end{equation*}
$$

(see [6, p. 172]).
Now we are able to describe positive definite distributions $f \in D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ in terms of their Cauchy transform $K_{\Gamma}(f)$. The following theorem is the main result of the present paper. To simplify the proofs, we will do here the case $D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$.
Theorem 2. Let $f \in D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$. Suppose that $\left\{\Gamma_{j}\right\}_{1}^{m}$ is a family of regular cones such that $\left\{\Gamma_{j}^{*}\right\}_{1}^{m}$ covers \mathbb{R}^{n} exactly. Then f is positive definite if and only if $y \rightarrow K_{\Gamma_{j}}(f)(\mathrm{i} y)$, $y \in \Gamma_{j}$, is completely monotonic on Γ_{j} for all $j=1,2, \ldots, m$.

We conclude this section with a few examples of positive definite distributions in $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$. As usual, a function v (or a measure μ) is identified with a distribution in $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ by the formula

$$
\begin{equation*}
(v, \varphi)=\int_{\mathbb{R}^{n}} v(x) \varphi(x) \mathrm{d} x \quad\left(\text { or } \quad(\mu, \varphi)=\int_{\mathbb{R}^{n}} \varphi(x) \mathrm{d} \mu(x)\right), \quad \varphi \in D_{L^{p}}\left(\mathbb{R}^{n}\right) \tag{15}
\end{equation*}
$$

Now obviously, $L^{p}\left(\mathbb{R}^{n}\right) \subset D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$. Then any positive definite function $v \in L^{p}\left(\mathbb{R}^{n}\right)$ defines a regular positive definite distribution in $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$. Further, there exist measures $\mu \in D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$, e.g., distributions of order zero, such that μ are positive definite. Indeed, using (9), we see that any finite measure μ on \mathbb{R}^{n} with non-negative Fourier transform $\hat{\mu}$ defines by (15) a positive definite distribution in $D_{L^{p}}^{\prime}\left(\mathbb{R}^{n}\right)$ for each $1<p<\infty$. For example, let μ be any finite discrete non-negative symmetric measure on \mathbb{R}^{n} such that

$$
\mu(\{0\}) \geqslant \mu\left(\mathbb{R}^{n} \backslash\{0\}\right)
$$

Obviously, $\hat{\mu} \geqslant 0$ on \mathbb{R}^{n}, so μ is positive definite. Finally, appropriate distributional derivatives of μ give explicit examples of positive definite distributions in $D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$ of any finite order.

2 Preliminaries and proofs

Let us start with some definitions and lemmas. We define the inverse Fourier transform of a finite measure μ as

$$
\begin{equation*}
\check{\mu}(\xi)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \mathrm{e}^{-\mathrm{i}(\xi, t)} \mathrm{d} \mu(t) \tag{16}
\end{equation*}
$$

In the case if μ has a density φ in $L^{1}\left(\mathbb{R}^{n}\right)$ or in $S\left(\mathbb{R}^{n}\right)$, then the inverse transform is defined similarly. In addition, the inversion formula $\hat{\tilde{\varphi}}=\varphi$ holds for suitable φ.

We define the Fourier transform $\mathcal{F}[f]$ of $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$ by

$$
\begin{equation*}
(\mathcal{F}[f], \psi)=(f, \hat{\psi}) \tag{17}
\end{equation*}
$$

where ψ is any element of $S\left(\mathbb{R}^{n}\right)$. We can modify slightly definition (3) in the following manner:

Lemma 1. $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$ is positive definite if and only if

$$
\begin{equation*}
(f, \omega) \geqslant 0 \tag{18}
\end{equation*}
$$

for every positive definite $\omega \in S\left(\mathbb{R}^{n}\right)$.
Proof. If both $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$ and $\omega \in S\left(\mathbb{R}^{n}\right)$ are positive definite, then using the Bochner theorem in $S\left(\mathbb{R}^{n}\right)$ and in $S^{\prime}\left(\mathbb{R}^{n}\right)$, respectively, we get that $\mathcal{F}[f]$ is a nonnegative tempered measure and that $\check{\omega}$ is a nonnegative function in $S\left(\mathbb{R}^{n}\right)$. Hence, $(\mathcal{F}[f], \check{\omega})$ may be defined as usual integral (15). Then (17) implies that $(f, \omega)=(\mathcal{F}[f], \check{\omega}) \geqslant 0$. On the other hand, if $\varphi \in S\left(\mathbb{R}^{n}\right)$, then the Fourier transform of $\varphi * \varphi^{\star}$ is equal to $|\hat{\varphi}|^{2}$. Hence, $\varphi * \varphi^{\star}$ is positive definite. If now $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$ satisfies (18) for any positive definite $\omega \in S\left(\mathbb{R}^{n}\right)$, then we can set $\omega=\varphi * \varphi^{\star}$. Thus, (3) holds.

Remark 1. Since $D\left(\mathbb{R}^{n}\right)$ is dense in $S\left(\mathbb{R}^{n}\right)$, it follows that $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$ is positive definite if and only if (18) is fulfilled for all $\omega \in D\left(\mathbb{R}^{n}\right)$.

Lemma 2. Let $\varphi \in D_{L^{2}}\left(\mathbb{R}^{n}\right)$. If φ is positive definite, then there exists a sequence $\left(\psi_{k}\right)$ of positive definite $\psi_{k} \in S\left(\mathbb{R}^{n}\right), k=1,2, \ldots$, such that $\lim _{k \rightarrow \infty} \psi_{k}=\varphi$ in $D_{L^{2}}\left(\mathbb{R}^{n}\right)$.
Proof. Take any non-negative $\sigma \in S\left(\mathbb{R}^{n}\right)$ supported on $[-1,1]^{n} \subset \mathbb{R}^{n}$ and such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \sigma(x) \mathrm{d} x=1 \tag{19}
\end{equation*}
$$

For $a>0$, we define $\sigma_{a}(x)$ to be $a^{n} \sigma(a x)$. Then $\hat{\sigma}_{a}$ is positive definite. Set

$$
\begin{equation*}
\psi_{k}(x)=\hat{\sigma}_{k}(x) \varphi(x) \tag{20}
\end{equation*}
$$

$k=1,2, \ldots$ The product of positive definite functions is positive definite. Hence, ψ_{k} is positive definite. Using that $\hat{\sigma}_{a} \in S\left(\mathbb{R}^{n}\right)$ and that $\varphi \in D_{L^{2}}\left(\mathbb{R}^{n}\right)$ satisfies (9), we see that $\psi_{k} \in S\left(\mathbb{R}^{n}\right), k=1,2, \ldots$

Now we shall show that $\lim _{k \rightarrow \infty} \psi_{k}=\varphi$ in $D_{L^{2}}\left(\mathbb{R}^{n}\right)$. Recall that $\left(\psi_{k}\right), \psi_{k} \in$ $D_{L^{2}}\left(\mathbb{R}^{n}\right)$, converges to $\varphi \in D_{L^{2}}\left(\mathbb{R}^{n}\right)$ as $k \rightarrow \infty$ if

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|D_{x}^{u}\left(\psi_{k}-\varphi\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=0 \tag{21}
\end{equation*}
$$

for every nonnegative multi-index $u \in \mathbb{R}^{n}$. To do this, first we will estimate the function $1-\hat{\sigma}_{k}(x)$ and its derivatives.

Let $\varepsilon>0$. The definition of σ_{k}, conjugate with (19), implies that

$$
1-\hat{\sigma}_{k}(x)=\hat{\sigma}(0)-\hat{\sigma}\left(\frac{x}{k}\right) .
$$

Since $\hat{\sigma}$ is a characteristic function, it follows that

$$
\begin{equation*}
\left|1-\hat{\sigma}_{k}(x)\right| \leqslant 2 \quad \text { for all } x \in \mathbb{R}^{n} . \tag{22}
\end{equation*}
$$

Moreover, for any $0<M<\infty$, there exists $0<K=K(M, \varepsilon)<\infty$ such that

$$
\begin{equation*}
\left|1-\hat{\sigma}_{k}(x)\right| \leqslant \varepsilon \quad \text { for all } k>K, x \in \mathbb{R}^{n},\|x\|_{2} \leqslant M \tag{23}
\end{equation*}
$$

Let s be a non-negative multi-index such that $|s| \geqslant 1$. Then by (19), we have

$$
\begin{equation*}
\left|D_{x}^{s}\left(1-\hat{\sigma}_{k}(x)\right)\right|=\left|D_{x}^{s} \int_{\mathbb{R}^{n}} \sigma(t) \mathrm{e}^{\mathrm{i}(x, t) / k} \mathrm{~d} t\right| \leqslant \frac{1}{k^{|s|}} \leqslant \frac{1}{k} \quad \text { for all } x \in \mathbb{R}^{n} \tag{24}
\end{equation*}
$$

If $u \in \mathbb{R}^{n}$ is an arbitrary non-negative multi-index, then it is easily seen that there exists a finite collection $V=\{v\}$ of not necessarily different nonnegative multi-indexes v such that

$$
\begin{align*}
D_{x}^{u}\left(\varphi(x)-\psi_{k}(x)\right) & =D_{x}^{u}\left(\varphi(x)\left[1-\hat{\sigma}_{k}(x)\right]\right) \\
& =\left(1-\hat{\sigma}_{k}(x)\right) D_{x}^{u} \varphi(x)+\sum_{\substack{v \in V \\
|u-v|>0}}\left(D_{x}^{v} \varphi(x) D_{x}^{u-v}\left[1-\hat{\sigma}_{k}(x)\right]\right) \tag{25}
\end{align*}
$$

Since $\varphi \in D_{L^{2}}\left(\mathbb{R}^{n}\right)$, we have that for $\varepsilon>0$, there exists $0<M=M(\varepsilon)<\infty$ such that

$$
\begin{equation*}
\left(\int_{\|x\|_{2} \geqslant M}\left|D_{x}^{s} \varphi(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2}<\varepsilon \quad \text { for all } s \in\{u, V\} \tag{26}
\end{equation*}
$$

Now fix any multi-index $u \in \mathbb{R}^{n}$ and any $\varepsilon>0$. Then take $0<M=M(\varepsilon)<\infty$ so that (26) holds. Finally, choose $0<K=K(M, \varepsilon)<\infty$ such that $K>1 / \varepsilon$ and (23) holds. If $k>K$, then combining (25) with (22), (23), (24), and (26), we have

$$
\begin{align*}
& \left\|D_{x}^{u}\left(\varphi-\psi_{k}\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& \quad \leqslant\left\|\left(1-\hat{\sigma}_{k}\right) D_{x}^{u} \varphi\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}+\sum_{\substack{v \in V \\
|u-v|>0}}\left\|D_{x}^{v} \varphi D_{x}^{u-v}\left[1-\hat{\sigma}_{k}\right]\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& \leqslant \\
& \quad\left(\int_{\|x\|_{2} \leqslant M}\left|\left(1-\hat{\sigma}_{k}\right)\right|^{2}\left|D_{x}^{u} \varphi(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2}+\left(\int_{\|x\|_{2} \geqslant M}\left|\left(1-\hat{\sigma}_{k}\right)\right|^{2}\left|D_{x}^{u} \varphi(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2} \\
& \quad+\frac{1}{k} \sum_{\substack{v \in V \\
|u-v|>0}}\left\|D_{x}^{v} \varphi\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{27}\\
& \leqslant
\end{align*}
$$

Since V is finite and depends only on v, (27) implies that $\left\|D_{x}^{u}\left(\varphi-\psi_{k}\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leqslant$ Const $(u) \varepsilon$ for all $k>K$. This proves (21) and Lemma 2.

We recall the definition of the Laplace transform. Suppose that Λ is a closed convex salient cone in \mathbb{R}^{n}. Let $S^{\prime}(\Lambda)$ denote the set of all $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$ supported on Λ. Then $S^{\prime}(\Lambda)$ is simultaneously a closed subspace of $S^{\prime}\left(\mathbb{R}^{n}\right)$ and a commutative convolution algebra [21, p. 64]. For $y \in \mathbb{R}^{n}$, the Laplace transform of $F \in S^{\prime}(\Lambda)$ is defined by

$$
\begin{equation*}
L_{y}(F)(x)=\mathcal{F}\left[F(\cdot) \mathrm{e}^{-(y, \cdot)}\right](x)=\mathcal{F}_{\xi}\left[F(\xi) \mathrm{e}^{-(y, \xi)}\right](x), \quad x \in \mathbb{R}^{n} \tag{28}
\end{equation*}
$$

If $y \in \operatorname{int} \Lambda^{*}$, then $F(\cdot) \mathrm{e}^{-(y, \cdot)}$ belongs to $S^{\prime}\left(\mathbb{R}^{n}\right)$ (see, e.g., [21, p. 127]). Hence, $L_{y}(F)(x)$ is well defined for all $y \in \operatorname{int} \Lambda^{*}$. Further, $L_{y}(F)(x)$ is analytic on the tube domain $T_{\text {int } \Lambda^{*}}$ as a function of $z=x+\mathrm{i} y$, and

$$
\begin{equation*}
\frac{\partial^{|u|}}{\partial z_{1}^{u_{1}} \ldots \partial z_{n}^{u_{n}}} L_{y}(F)(x)=\mathrm{i}^{|u|} \mathcal{F}_{\xi}\left[\left(\xi_{1}^{u_{1}} \cdots \xi_{n}^{u_{n}}\right) F(\xi) \mathrm{e}^{-(y, \xi)}\right](x) \tag{29}
\end{equation*}
$$

for any non-negative integer multi-index $u=\left(u_{1}, \ldots, u_{n}\right)$ [21, p. 128].
Now we briefly touch upon the problem whether the Cauchy transform is well defined on $D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$. The following simple lemma contains a precise statement. For completeness, we also give its proof.

Lemma 3. Let Γ be a regular cone in \mathbb{R}^{n}. If $f \in D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$, then the Cauchy transform (28) is well defined on T_{Γ}. Moreover, it is analytic on T_{Γ} and

$$
\begin{equation*}
\frac{\partial^{|u|}}{\partial z_{1}^{u_{1}} \ldots \partial z_{n}^{u_{n}}} K_{\Gamma}(f)(z)=\frac{1}{(2 \pi)^{n}}\left(f(\cdot), \frac{\partial^{|u|}}{\partial z_{1}^{u_{1}} \ldots \partial z_{n}^{u_{n}}} K_{\Gamma}(z-\cdot)\right), \quad z \in T_{\Gamma} \tag{30}
\end{equation*}
$$

for each non-negative multi-index $u=\left(u_{1}, \ldots, u_{n}\right)$.
Proof. Fix any $y \in \Gamma$ and set

$$
\begin{equation*}
E_{y, u}(\xi)=\xi^{u_{1}} \cdots \xi^{u_{n}} \mathrm{e}^{-(y, \xi)} \tag{31}
\end{equation*}
$$

$\xi \in \Gamma^{*}$. Since Γ is open, then it is easy to see that there exists $\delta=\delta(y)>0$ such that $(y, \xi) \geqslant \delta\|\xi\|_{2}$ for all $\xi \in \Gamma^{*}$ (see also [18, p. 104]). Then

$$
\left|E_{y, u}(\xi)\right| \leqslant\left|\xi_{1}\right|^{u_{1}} \cdots|\xi|^{u_{n}} \mathrm{e}^{-\delta\|\xi\|_{2}} \leqslant \prod_{k=1}^{n}\left(\left|\xi_{k}\right|^{u_{k}} \mathrm{e}^{-\delta\left|\xi_{k}\right|}\right)
$$

for $\xi \in \Gamma^{*}$. Let $\chi_{\Gamma^{*}}$ denote the indicator function of Γ^{*}. Then we see that

$$
\begin{equation*}
E_{y, u}(\xi) \chi_{\Gamma^{*}}(\xi) \in L^{s}\left(\mathbb{R}^{n}\right) \quad \text { for all } 1 \leqslant s \leqslant \infty \tag{32}
\end{equation*}
$$

Clearly, $\chi_{\Gamma^{*}} \in S^{\prime}\left(\mathbb{R}^{n}\right)$. Hence, if we take in (28) $F=\chi_{\Gamma^{*}}$, then have for any $t \in \mathbb{R}^{n}$ that

$$
\begin{align*}
L_{y}\left(\chi_{\Gamma^{*}}\right)(x-t) & =\mathcal{F}_{\xi}\left[\chi_{\Gamma^{*}}(\xi) \mathrm{e}^{-(y, \xi)}\right](x-t)=\mathcal{F}_{\xi}\left[\chi_{\Gamma^{*}}(\xi) E_{y, 0}(\xi)\right](x-t) \\
& =\int_{\mathbb{R}^{n}} \chi_{\Gamma^{*}}(\xi) E_{y, 0}(\xi) \mathrm{e}^{\mathrm{i}(x-t)} \mathrm{d} \xi=\int_{\Gamma^{*}} \mathrm{e}^{\mathrm{i}(z-t)} \mathrm{d} \xi=K_{\Gamma}(z-t), \tag{33}
\end{align*}
$$

where $z=x+\mathrm{i} y \in T_{\Gamma}$. Now (32), together with the Plancherel theorem in $L^{2}\left(\mathbb{R}^{n}\right)$, implies that for any $z \in T_{\Gamma}$, the function $t \rightarrow K_{\Gamma}(z-t)$ belongs to $L^{2}\left(\mathbb{R}^{n}\right)$. Using (31) and (32) with a general non-negative multi-index $u=\left(u_{1}, \ldots, u_{n}\right)$, we find in a similar way that

$$
D_{t}^{u} K_{\Gamma}(z-t)=(-\mathrm{i})^{|u|} \int_{\mathbb{R}^{n}} \chi_{\Gamma^{*}}(\xi) E_{y, u}(\xi) \mathrm{e}^{\mathrm{i}(x-t)} \mathrm{d} \xi
$$

$z=x+\mathrm{i} y \in T_{\Gamma}$. Hence, again by (32), we obtain that $\left.t \rightarrow D_{t}^{u} K_{\Gamma}(z-t)\right)$ belongs to $L^{2}\left(\mathbb{R}^{n}\right)$ for all non-negative multi-indexes u, e.g., $t \rightarrow K_{\Gamma}(z-t)$ belongs to $D_{L^{2}}\left(\mathbb{R}^{n}\right)$. Thus, (13) is well defined on $D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$ for all $z \in T_{\Gamma}$. Finally, using (29) and properties (given above) of the Laplace transform (28), we have that $K_{\Gamma}(f)(z)$ is analytic on T_{Γ} and (30) is fulfilled. This finishes the proof of Lemma 3.

We are now in a position to prove the main theorem. For the sake of clarity, we divide the proof into two parts.

Proof of Theorem 2 (Necessity). Let $f \in D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$ and suppose that Γ is an arbitrary regular cone in \mathbb{R}^{n}. By Lemma 3, the Cauchy transform (13) is well defined and (30) holds for $z \in T_{\Gamma}$. In particular, if $z=\mathrm{i} y$ with $y \in \Gamma$, then

$$
\begin{equation*}
\frac{\partial^{|u|}}{\partial y_{1}^{u_{1}} \ldots \partial y_{n}^{u_{n}}} K_{\Gamma}(f)(\mathrm{i} y)=\frac{1}{(2 \pi)^{n}}\left(f(\cdot), \frac{\partial^{|u|}}{\partial y_{1}^{u_{1}} \ldots \partial y_{n}^{u_{n}}} K_{\Gamma}(\mathrm{i} y-\cdot)\right) \tag{34}
\end{equation*}
$$

for each multi-index u. Combining (29) and (33), we get

$$
\begin{equation*}
\frac{\partial^{|u|}}{\partial y_{1}^{u_{1}} \ldots \partial y_{n}^{u_{n}}} K_{\Gamma}(\mathrm{i} y)=\mathrm{i}^{2|u|} \int_{\Gamma^{*}}\left(\xi_{1}^{u_{1}} \cdots \xi_{n}^{u_{n}}\right) \mathrm{e}^{-(y, \xi)} \mathrm{d} \xi \tag{35}
\end{equation*}
$$

In particular, for the directional derivative $D_{\gamma} K_{\Gamma}(\mathrm{i} y-t)$ with $\gamma \in \Gamma$, we have

$$
\begin{align*}
D_{\gamma} K_{\Gamma}(\mathrm{i} y-t) & =\sum_{s=1}^{n} \gamma_{s} \frac{\partial}{\partial y_{s}} K_{\Gamma}(\mathrm{i} y-t)=\left(\gamma, D_{y}\right) K_{\Gamma}(\mathrm{i} y-t) \\
& =-\int_{\Gamma^{*}}(\gamma, \xi) \mathrm{e}^{-(y, \xi)} \mathrm{e}^{-\mathrm{i}(t, \xi)} \mathrm{d} \xi \tag{36}
\end{align*}
$$

Iterating (36), we obtain

$$
\begin{equation*}
D_{\gamma_{1}} D_{\gamma_{2}} \ldots D_{\gamma_{k}} K_{\Gamma}(\mathrm{i} y-t)=(-1)^{k} \int_{\Gamma^{*}} \prod_{j=1}^{k}\left(\gamma_{j}, \xi\right) \mathrm{e}^{-(y, \xi)} \mathrm{e}^{-\mathrm{i}(t, \xi)} \mathrm{d} \xi \tag{37}
\end{equation*}
$$

for any choice $\gamma_{1}, \ldots, \gamma_{k} \in \Gamma$.
For fixed y and γ in Γ, set

$$
H(\xi):=(\gamma, \xi) \mathrm{e}^{-(y, \xi)} \chi_{\Gamma^{*}}(\xi)
$$

$\xi \in \Gamma^{*}$. Obviously, H coincides on Γ^{*} with a finite linear combination of functions (31) with appropriate quotients. This, conjugate with (42), implies that H is integrable on \mathbb{R}^{n}. Moreover, (γ, ξ) is nonnegative for $\xi \in \Gamma^{*}$. Thus, applying the Bochner theorem (see [5, p. 293] and [12, p. 125]) to the right-hand side of (37), we see that for any fixed $y \in \Gamma$ and all $\gamma_{1}, \ldots, \gamma_{k} \in \Gamma$,

$$
\begin{equation*}
(-1)^{k} D_{\gamma_{1}} D_{\gamma_{2}} \ldots D_{\gamma_{k}} K_{\Gamma}(\mathrm{i} y-t) \tag{38}
\end{equation*}
$$

is positive definite as a function of $t \in \mathbb{R}^{n}$.
Suppose, in addition, that $f \in D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$ is positive definite. Then by Lemmas 1 and 2, we have

$$
(-1)^{k}\left(D_{\gamma_{1}} D_{\gamma_{2}} \ldots D_{\gamma_{k}} K_{\Gamma}(\mathrm{i} y-\cdot), f(\cdot)\right) \geqslant 0
$$

for $y \in \Gamma$. Combining this with (34), we see that

$$
(-1)^{k} D_{\gamma_{1}} D_{\gamma_{2}} \ldots D_{\gamma_{k}} K_{\Gamma}(f)(\mathrm{i} y) \geqslant 0
$$

for all $y \in \Gamma$ and each $\gamma_{1}, \ldots, \gamma_{k} \in \Gamma$. Finally, this shows that $y \rightarrow K_{\Gamma}(f)(\mathrm{i} y)$ is a completely monotonic function on Γ. Necessity of Theorem 2 is proved.

Lemma 4. Suppose that $\left\{\Gamma_{k}\right\}_{1}^{m}$ is a family of regular cones such that $\left\{\Gamma_{k}^{*}\right\}_{1}^{m}$ covers exactly \mathbb{R}^{n}. Let $y_{k} \in \Gamma_{k}, k=1, \ldots, m$. If $\omega \in D\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
\lim _{\max \left\|y_{k}\right\|_{2} \rightarrow 0} \sum_{k=1}^{m} K_{\Gamma_{k}}(\omega)\left(x+\mathrm{i} y_{k}\right)=\omega(x) \tag{39}
\end{equation*}
$$

in the topology of $D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$.
Proof. Obviously, each $\omega \in D\left(\mathbb{R}^{n}\right)$ defines by

$$
(\omega, \varphi)=\int_{\mathbb{R}^{n}} \omega(x) \varphi(x) \mathrm{d} x
$$

$\varphi \in D_{L^{2}}\left(\mathbb{R}^{n}\right)$, a distribution in $D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$. Therefore, if Γ is a regular cone in \mathbb{R}^{n}, then

$$
\begin{equation*}
K_{\Gamma}(\omega)(z)=\frac{1}{(2 \pi)^{n}}\left(K_{\Gamma}(z-\cdot), \omega(\cdot)\right)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} K_{\Gamma}(z-\alpha) \omega(\alpha) \mathrm{d} \alpha \tag{40}
\end{equation*}
$$

where the integral converges absolutely for $z \in T_{\Gamma}$. Since

$$
K_{\Gamma}(z-\alpha)=\int_{\Gamma^{*}} \mathrm{e}^{\mathrm{i}(x, t)} \mathrm{e}^{-(y, t)} \mathrm{e}^{-\mathrm{i}(\alpha, t)} \mathrm{d} t
$$

and this integral converges also absolutely for $\alpha \in \mathbb{R}^{n}$ and $z \in T_{\Gamma}$, it follows by the Fubini theorem that

$$
\begin{align*}
K_{\Gamma}(\omega)(z) & =\frac{1}{(2 \pi)^{n}} \int_{\Gamma^{*}}\left[\int_{\mathbb{R}^{n}} \mathrm{e}^{-\mathrm{i}(\alpha, t)} \omega(\alpha) \mathrm{d} \alpha\right] \mathrm{e}^{\mathrm{i}(x, t)} \mathrm{e}^{-(y, t)} \mathrm{d} t \\
& =\int_{\Gamma^{*}} \check{\omega}(t) \mathrm{e}^{\mathrm{i}(x, t)} \mathrm{e}^{-(y, t)} \mathrm{d} t=\int_{\Gamma^{*}} \check{\omega}(t) \mathrm{e}^{\mathrm{i}(x, t)} \mathrm{e}^{-|(y, t)|} \mathrm{d} t \\
& =\int_{\mathbb{R}^{n}} \check{\omega}(t) \mathrm{e}^{\mathrm{i}(x, t)} \mathrm{e}^{-|(y, t)|} \chi_{\Gamma^{*}}(t) \mathrm{d} t . \tag{41}
\end{align*}
$$

For $y_{k} \in \Gamma_{k}, k=1, \ldots, m, Y=\left\{y_{1}, \ldots, y_{m}\right\}$, set

$$
\begin{equation*}
\Omega_{Y}(t)=\sum_{k=1}^{m} \chi_{\Gamma_{k}^{*}}(t) \mathrm{e}^{-\left|\left(y_{k}, t\right)\right|} \tag{42}
\end{equation*}
$$

$t \in \mathbb{R}^{n}$. If u is a non-negative integer multi-index, then using (41), we get

$$
\begin{aligned}
D_{x}^{u}\left(\sum_{k=1}^{m} K_{\Gamma_{k}}(\omega)\left(x+\mathrm{i} y_{k}\right)-\omega(x)\right) & =D_{x}^{u}\left(\int_{\mathbb{R}^{n}}\left[\Omega_{Y}(t)-1\right] \check{\omega}(t) \mathrm{e}^{\mathrm{i}(x, t)} \mathrm{d} t\right) \\
& =\mathrm{i}^{|u|} \int_{\mathbb{R}^{n}}\left[\Omega_{Y}(t)-1\right] t_{1}^{u_{1}} \cdots t_{n}^{u_{n}} \check{\omega}(t) \mathrm{e}^{\mathrm{i}(x, t)} \mathrm{d} t
\end{aligned}
$$

for $x \in \mathbb{R}^{n}$. Here using the Parseval equality for Fourier transform, we have

$$
\begin{align*}
& \left\|D_{x}^{u}\left(\sum_{k=1}^{m} K_{\Gamma_{k}}(\omega)\left(x+\mathrm{i} y_{k}\right)-\omega(x)\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& \quad=(2 \pi)^{n}\left\|\left(\Omega_{Y}(t)-1\right) t_{1}^{u_{1}} \cdots t_{n}^{u_{n}} \check{\omega}(t)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \tag{43}
\end{align*}
$$

Since $\left\{\Gamma_{k}^{*}\right\}_{1}^{m}$ covers exactly \mathbb{R}^{n}, it follows easily from (42) that

$$
\Omega_{Y}(t)=1+\theta(t)+\sum_{k=1}^{m}\left(\mathrm{e}^{-\left(y_{k}, t\right)}-1\right) \chi_{\Gamma_{k}^{*}}(t)
$$

where $\theta(t)=0$ almost everywhere on \mathbb{R}^{n} and

$$
1-\sum_{k=1}^{m} \mathrm{e}^{-\left|\left(y_{k}, t\right)\right|} \rightarrow 0, \quad \text { as } \max _{k}\left\|y_{k}\right\|_{2} \rightarrow 0
$$

uniformly on compact subsets of \mathbb{R}^{n}. On the other hand, $\check{\omega}(t)$ as well as $t_{1}^{u_{1}} \cdots t_{n}^{u_{n}} \check{\omega}(t)$ belong to $S\left(\mathbb{R}^{n}\right)$. Thus, the norm in the right-hand side of (43) tends to zero as $\max _{k}\left\|y_{k}\right\|_{2} \rightarrow 0$. This proves (39) and the lemma.

Proof of Theorem 2 (Sufficiency). Suppose that Γ is any regular cone such that $y \rightarrow$ $K_{\Gamma}(f)(\mathrm{i} y)$ is completely monotonic on Γ. Fix $\gamma \in \Gamma$. Since Γ is convex, it follows that Γ is also an additive semigroup. Because $\gamma+\bar{\Gamma} \subset \Gamma$, the function

$$
\begin{equation*}
F_{\gamma}(y)=K_{\Gamma}(f)(\mathrm{i}(\gamma+y)) \tag{44}
\end{equation*}
$$

is well defined for all $y \in \bar{\Gamma}$. Moreover, F_{γ} is continuous and completely monotonic on $\bar{\Gamma}$. Then (see [6, p. 172] and [2, p. 89]) there exists a non-negative measure μ_{γ} on $(\bar{\Gamma})^{*}$ such that

$$
F_{\gamma}(y)=\int_{(\bar{\Gamma})^{*}} \mathrm{e}^{-(y, \zeta)} \mathrm{d} \mu_{\gamma}(\zeta)
$$

for all $y \in \bar{\Gamma}$. Clearly, $(\bar{\Gamma})^{*}=\Gamma^{*}$. Since F_{γ} is continuous on $\bar{\Gamma}$, we see that μ_{γ} is a finite measure on Γ^{*}. Therefore, F_{γ} can be continued analytically on the tube domain T_{Γ} as the Laplace transform of μ_{γ}, i.e., for $z=x+\mathrm{i} y \in T_{\Gamma}$,

$$
\begin{equation*}
F_{\gamma}(z)=\int_{\Gamma^{*}} \mathrm{e}^{\mathrm{i}(z, \zeta)} \mathrm{d} \mu_{\gamma}(\zeta) \tag{45}
\end{equation*}
$$

By (44), $F_{\gamma}(z)$ coincides with $K_{\Gamma}(f)(\mathrm{i} \gamma+z)$ for $z=\mathrm{i} y, y \in \bar{\Gamma}$. We claim that this is true on the whole tube domain T_{Γ}. To this end, we use the following identity theorem (see e.g., [16, p. 21]): if h is an analytic function on an open domain D on \mathbb{C}^{n} such that h vanishes on a real neighborhood of a point $z_{0}=x_{0}+\mathrm{i} y_{0} \in D$, i.e., h vanishes on

$$
\left\{z=x+\mathrm{i} y \in D:\left|x-x_{0}\right|<r, y=y_{0}\right\}
$$

then $h \equiv 0$ on D. Of course, this statement is valid also in the case if we replace this real neighborhood by an imaginary neighborhood of z_{0}, i.e., on the set $\{z=x+\mathrm{i} y \in$ $\left.D: x=x_{0},\left|y-y_{0}\right|<r\right\}$. Take any $z_{0}=\mathrm{i} y_{0} \in T_{\Gamma}$. By (45), analytic functions $F_{\gamma}(z)$ and $K_{\Gamma}(f)(i \gamma+z)$ coincide on any image neighborhood $I_{z_{0}}=\{z=x+\mathrm{i} y \in$ $\left.\mathbb{C}^{n}:\left|y-y_{0}\right|<r, x=x_{0}\right\}$ of z_{0} such that $I_{z_{0}} \subset T_{\Gamma}$. This yields the claim that

$$
\begin{equation*}
K_{\Gamma}(f)(\mathrm{i} \gamma+z)=F_{\gamma}(z)=\int_{\Gamma^{*}} \mathrm{e}^{\mathrm{i}(z, \zeta)} \mathrm{d} \mu_{\gamma}(\zeta)=\int_{\Gamma^{*}} \mathrm{e}^{\mathrm{i}(x, \zeta)} \mathrm{e}^{-(y, \zeta)} \mathrm{d} \mu_{\gamma}(\zeta) \tag{46}
\end{equation*}
$$

for $z=x+\mathrm{i} y \in T_{\Gamma}$.
Using the representation (46) and having the Bochner theorem, we see that for any $y \in \Gamma$, the function $x \rightarrow F_{\gamma}(x+\mathrm{i} y)$ is continuous and positive definite on \mathbb{R}^{n}. This is also true for all $\gamma \in \Gamma$. Thus, since Γ is an open cone and $F_{\gamma}(z)=K_{\Gamma}(f)(\mathrm{i} \gamma+z)$ on T_{Γ}, we obtain that for any fixed $y \in \Gamma$, the function

$$
\begin{equation*}
x \rightarrow K_{\Gamma}(f)(x+\mathrm{i} y) \tag{47}
\end{equation*}
$$

is continuous and positive definite for $x \in \mathbb{R}^{n}$.
Suppose now that $\left\{\Gamma_{k}\right\}_{1}^{m}$ is a family of regular cones such that $\left\{\Gamma_{k}^{*}\right\}_{1}^{m}$ covers \mathbb{R}^{n} exactly. Next, take any collection $y_{k} \in \Gamma_{k}$ for $k=1, \ldots, m$. Let $\omega \in D\left(\mathbb{R}^{n}\right)$. Since f is a linear functional on $D_{L^{2}}\left(\mathbb{R}^{n}\right)$, we get

$$
\begin{align*}
\int_{\mathbb{R}^{n}} & \left(\sum_{k=1}^{m} K_{\Gamma_{k}}(f)\left(x+\mathrm{i} y_{k}\right)\right) \omega(x) \mathrm{d} x \\
& =\frac{1}{(2 \pi)^{n}} \sum_{k=1}^{m} \int_{\mathbb{R}^{n}}\left(f(\cdot), \omega(x) K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-\cdot\right)\right) \mathrm{d} x \\
& =\frac{1}{(2 \pi)^{n}} \sum_{k=1}^{m} \int_{\mathbb{R}^{n}}\left(f_{t}, \omega(x) K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right)\right) \mathrm{d} x \\
& =\frac{1}{(2 \pi)^{n}} \sum_{k=1}^{m} \int_{\mathbb{R}^{n}} f_{t}\left(\omega(x) K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right)\right) \mathrm{d} x . \tag{48}
\end{align*}
$$

We claim that

$$
\begin{equation*}
\sum_{k=1}^{m} \int_{\mathbb{R}^{n}} f_{t}\left(\omega(x) K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right)\right) \mathrm{d} x=\sum_{k=1}^{m} f_{t}\left(\int_{\mathbb{R}^{n}} \omega(x) K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right) \mathrm{d} x\right) \tag{49}
\end{equation*}
$$

To verify the claim, let us recall from the proof of Lemma 3 that for fixed $x \in \mathbb{R}^{n}$ and $y_{k} \in \Gamma_{k}$, the map

$$
\begin{equation*}
t \rightarrow K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right) \tag{50}
\end{equation*}
$$

is an element of $D_{L^{2}}\left(\mathbb{R}^{n}\right)$. Therefore, the map defined by

$$
\begin{equation*}
\Psi_{k, t}(x):=\omega(x) K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right) \tag{51}
\end{equation*}
$$

$x \in \operatorname{supp}(\omega)$, is a vector-valued function

$$
\Psi_{k, t}: \operatorname{supp}(\omega) \rightarrow D_{L^{2}}\left(\mathbb{R}^{n}\right)
$$

Therefore, (49) is equivalent to the condition that these functions $\Psi_{k, t}$ are Pettis integrable over $\operatorname{supp}(\omega)\left(\right.$ see, e.g., $\left[11\right.$, p. 164]). Since $D_{L^{2}}\left(\mathbb{R}^{n}\right)$ is a Frechet space, $\operatorname{supp}(\omega)$ is a compact subset of \mathbb{R}^{n}, and the dual space $D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$ separates $D_{L^{2}}\left(\mathbb{R}^{n}\right)$ elements (indeed, it is easy to see that already regular distributions from $L^{2}\left(\mathbb{R}^{n}\right)$ separate points of $D_{L^{2}}\left(\mathbb{R}^{n}\right)$), it follows (see, e.g., [14, pp. 77-78]) that if $\Psi_{k, t}$ is continuous, then

$$
\begin{align*}
\int_{\mathbb{R}^{n}} f\left(\omega(x) K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right)\right) \mathrm{d} x & =\int_{\mathbb{R}^{n}} f\left(\Psi_{k, t}(x)\right) \mathrm{d} x=f\left(\int_{\mathbb{R}^{n}} \Psi_{k, t}(x) \mathrm{d} x\right) \\
& =f\left(\int_{\mathbb{R}^{n}} \omega(x) K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right) \mathrm{d} x\right) \tag{52}
\end{align*}
$$

for all $f \in D_{L^{2}}^{\prime}\left(\mathbb{R}^{n}\right)$. Now, by comparing (49) and (52), we see that it remains to show that $\Psi_{k, t}, k=1, \ldots, m$, are continuous. This means that for each $x \in \operatorname{supp}(\omega)$ and any non-negative multi-index u, it should be true that

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0}\left\|D_{t}^{u}\left(\Psi_{k, t}(x+\varepsilon)-\Psi_{k, t}(x)\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& \quad=\lim _{\varepsilon \rightarrow 0}\left(\int_{\mathbb{R}^{n}}\left|D_{t}^{u}\left[\omega(x+\varepsilon) K_{\Gamma_{k}}\left(x+\varepsilon+\mathrm{i} y_{k}-t\right)-\omega(x) K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right)\right]\right|^{2} \mathrm{~d} t\right)^{1 / 2} \\
& \quad=0 \tag{53}
\end{align*}
$$

Obviously,

$$
\begin{align*}
& \left\|D_{t}^{u}\left(\Psi_{k, t}(x+\varepsilon)-\Psi_{k, t}(x)\right)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \\
& \quad \leqslant \max _{x \in \mathbb{R}^{n}}|\omega(x+\varepsilon)-\omega(x)|\left(\int_{\mathbb{R}^{n}}\left|D_{t}^{u} K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right)\right|^{2} \mathrm{~d} t\right)^{1 / 2}+\max _{x \in \mathbb{R}^{n}}|\omega(x+\varepsilon)| \\
& \quad \times\left(\int_{\mathbb{R}^{n}}\left|D_{t}^{u} K_{\Gamma_{k}}\left(x+\mathrm{i} \varepsilon+\mathrm{i} y_{k}-t\right)-D_{t}^{u} K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right)\right|^{2} \mathrm{~d} t\right)^{1 / 2} \tag{54}
\end{align*}
$$

Since all functions (50) and their derivatives in t are in $L^{2}\left(\mathbb{R}^{n}\right)$, it follows that they are L^{2}-continuous. This means that if a function g belongs to $L^{2}\left(\mathbb{R}^{n}\right)$, then

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{n}}|g(v+\varepsilon)-g(v)|^{2} \mathrm{~d} v=0
$$

Then (53) is an immediate consequence of (54). Thus, our claim (49) is proved.

By (50), we have

$$
\begin{equation*}
\frac{1}{(2 \pi)^{n}} \sum_{k=1}^{m} \int_{\mathbb{R}^{n}} K_{\Gamma_{k}}\left(x+\mathrm{i} y_{k}-t\right) \omega(x) \mathrm{d} x=\sum_{k=1}^{m} K_{\Gamma_{k}}(\omega)\left(-t+\mathrm{i} y_{k}\right) \tag{55}
\end{equation*}
$$

$t \in \mathbb{R}^{n}$. This, together with (48) and (49), gives that

$$
\begin{align*}
\int_{\mathbb{R}^{n}} & \left(\sum_{k=1}^{m} K_{\Gamma_{k}}(f)\left(-x+\mathrm{i} y_{k}\right)\right) \omega(x) \mathrm{d} x \\
& =\frac{1}{(2 \pi)^{n}} f_{t}\left(\sum_{k=1_{\mathbb{R}^{n}}}^{m} \int \omega(x) K_{\Gamma_{k}}\left(-x+\mathrm{i} y_{k}-t\right) \mathrm{d} x\right) \\
& =f_{t}\left(\sum_{k=1}^{m} K_{\Gamma_{k}}(\omega)\left(-t+\mathrm{i} y_{k}\right)\right) \tag{56}
\end{align*}
$$

Clearly, a function $\zeta: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is positive definite if and only if $\zeta_{(-)}(x):=\zeta(-x)$, $x \in \mathbb{R}^{n}$, is positive definite. Since (47) is continuous and positive definite, it follows that

$$
x \rightarrow \sum_{k=1}^{m} K_{\Gamma_{k}}(f)\left(-x+\mathrm{i} y_{k}\right)
$$

is also continuous and positive definite for $x \in \mathbb{R}^{n}$. Suppose now, in addition, that $\omega \in$ $D\left(\mathbb{R}^{n}\right)$ is positive definite. Then by Remark 1, we have

$$
\int_{\mathbb{R}^{n}}\left(\sum_{k=1}^{m} K_{\Gamma_{k}}(f)\left(-x+\mathrm{i} y_{k}\right)\right) \omega(x) \mathrm{d} x \geqslant 0 .
$$

This, conjugate with (56), implies that

$$
f_{t}\left(\sum_{k=1}^{m} K_{\Gamma_{k}}(\omega)\left(-t+\mathrm{i} y_{k}\right)\right) \geqslant 0
$$

Thus, by Lemma 4, we have

$$
\left(f, \omega_{(-)}\right) \geqslant 0
$$

Since ω was an arbitrary positive definite function in $D\left(\mathbb{R}^{n}\right)$, it follows from Remark 1 that f is a positive definite distribution. This completes the proof.

Acknowledgment. The author thanks the referee for pointing out several mistakes and making a few other remarks which improved the exposition.

References

1. P. Blanchard, E. Brüning, Mathematical Methods in Physics. Distributions, Hilbert Space Operators and Variational Methods, Prog. Math. Phys., Birkhäuser, Boston, Basel, Berlin, 2003.
2. S. Bochner, Harmonic Analysis and the Theory of Probability, Dover Publications, New York, 2005.
3. H.J. Bremermann, Distributions, Complex Variables, and Fourier Transforms, AddisonWesley, Reading, MA, 1965.
4. J.P. Gabardo, Extension of Positive-Definite Distributions and Maximum Entropy, Mem. Am. Math. Soc., Vol. 102, No. 489, 1993.
5. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, Vol. 2, Springer, Berlin, Heidelberg, 1997.
6. F. Hirsch, Familles résolvantes, générateurs, cogénérateurs, potentiels, Ann. Inst. Fourier, 22(1):89-210, 1972.
7. N.J. Kalton, M. Zymonopoulou, Positive definite distributions and normed spaces, Adv. Math., 227:986-1018, 2011.
8. E. Lukacs, Characteristic Functions, 2nd ed., Hafner Publishing Co., New York, 1970.
9. S. Norvidas, A note on positive definite distributions, Indag. Math., 24(3):505-517, 2013.
10. J.N. Pandey, O.P. Singh, Characterization of functions with Fourier transform supported on orthants, J. Math. Anal. Appl., 185(2):438-463, 1994.
11. A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser, Basel, 2007.
12. B.W. Ross, Analytic Functions and Distributions in Physics and Engeneering, John Wiley \& Sons, New York, London, Sidney, Toronto, 1969.
13. W. Rudin, Lectures on the Edge-of-the-Wedge Theorem, Reg. Conf. Ser. Math., No. 6, Amer. Math. Soc., Providence, RI, 1971.
14. W. Rudin, Functional Analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1991.
15. L. Schwartz, Théorie des Distributions, Hermann, Paris, 1997.
16. B.V. Shabat, Introduction to Complex Analysis. Part II: Functions of Several Variables, Transl. Math. Monogr., Vol. 110, Amer. Math. Soc., Providence, RI, 1992.
17. O.J. Staffans, Positive definite measures with applications to a Volterra equation, Trans. Am. Math. Soc., 218:219-237, 1976.
18. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., No. 32, Princeton Univ. Press, Princeton, NJ, 1971.
19. J. Stewart, Positive definite functions and its generalizations, an historical survey, Rocky Mt. J. Math., 6:409-434, 1976.
20. H.G. Tillmann, Randvertailungen analytischer Funktionen und Distributionen, Math. Z., 59: 61-83, 1953.
21. V.S. Vladimirov, Methods of the Theory of Generalized Functions, Taylor \& Francis, London, 2002.

[^0]: *This research was funded by a grant (No. MIP-053/2012) from the Research Council of Lithuania.

