ISSN 1392-5113

Distributional boundary values of analytic functions and positive definite distributions^{*}

Saulius Norvidas

Institute of Mathematics and Informatics, Vilnius University Akademijos str. 4, LT-08663 Vilnius, Lithuania Mykolas Romeris University Ateities str. 20, LT-08303 Vilnius, Lithuania norvidas@gmail.com

Received: March 12, 2014 / Revised: October 20, 2014 / Published online: December 4, 2014

Abstract. We propose necessary and sufficient conditions for a distribution (generalized function) f of several variables to be positive definite. For this purpose, certain analytic extensions of f to tubular domains in complex space \mathbb{C}^n are studied. The main result is given in terms of the Cauchy transform and completely monotonic functions.

Keywords: positive definite functions, positive definite distributions, Cauchy transform, analytic representations of distributions, completely monotonic functions, convex cones, complex tubular domains, Plemelj formulas.

1 Introduction

A complex-valued function f on \mathbb{R}^n is said to be positive definite if

$$\sum_{j,k=1}^{n} f(x_j - x_k) c_j \overline{c}_k \ge 0 \tag{1}$$

for any finite sets $x_1, \ldots, x_n \in \mathbb{R}^n$ and for any $c_1, \ldots, c_n \in \mathbb{C}$. The Bochner theorem (see, e.g., [5, p. 293] and [2, p. 58]) states that continuous $f : \mathbb{R}^n \to \mathbb{C}$ is positive definite if and only if it is the Fourier transform of a positive finite measure μ on \mathbb{R}^n , i.e.,

$$f(x) = \hat{\mu}(x) = \int_{\mathbb{R}^n} e^{\mathbf{i}(x,t)} d\mu(t),$$

 $x \in \mathbb{R}^n$. Here and later, for z and λ in \mathbb{R}^n or in \mathbb{C}^n , we write $(z, \lambda) = z_1 \overline{\lambda_1} + \cdots + z_n \overline{\lambda_n}$.

© Vilnius University, 2015

^{*}This research was funded by a grant (No. MIP-053/2012) from the Research Council of Lithuania.

Definition (1) cannot carry over to distributions (to generalized functions). Therefore, it is convenient to replace (1) by

$$\int_{\mathbb{R}^n} f(x)(\varphi * \varphi^*)(x) \, \mathrm{d}x \ge 0, \quad \varphi^*(x) := \overline{\varphi(-x)}, \tag{2}$$

where φ runs over $L^1(\mathbb{R}^n)$ or φ runs over all continuous functions on \mathbb{R}^n with compact support. Here u * v denotes the convolution

$$u * v(x) = \int_{\mathbb{R}^n} u(x-t)v(t) \,\mathrm{d}t.$$

If f is continuous, then (2) is equivalent to (1) (see, e.g., [19, p. 420]). Property (2) can be taken as a definition for positive definite distributions. Let us recall some notion. We shall follow [21].

The Schwartz space $S(\mathbb{R}^n)$ consists of infinitely differentiable functions ω such that

$$\sup_{x\in\mathbb{R}^n,\,|u|\leqslant k}\left|\left(1+\|x\|_2\right)^s D^u_x\omega(x)\right|<\infty$$

for all $k, s \in \mathbb{N}$. Here u is a non-negative integer multi-index, $|u| = \sum_{j=1}^{n} u_j$,

$$\|x\|_2 = \sqrt{x_1^2 + \dots + x_n^2},$$

and $D_x^u = D_{x_1}^{u_1} \cdots D_{x_n}^{u_n}$, where

$$D_{x_j} = \frac{\partial}{\partial x_j}$$

The set of continuous linear functionals on $S(\mathbb{R}^n)$ is denoted by $S'(\mathbb{R}^n)$. Each $f \in S'(\mathbb{R}^n)$ is called a tempered distribution and the action of f on a test function $\omega \in S(\mathbb{R}^n)$ is written as (f, ω) .

Let $D(\mathbb{R}^n)$ be the subspace of $S(\mathbb{R}^n)$ consisting of functions with a compact support. The topology on $D(\mathbb{R}^n)$ is introduced as usual (see [21]). The elements of $D'(\mathbb{R}^n)$ are called distributions. Note that $D(\mathbb{R}^n) \subset S(\mathbb{R}^n)$ and $S'(\mathbb{R}^n) \subset D'(\mathbb{R}^n)$ are true in the sense of topological spaces.

A distribution $f \in D'(\mathbb{R}^n)$ is said to be positive definite if

$$(f, \varphi * \varphi^{\star}) \ge 0 \tag{3}$$

for all $\varphi \in D(\mathbb{R}^n)$. The Bochner–Schwartz theorem [21, p. 125] states that $f \in D'(\mathbb{R}^n)$ is positive definite if and only if f is the Fourier transform of a non-negative tempered measure on \mathbb{R}^n . Recall that a non-negative measure η on \mathbb{R}^n is said to be tempered if there exists $\alpha, 0 \leq \alpha < \infty$ such that

$$\int_{\mathbb{R}^n} \left(1 + \|x\|_2^2 \right)^{-\alpha} \mathrm{d}\eta(x) < \infty.$$

There are many characterizations of positive definite functions (see, e.g., [8, pp. 70–83]). As far as we known, it is perhaps surprising that there are almost no such results for positive definite distributions. We mention only [17], where attention has been paid to positive definite measures on \mathbb{R} , i.e., to distributions of order zero, with applications to a Volterra equation. See also [4] and [7].

Tillmann [20] proved that any $f \in S'(\mathbb{R})$ with a compact support has a decomposition into a positive and a negative distributional frequency parts

$$f = f_{(+)} - f_{(-)}.$$
 (4)

Here $f_{(+)}$ is the boundary value (on \mathbb{R}), in the sense of convergence in $S'(\mathbb{R})$, of certain $g_{(+)}$ that is analytic in the open upper half-plane $\mathbb{C}_{(+)}$. Similarly, $f_{(-)}$ is the boundary value of $g_{(-)}$ that is analytic in $\mathbb{C}_{(-)} = -\mathbb{C}_{(+)}$. Note that (4) is a distributional counterpart of the first Plemelj formula (see [12, p. 358], [1, pp. 155–157], and [13, pp. 4–5]). Then $\{g_{(-)}, g_{(+)}\}$ defines a sectionally analytic function on $\mathbb{C} \setminus \mathbb{R}$. It is called an analytic representation of $f \in S'(\mathbb{R})$. Note that an analytic representation of f is not unique and differs from other representations by at most an entire function.

Let $f \in S'(\mathbb{R})$. If, in addition, f has a compact support, then

$$K(f)(z) = \frac{1}{2\pi i} \left(f_t, \frac{1}{t-z} \right) := \frac{1}{2\pi i} \left(f(\cdot), \frac{1}{\cdot - z} \right)$$
(5)

is well defined for all $z \in \mathbb{C} \setminus \mathbb{R}$. The function K(f)(z) is called the Cauchy transform of f and gives an analytic representations for f (see, e.g., [3, p. 73]). Unfortunately, K(f)does not exist, in general, for all $f \in S'(\mathbb{R})$ (see [1, p. 156]). Even so, any $f \in S'(\mathbb{R})$ has a finite order ϱ_f (see [21, p. 77]). Therefore, if $m \ge \varrho_f$, then the following generalized Cauchy transform $(f, (z - t)^{-(m+1)})$ is well defined. We derived in [9] necessary and sufficient conditions for $f \in S'(\mathbb{R})$ to be a positive definite distribution in terms of this generalized transform and completely monotonic functions. Let us recall that a function $\theta : (a, b) \to \mathbb{R}, -\infty \le a < b \le \infty$, is said to be completely monotonic if it is infinitely differentiable and for its *n*th derivative functions $\theta^{(n)}$

$$(-1)^n \theta^{(n)}(y) \ge 0$$

for each $y \in (a, b)$ and all n = 0, 1, 2, ... Further, $\theta(y)$ is said to be absolutely monotonic on (a, b) if a $\theta(-y)$ is completely monotonic on (-b, -a).

Theorem 1. (See [9, *Thm*. 1.3].) Let $f \in S'(\mathbb{R})$ and let n be an integer such that $2n \ge \varrho_f$. Suppose $a_1, a_2 \in \mathbb{R}$ and $a_1 \ne a_2$. Let

$$\widetilde{K}(f,j)(z) = (-1)^n \frac{\mathrm{i}}{\pi} \left(\mathrm{e}^{\mathrm{i} a_j t} f_t, \frac{1}{(z-t)^{2n+1}} \right)$$
(6)

for $z \in \mathbb{C} \setminus \mathbb{R}$ and j = 1, 2. Then f is positive definite if and only if:

(i) y → K(f, j)(iy), j = 1, 2, are completely monotonic functions for y ∈ (0,∞);
(ii) y → -K(f, j)(iy), j = 1, 2, are absolutely monotonic functions for y ∈ (-∞, 0).

Although the Cauchy kernel $(t-z)^{-1} \notin S(\mathbb{R})$, it belongs to another Schwartz test functions spaces $D_{L_p}(\mathbb{R})$ for each 1 (we give a precise definition later). $Thus, the usual Cauchy representation (5) seems possible for all <math>f \in D'_{L_p}(\mathbb{R}) \subset S'(\mathbb{R})$ (see, e.g., [10, p. 457]). For this reason, we investigate in this paper positive definite distributions in $D'_{L_p}(\mathbb{R}^n)$.

Let $D_{L^p}(\mathbb{R}^n)$, $1 \leq p \leq \infty$ (see [15, pp. 199–205]), denote the space of complexvalued functions φ on \mathbb{R}^n such that $D_x^u \varphi(x) \in L_p(\mathbb{R}^n)$ for all non-negative integer multiindexes u. Obviously,

$$D(\mathbb{R}^n) \subset S(\mathbb{R}^n) \subset D_{L^p}(\mathbb{R}^n).$$
⁽⁷⁾

The topology of $D_{L^p}(\mathbb{R}^n)$ is given in terms of countably family of seminorms

$$\|\varphi\|_{p,u} = \left\|D_x^u\varphi(x)\right\|_{L^p(\mathbb{R}^n)}.$$
(8)

Since $\|\cdot\|_{p,0}$ is a norm, it follows that the family (8) defines on $D_{L^p}(\mathbb{R}^n)$ a sequentially complete locally convex topology.

Suppose $1 < p, q < \infty, 1/p+1/q = 1$. According to Schwartz [15, p. 200], we define $D'_{L^p}(\mathbb{R}^n)$ as the dual space of $D_{L^q}(\mathbb{R}^n)$. Note that if $\varphi \in D_{L^p}(\mathbb{R}^n)$ and $1 \leq p < \infty$, then

$$\lim_{x \to \infty} D_x^u \varphi(x) = 0 \tag{9}$$

for all u (see [15, p. 200]). Hence, convergence in $D(\mathbb{R}^n)$ or in $S(\mathbb{R}^n)$ implies convergence in $D_{L^p}(\mathbb{R}^n)$, $1 \leq p < \infty$. This means that (7) is also true in the sense of topological spaces. Hence, any $f \in D'_{L^p}(\mathbb{R}^n)$ can be identified with a distribution in $S'(\mathbb{R}^n)$. Thus, for any 1 , we get

$$D'_{L^p}(\mathbb{R}^n) \subset S'(\mathbb{R}^n) \subset D'(\mathbb{R}^n).$$
⁽¹⁰⁾

We wish to study the Cauchy transform of $f \in D'_{L^p}(\mathbb{R}^n)$ as an analytic representation of f. For this purpose, let us define at first the Cauchy kernel of several variables. This definition is related to a notion of convex cone. A set $\Gamma \subset \mathbb{R}^n$ is said to be a cone (with vertex at zero) if $x \in \Gamma$ implies $\alpha x \in \Gamma$ for all $\alpha > 0$. The dual cone of Γ is defined by

$$\Gamma^* = \{ t \in \mathbb{R}^n \colon (x, t) \ge 0 \text{ for all } x \in \Gamma \}.$$

 Γ^* is always closed convex cone and $(\Gamma^*)^* = \overline{\operatorname{ch} \Gamma}$, where $\operatorname{ch} \Gamma$ denotes the convex hull of Γ . We say that Γ is salient (acute) if $\overline{\operatorname{ch} \Gamma}$ does not contain any line (one-dimension subspace of \mathbb{R}^n). This is equivalent to the statement that the interior set of Γ^* is nonempty. A cone Γ is said to be regular if Γ is an open salient convex cone.

Let $\{\Lambda_i\}_1^m$ be a family of regular cones. We say that $\{\Lambda_i\}_1^m$ covers \mathbb{R}^n exactly if

$$\overline{\bigcup_{j=1}^{m} \Lambda_j} = \mathbb{R}^n \tag{11}$$

and the Lebesgue measure of $\overline{\Lambda_i} \cap \overline{\Lambda_j}$ is equal to zero whenever $i \neq j$. Any $\omega = (\omega_1, \ldots, \omega_n) \in \mathbb{R}^n$ whose entries ω_k are -1 or 1 defines the cone $Q_\omega = \{x \in \mathbb{R}^n :$

 $x_k\omega_k > 0$ for k = 1, ..., n. This cone Q_ω is called a quadrant in \mathbb{R}^n and the collection of all 2^n cones $\{Q_\omega\}_\omega$ covers \mathbb{R}^n exactly. Note that $Q_{(1,...,1)}$ is called the positive quadrant in \mathbb{R}^n and is denoted by \mathbb{R}^n_+ .

For an open cone Γ , the set $T_{\Gamma} = \mathbb{R}^n + i\Gamma = \{z = x + iy: x \in \mathbb{R}^n, y \in \Gamma\}$ is called a tube domain in \mathbb{C}^n . If Γ is regular, then the Cauchy kernel of Γ (or with respect to Γ) is defined as

$$K_{\Gamma}(z) = \int_{\Gamma^*} e^{i(z,t)} dt, \quad z \in T_{\Gamma}.$$
 (12)

 K_{Γ} is analytic on T_{Γ} [21, p. 143].

If f is a distribution on \mathbb{R}^n , then

$$K_{\Gamma}(f)(z) = \frac{1}{(2\pi)^n} \big(f(\cdot), K_{\Gamma}(z-\cdot) \big) = \frac{1}{(2\pi)^n} \big(f_t, K_{\Gamma}(z-t) \big), \quad z \in T_{\Gamma},$$
(13)

is called the Cauchy (or Cauchy–Bochner) transform of f. For example, if n = 1, then there are only two regular cones $(-\infty, 0)$ and $(0, \infty)$ in \mathbb{R} . If $\Gamma = (0, \infty)$, then we see that (13) coincides with the usual definition of the Cauchy transform (5).

The notion of completely monotonic functions on $(0, \infty)$ generalizes also to the case of several variables. Note that cones are the natural domain for these functions. Let Γ be a regular cone in \mathbb{R}^n . The directional derivation and the directional difference of a function $\theta: \Gamma \to \mathbb{C}$ along $a = (a_1, \ldots, a_n) \in \Gamma$ are defined as follows: $D_a \theta(y) = (a_1 D_{y_1} + \cdots + a_n D_{y_n})\theta(y)$, and $\Delta_a \theta(y) = \theta(y + a) - \theta(y)$, respectively. Now θ is called completely monotonic on Γ if

$$(-1)^k \Delta_{\gamma_1} \Delta_{\gamma_2} \dots \Delta_{\gamma_k} \theta(y) \ge 0, \quad k = 0, 1, \dots,$$

for each $y \in \Gamma$ and all $\gamma_1, \ldots, \gamma_k \in \Gamma$. These conditions are equivalent to that $\theta \in C^{\infty}(\Gamma)$ and

$$(-1)^k D_{\gamma_1} D_{\gamma_2} \dots D_{\gamma_k} \theta(y) \ge 0, \quad y \in \Gamma, \ \gamma_1, \dots, \gamma_k \in \Gamma, \ k = 0, 1, \dots$$
(14)

(see [6, p. 172]).

Now we are able to describe positive definite distributions $f \in D'_{L^p}(\mathbb{R}^n)$ in terms of their Cauchy transform $K_{\Gamma}(f)$. The following theorem is the main result of the present paper. To simplify the proofs, we will do here the case $D'_{L^2}(\mathbb{R}^n)$.

Theorem 2. Let $f \in D'_{L^2}(\mathbb{R}^n)$. Suppose that $\{\Gamma_j\}_1^m$ is a family of regular cones such that $\{\Gamma_j^*\}_1^m$ covers \mathbb{R}^n exactly. Then f is positive definite if and only if $y \to K_{\Gamma_j}(f)(iy)$, $y \in \Gamma_j$, is completely monotonic on Γ_j for all j = 1, 2, ..., m.

We conclude this section with a few examples of positive definite distributions in $D'_{L^p}(\mathbb{R}^n)$. As usual, a function v (or a measure μ) is identified with a distribution in $D'_{L^p}(\mathbb{R}^n)$ by the formula

$$(v,\varphi) = \int_{\mathbb{R}^n} v(x)\varphi(x) \,\mathrm{d}x \quad \left(\text{or} \quad (\mu,\varphi) = \int_{\mathbb{R}^n} \varphi(x) \,\mathrm{d}\mu(x) \right), \quad \varphi \in D_{L^p}(\mathbb{R}^n).$$
(15)

Now obviously, $L^p(\mathbb{R}^n) \subset D'_{L^p}(\mathbb{R}^n)$. Then any positive definite function $v \in L^p(\mathbb{R}^n)$ defines a regular positive definite distribution in $D'_{L^p}(\mathbb{R}^n)$. Further, there exist measures $\mu \in D'_{L^p}(\mathbb{R}^n)$, e.g., distributions of order zero, such that μ are positive definite. Indeed, using (9), we see that any finite measure μ on \mathbb{R}^n with non-negative Fourier transform $\hat{\mu}$ defines by (15) a positive definite distribution in $D'_{L^p}(\mathbb{R}^n)$ for each 1 . For $example, let <math>\mu$ be any finite discrete non-negative symmetric measure on \mathbb{R}^n such that

$$\mu(\{0\}) \ge \mu(\mathbb{R}^n \setminus \{0\}).$$

Obviously, $\hat{\mu} \ge 0$ on \mathbb{R}^n , so μ is positive definite. Finally, appropriate distributional derivatives of μ give explicit examples of positive definite distributions in $D'_{L^2}(\mathbb{R}^n)$ of any finite order.

2 Preliminaries and proofs

Let us start with some definitions and lemmas. We define the inverse Fourier transform of a finite measure μ as

$$\check{\mu}(\xi) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-i(\xi,t)} d\mu(t).$$
(16)

In the case if μ has a density φ in $L^1(\mathbb{R}^n)$ or in $S(\mathbb{R}^n)$, then the inverse transform is defined similarly. In addition, the inversion formula $\hat{\varphi} = \varphi$ holds for suitable φ .

We define the Fourier transform $\mathcal{F}[f]$ of $f \in S'(\mathbb{R}^n)$ by

$$\left(\mathcal{F}[f],\psi\right) = (f,\hat{\psi}),\tag{17}$$

where ψ is any element of $S(\mathbb{R}^n)$. We can modify slightly definition (3) in the following manner:

Lemma 1. $f \in S'(\mathbb{R}^n)$ is positive definite if and only if

$$(f,\omega) \ge 0 \tag{18}$$

for every positive definite $\omega \in S(\mathbb{R}^n)$.

Proof. If both $f \in S'(\mathbb{R}^n)$ and $\omega \in S(\mathbb{R}^n)$ are positive definite, then using the Bochner theorem in $S(\mathbb{R}^n)$ and in $S'(\mathbb{R}^n)$, respectively, we get that $\mathcal{F}[f]$ is a nonnegative tempered measure and that $\check{\omega}$ is a nonnegative function in $S(\mathbb{R}^n)$. Hence, $(\mathcal{F}[f], \check{\omega})$ may be defined as usual integral (15). Then (17) implies that $(f, \omega) = (\mathcal{F}[f], \check{\omega}) \ge 0$. On the other hand, if $\varphi \in S(\mathbb{R}^n)$, then the Fourier transform of $\varphi * \varphi^*$ is equal to $|\hat{\varphi}|^2$. Hence, $\varphi * \varphi^*$ is positive definite. If now $f \in S'(\mathbb{R}^n)$ satisfies (18) for any positive definite $\omega \in S(\mathbb{R}^n)$, then we can set $\omega = \varphi * \varphi^*$. Thus, (3) holds.

Remark 1. Since $D(\mathbb{R}^n)$ is dense in $S(\mathbb{R}^n)$, it follows that $f \in S'(\mathbb{R}^n)$ is positive definite if and only if (18) is fulfilled for all $\omega \in D(\mathbb{R}^n)$.

Lemma 2. Let $\varphi \in D_{L^2}(\mathbb{R}^n)$. If φ is positive definite, then there exists a sequence (ψ_k) of positive definite $\psi_k \in S(\mathbb{R}^n)$, k = 1, 2, ..., such that $\lim_{k \to \infty} \psi_k = \varphi$ in $D_{L^2}(\mathbb{R}^n)$.

Proof. Take any non-negative $\sigma \in S(\mathbb{R}^n)$ supported on $[-1,1]^n \subset \mathbb{R}^n$ and such that

$$\int_{\mathbb{R}^n} \sigma(x) \, \mathrm{d}x = 1. \tag{19}$$

For a > 0, we define $\sigma_a(x)$ to be $a^n \sigma(ax)$. Then $\hat{\sigma}_a$ is positive definite. Set

$$\psi_k(x) = \hat{\sigma}_k(x)\varphi(x), \tag{20}$$

 $k = 1, 2, \ldots$ The product of positive definite functions is positive definite. Hence, ψ_k is positive definite. Using that $\hat{\sigma}_a \in S(\mathbb{R}^n)$ and that $\varphi \in D_{L^2}(\mathbb{R}^n)$ satisfies (9), we see that $\psi_k \in S(\mathbb{R}^n)$, $k = 1, 2, \ldots$

Now we shall show that $\lim_{k\to\infty} \psi_k = \varphi$ in $D_{L^2}(\mathbb{R}^n)$. Recall that $(\psi_k), \psi_k \in D_{L^2}(\mathbb{R}^n)$, converges to $\varphi \in D_{L^2}(\mathbb{R}^n)$ as $k \to \infty$ if

$$\lim_{k \to \infty} \left\| D_x^u(\psi_k - \varphi) \right\|_{L^2(\mathbb{R}^n)} = 0$$
(21)

for every nonnegative multi-index $u \in \mathbb{R}^n$. To do this, first we will estimate the function $1 - \hat{\sigma}_k(x)$ and its derivatives.

Let $\varepsilon > 0$. The definition of σ_k , conjugate with (19), implies that

$$1 - \hat{\sigma}_k(x) = \hat{\sigma}(0) - \hat{\sigma}\left(\frac{x}{k}\right).$$

Since $\hat{\sigma}$ is a characteristic function, it follows that

$$\left|1 - \hat{\sigma}_k(x)\right| \leq 2 \quad \text{for all } x \in \mathbb{R}^n.$$
 (22)

Moreover, for any $0 < M < \infty$, there exists $0 < K = K(M, \varepsilon) < \infty$ such that

$$|1 - \hat{\sigma}_k(x)| \leq \varepsilon \quad \text{for all } k > K, \ x \in \mathbb{R}^n, \ ||x||_2 \leq M.$$
 (23)

Let s be a non-negative multi-index such that $|s| \ge 1$. Then by (19), we have

$$\left| D_x^s \left(1 - \hat{\sigma}_k(x) \right) \right| = \left| D_x^s \int_{\mathbb{R}^n} \sigma(t) \mathrm{e}^{\mathrm{i}(x,t)/k} \, \mathrm{d}t \right| \leqslant \frac{1}{k^{|s|}} \leqslant \frac{1}{k} \quad \text{for all } x \in \mathbb{R}^n.$$
(24)

If $u \in \mathbb{R}^n$ is an arbitrary non-negative multi-index, then it is easily seen that there exists a finite collection $V = \{v\}$ of not necessarily different nonnegative multi-indexes v such that

$$D_x^u(\varphi(x) - \psi_k(x)) = D_x^u(\varphi(x)[1 - \hat{\sigma}_k(x)])$$

= $(1 - \hat{\sigma}_k(x))D_x^u\varphi(x) + \sum_{\substack{v \in V \\ |u-v|>0}} (D_x^v\varphi(x)D_x^{u-v}[1 - \hat{\sigma}_k(x)]).$ (25)

Since $\varphi \in D_{L^2}(\mathbb{R}^n)$, we have that for $\varepsilon > 0$, there exists $0 < M = M(\varepsilon) < \infty$ such that

$$\left(\int_{\|x\|_2 \ge M} \left| D_x^s \varphi(x) \right|^2 \mathrm{d}x \right)^{1/2} < \varepsilon \quad \text{for all } s \in \{u, V\}.$$
(26)

Now fix any multi-index $u \in \mathbb{R}^n$ and any $\varepsilon > 0$. Then take $0 < M = M(\varepsilon) < \infty$ so that (26) holds. Finally, choose $0 < K = K(M, \varepsilon) < \infty$ such that $K > 1/\varepsilon$ and (23) holds. If k > K, then combining (25) with (22), (23), (24), and (26), we have

$$\begin{split} \left\| D_{x}^{u}(\varphi - \psi_{k}) \right\|_{L^{2}(\mathbb{R}^{n})} &\leq \left\| (1 - \hat{\sigma}_{k}) D_{x}^{u} \varphi \right\|_{L^{2}(\mathbb{R}^{n})} + \sum_{\substack{v \in V \\ |u - v| > 0}} \left\| D_{x}^{v} \varphi D_{x}^{u - v} [1 - \hat{\sigma}_{k}] \right\|_{L^{2}(\mathbb{R}^{n})} \\ &\leq \left(\int_{\|x\|_{2} \leq M} \left| (1 - \hat{\sigma}_{k}) \right|^{2} \left| D_{x}^{u} \varphi(x) \right|^{2} \mathrm{d}x \right)^{1/2} + \left(\int_{\|x\|_{2} \geq M} \left| (1 - \hat{\sigma}_{k}) \right|^{2} \left| D_{x}^{u} \varphi(x) \right|^{2} \mathrm{d}x \right)^{1/2} \\ &+ \frac{1}{k} \sum_{\substack{v \in V \\ |u - v| > 0}} \left\| D_{x}^{v} \varphi \right\|_{L^{2}(\mathbb{R}^{n})} \\ &\leq \varepsilon \left(\left\| D_{x}^{u} \varphi \right\|_{L^{2}(\mathbb{R}^{n})} + 2 + \sum_{\substack{v \in V \\ |u - v| > 0}} \left\| D_{x}^{v} \varphi \right\|_{L^{2}(\mathbb{R}^{n})} \right). \end{split}$$

$$(27)$$

Since V is finite and depends only on v, (27) implies that $||D_x^u(\varphi - \psi_k)||_{L^2(\mathbb{R}^n)} \leq Const(u)\varepsilon$ for all k > K. This proves (21) and Lemma 2.

We recall the definition of the Laplace transform. Suppose that Λ is a closed convex salient cone in \mathbb{R}^n . Let $S'(\Lambda)$ denote the set of all $f \in S'(\mathbb{R}^n)$ supported on Λ . Then $S'(\Lambda)$ is simultaneously a closed subspace of $S'(\mathbb{R}^n)$ and a commutative convolution algebra [21, p. 64]. For $y \in \mathbb{R}^n$, the Laplace transform of $F \in S'(\Lambda)$ is defined by

$$L_y(F)(x) = \mathcal{F}[F(\cdot)e^{-(y,\cdot)}](x) = \mathcal{F}_{\xi}[F(\xi)e^{-(y,\xi)}](x), \quad x \in \mathbb{R}^n.$$
(28)

If $y \in \operatorname{int} \Lambda^*$, then $F(\cdot)e^{-(y,\cdot)}$ belongs to $S'(\mathbb{R}^n)$ (see, e.g., [21, p. 127]). Hence, $L_y(F)(x)$ is well defined for all $y \in \operatorname{int} \Lambda^*$. Further, $L_y(F)(x)$ is analytic on the tube domain $T_{\operatorname{int} \Lambda^*}$ as a function of z = x + iy, and

$$\frac{\partial^{|u|}}{\partial z_1^{u_1} \dots \partial z_n^{u_n}} L_y(F)(x) = \mathbf{i}^{|u|} \mathcal{F}_{\xi} \big[\big(\xi_1^{u_1} \dots \xi_n^{u_n} \big) F(\xi) \mathbf{e}^{-(y,\xi)} \big](x)$$
(29)

for any non-negative integer multi-index $u = (u_1, \ldots, u_n)$ [21, p. 128].

Now we briefly touch upon the problem whether the Cauchy transform is well defined on $D'_{L^2}(\mathbb{R}^n)$. The following simple lemma contains a precise statement. For completeness, we also give its proof.

Lemma 3. Let Γ be a regular cone in \mathbb{R}^n . If $f \in D'_{L^2}(\mathbb{R}^n)$, then the Cauchy transform (28) is well defined on T_{Γ} . Moreover, it is analytic on T_{Γ} and

$$\frac{\partial^{|u|}}{\partial z_1^{u_1} \dots \partial z_n^{u_n}} K_{\Gamma}(f)(z) = \frac{1}{(2\pi)^n} \left(f(\cdot), \frac{\partial^{|u|}}{\partial z_1^{u_1} \dots \partial z_n^{u_n}} K_{\Gamma}(z-\cdot) \right), \quad z \in T_{\Gamma}, \quad (30)$$

for each non-negative multi-index $u = (u_1, \ldots, u_n)$.

Proof. Fix any $y \in \Gamma$ and set

$$E_{y,u}(\xi) = \xi^{u_1} \cdots \xi^{u_n} e^{-(y,\xi)},$$
(31)

 $\xi \in \Gamma^*$. Since Γ is open, then it is easy to see that there exists $\delta = \delta(y) > 0$ such that $(y,\xi) \ge \delta \|\xi\|_2$ for all $\xi \in \Gamma^*$ (see also [18, p. 104]). Then

$$|E_{y,u}(\xi)| \leq |\xi_1|^{u_1} \cdots |\xi|^{u_n} e^{-\delta ||\xi||_2} \leq \prod_{k=1}^n (|\xi_k|^{u_k} e^{-\delta |\xi_k|})$$

for $\xi \in \Gamma^*$. Let χ_{Γ^*} denote the indicator function of Γ^* . Then we see that

$$E_{y,u}(\xi)\chi_{\Gamma^*}(\xi) \in L^s(\mathbb{R}^n) \quad \text{for all } 1 \leqslant s \leqslant \infty.$$
(32)

Clearly, $\chi_{\Gamma^*} \in S'(\mathbb{R}^n)$. Hence, if we take in (28) $F = \chi_{\Gamma^*}$, then have for any $t \in \mathbb{R}^n$ that

$$L_{y}(\chi_{\Gamma^{*}})(x-t) = \mathcal{F}_{\xi}[\chi_{\Gamma^{*}}(\xi)e^{-(y,\xi)}](x-t) = \mathcal{F}_{\xi}[\chi_{\Gamma^{*}}(\xi)E_{y,0}(\xi)](x-t)$$
$$= \int_{\mathbb{R}^{n}} \chi_{\Gamma^{*}}(\xi)E_{y,0}(\xi)e^{i(x-t)} d\xi = \int_{\Gamma^{*}} e^{i(z-t)} d\xi = K_{\Gamma}(z-t), \quad (33)$$

where $z = x + iy \in T_{\Gamma}$. Now (32), together with the Plancherel theorem in $L^2(\mathbb{R}^n)$, implies that for any $z \in T_{\Gamma}$, the function $t \to K_{\Gamma}(z-t)$ belongs to $L^2(\mathbb{R}^n)$. Using (31) and (32) with a general non-negative multi-index $u = (u_1, \ldots, u_n)$, we find in a similar way that

$$D_t^u K_{\Gamma}(z-t) = (-\mathbf{i})^{|u|} \int_{\mathbb{R}^n} \chi_{\Gamma^*}(\xi) E_{y,u}(\xi) \mathrm{e}^{\mathbf{i}(x-t)} \,\mathrm{d}\xi,$$

 $z = x + iy \in T_{\Gamma}$. Hence, again by (32), we obtain that $t \to D_t^u K_{\Gamma}(z - t)$ belongs to $L^2(\mathbb{R}^n)$ for all non-negative multi-indexes u, e.g., $t \to K_{\Gamma}(z - t)$ belongs to $D_{L^2}(\mathbb{R}^n)$. Thus, (13) is well defined on $D'_{L^2}(\mathbb{R}^n)$ for all $z \in T_{\Gamma}$. Finally, using (29) and properties (given above) of the Laplace transform (28), we have that $K_{\Gamma}(f)(z)$ is analytic on T_{Γ} and (30) is fulfilled. This finishes the proof of Lemma 3.

We are now in a position to prove the main theorem. For the sake of clarity, we divide the proof into two parts.

Proof of Theorem 2 (Necessity). Let $f \in D'_{L^2}(\mathbb{R}^n)$ and suppose that Γ is an arbitrary regular cone in \mathbb{R}^n . By Lemma 3, the Cauchy transform (13) is well defined and (30) holds for $z \in T_{\Gamma}$. In particular, if z = iy with $y \in \Gamma$, then

$$\frac{\partial^{|u|}}{\partial y_1^{u_1} \dots \partial y_n^{u_n}} K_{\Gamma}(f)(\mathrm{i}y) = \frac{1}{(2\pi)^n} \left(f(\cdot), \frac{\partial^{|u|}}{\partial y_1^{u_1} \dots \partial y_n^{u_n}} K_{\Gamma}(\mathrm{i}y - \cdot) \right)$$
(34)

for each multi-index u. Combining (29) and (33), we get

$$\frac{\partial^{|u|}}{\partial y_1^{u_1} \dots \partial y_n^{u_n}} K_{\Gamma}(\mathbf{i}y) = \mathbf{i}^{2|u|} \int\limits_{\Gamma^*} \left(\xi_1^{u_1} \dots \xi_n^{u_n}\right) \mathrm{e}^{-(y, \xi)} \,\mathrm{d}\xi.$$
(35)

In particular, for the directional derivative $D_{\gamma}K_{\Gamma}(iy-t)$ with $\gamma \in \Gamma$, we have

$$D_{\gamma}K_{\Gamma}(\mathbf{i}y-t) = \sum_{s=1}^{n} \gamma_{s} \frac{\partial}{\partial y_{s}} K_{\Gamma}(\mathbf{i}y-t) = (\gamma, D_{y})K_{\Gamma}(\mathbf{i}y-t)$$
$$= -\int_{\Gamma^{*}} (\gamma, \xi) \mathrm{e}^{-(y,\xi)} \mathrm{e}^{-\mathbf{i}(t,\xi)} \,\mathrm{d}\xi.$$
(36)

Iterating (36), we obtain

$$D_{\gamma_1} D_{\gamma_2} \dots D_{\gamma_k} K_{\Gamma}(iy - t) = (-1)^k \int_{\Gamma^*} \prod_{j=1}^k (\gamma_j, \xi) e^{-(y,\xi)} e^{-i(t,\xi)} d\xi$$
(37)

for any choice $\gamma_1, \ldots, \gamma_k \in \Gamma$.

For fixed y and γ in Γ , set

$$H(\xi) := (\gamma, \xi) \mathrm{e}^{-(y,\xi)} \chi_{\Gamma^*}(\xi),$$

 $\xi \in \Gamma^*$. Obviously, H coincides on Γ^* with a finite linear combination of functions (31) with appropriate quotients. This, conjugate with (42), implies that H is integrable on \mathbb{R}^n . Moreover, (γ, ξ) is nonnegative for $\xi \in \Gamma^*$. Thus, applying the Bochner theorem (see [5, p. 293] and [12, p. 125]) to the right-hand side of (37), we see that for any fixed $y \in \Gamma$ and all $\gamma_1, \ldots, \gamma_k \in \Gamma$,

$$(-1)^k D_{\gamma_1} D_{\gamma_2} \dots D_{\gamma_k} K_{\Gamma}(\mathbf{i}y - t)$$
(38)

is positive definite as a function of $t \in \mathbb{R}^n$.

Suppose, in addition, that $f \in D'_{L^2}(\mathbb{R}^n)$ is positive definite. Then by Lemmas 1 and 2, we have

$$(-1)^k \left(D_{\gamma_1} D_{\gamma_2} \dots D_{\gamma_k} K_{\Gamma}(\mathbf{i} y - \cdot), f(\cdot) \right) \ge 0$$

for $y \in \Gamma$. Combining this with (34), we see that

$$(-1)^k D_{\gamma_1} D_{\gamma_2} \dots D_{\gamma_k} K_{\Gamma}(f)(\mathbf{i}y) \ge 0$$

for all $y \in \Gamma$ and each $\gamma_1, \ldots, \gamma_k \in \Gamma$. Finally, this shows that $y \to K_{\Gamma}(f)(iy)$ is a completely monotonic function on Γ . Necessity of Theorem 2 is proved.

Lemma 4. Suppose that $\{\Gamma_k\}_1^m$ is a family of regular cones such that $\{\Gamma_k^*\}_1^m$ covers exactly \mathbb{R}^n . Let $y_k \in \Gamma_k$, k = 1, ..., m. If $\omega \in D(\mathbb{R}^n)$, then

$$\lim_{\max \|y_k\|_2 \to 0} \sum_{k=1}^m K_{\Gamma_k}(\omega)(x + \mathrm{i}y_k) = \omega(x)$$
(39)

in the topology of $D'_{L^2}(\mathbb{R}^n)$.

Proof. Obviously, each $\omega \in D(\mathbb{R}^n)$ defines by

$$(\omega, \varphi) = \int_{\mathbb{R}^n} \omega(x) \varphi(x) \, \mathrm{d}x,$$

 $\varphi \in D_{L^2}(\mathbb{R}^n)$, a distribution in $D'_{L^2}(\mathbb{R}^n)$. Therefore, if Γ is a regular cone in \mathbb{R}^n , then

$$K_{\Gamma}(\omega)(z) = \frac{1}{(2\pi)^n} \left(K_{\Gamma}(z-\cdot), \omega(\cdot) \right) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} K_{\Gamma}(z-\alpha) \omega(\alpha) \, \mathrm{d}\alpha, \qquad (40)$$

where the integral converges absolutely for $z \in T_{\Gamma}$. Since

$$K_{\Gamma}(z-\alpha) = \int_{\Gamma^*} e^{i(x,t)} e^{-i(x,t)} e^{-i(\alpha,t)} dt$$

and this integral converges also absolutely for $\alpha \in \mathbb{R}^n$ and $z \in T_{\Gamma}$, it follows by the Fubini theorem that

$$K_{\Gamma}(\omega)(z) = \frac{1}{(2\pi)^n} \int_{\Gamma^*} \left[\int_{\mathbb{R}^n} e^{-i(\alpha,t)} \omega(\alpha) \, d\alpha \right] e^{i(x,t)} e^{-(y,t)} \, dt$$
$$= \int_{\Gamma^*} \check{\omega}(t) e^{i(x,t)} e^{-(y,t)} \, dt = \int_{\Gamma^*} \check{\omega}(t) e^{i(x,t)} e^{-|(y,t)|} \, dt$$
$$= \int_{\mathbb{R}^n} \check{\omega}(t) e^{i(x,t)} e^{-|(y,t)|} \chi_{\Gamma^*}(t) \, dt.$$
(41)

For $y_k \in \Gamma_k, k = 1, ..., m, Y = \{y_1, ..., y_m\}$, set

$$\Omega_Y(t) = \sum_{k=1}^m \chi_{\Gamma_k^*}(t) e^{-|(y_k, t)|},$$
(42)

 $t \in \mathbb{R}^n$. If u is a non-negative integer multi-index, then using (41), we get

$$D_x^u \left(\sum_{k=1}^m K_{\Gamma_k}(\omega)(x+\mathrm{i}y_k) - \omega(x) \right) = D_x^u \left(\int_{\mathbb{R}^n} \left[\Omega_Y(t) - 1 \right] \check{\omega}(t) \mathrm{e}^{\mathrm{i}(x,t)} \, \mathrm{d}t \right)$$
$$= \mathrm{i}^{|u|} \int_{\mathbb{R}^n} \left[\Omega_Y(t) - 1 \right] t_1^{u_1} \cdots t_n^{u_n} \check{\omega}(t) \mathrm{e}^{\mathrm{i}(x,t)} \, \mathrm{d}t$$

for $x \in \mathbb{R}^n$. Here using the Parseval equality for Fourier transform, we have

$$\left\| D_x^u \left(\sum_{k=1}^m K_{\Gamma_k}(\omega)(x + iy_k) - \omega(x) \right) \right\|_{L^2(\mathbb{R}^n)}^2$$

= $(2\pi)^n \left\| \left(\Omega_Y(t) - 1 \right) t_1^{u_1} \cdots t_n^{u_n} \check{\omega}(t) \right\|_{L^2(\mathbb{R}^n)}^2.$ (43)

Since $\{\Gamma_k^*\}_1^m$ covers exactly \mathbb{R}^n , it follows easily from (42) that

$$\Omega_Y(t) = 1 + \theta(t) + \sum_{k=1}^m \left(e^{-(y_k, t)} - 1 \right) \chi_{\Gamma_k^*}(t),$$

where $\theta(t) = 0$ almost everywhere on \mathbb{R}^n and

$$1 - \sum_{k=1}^{m} e^{-|(y_k,t)|} \to 0$$
, as $\max_k ||y_k||_2 \to 0$,

uniformly on compact subsets of \mathbb{R}^n . On the other hand, $\check{\omega}(t)$ as well as $t_1^{u_1} \cdots t_n^{u_n} \check{\omega}(t)$ belong to $S(\mathbb{R}^n)$. Thus, the norm in the right-hand side of (43) tends to zero as $\max_k \|y_k\|_2 \to 0$. This proves (39) and the lemma.

Proof of Theorem 2 (Sufficiency). Suppose that Γ is any regular cone such that $y \to K_{\Gamma}(f)(iy)$ is completely monotonic on Γ . Fix $\gamma \in \Gamma$. Since Γ is convex, it follows that Γ is also an additive semigroup. Because $\gamma + \overline{\Gamma} \subset \Gamma$, the function

$$F_{\gamma}(y) = K_{\Gamma}(f) \big(i(\gamma + y) \big) \tag{44}$$

is well defined for all $y \in \overline{\Gamma}$. Moreover, F_{γ} is continuous and completely monotonic on $\overline{\Gamma}$. Then (see [6, p. 172] and [2, p. 89]) there exists a non-negative measure μ_{γ} on $(\overline{\Gamma})^*$ such that

$$F_{\gamma}(y) = \int_{(\overline{\Gamma})^*} e^{-(y,\zeta)} d\mu_{\gamma}(\zeta)$$

for all $y \in \overline{\Gamma}$. Clearly, $(\overline{\Gamma})^* = \Gamma^*$. Since F_{γ} is continuous on $\overline{\Gamma}$, we see that μ_{γ} is a finite measure on Γ^* . Therefore, F_{γ} can be continued analytically on the tube domain T_{Γ} as the Laplace transform of μ_{γ} , i.e., for $z = x + iy \in T_{\Gamma}$,

$$F_{\gamma}(z) = \int_{\Gamma^*} e^{i(z,\zeta)} d\mu_{\gamma}(\zeta).$$
(45)

By (44), $F_{\gamma}(z)$ coincides with $K_{\Gamma}(f)(i\gamma + z)$ for $z = iy, y \in \overline{\Gamma}$. We claim that this is true on the whole tube domain T_{Γ} . To this end, we use the following identity theorem (see e.g., [16, p. 21]): if h is an analytic function on an open domain D on \mathbb{C}^n such that h vanishes on a real neighborhood of a point $z_0 = x_0 + iy_0 \in D$, i.e., h vanishes on

$$\{z = x + iy \in D: |x - x_0| < r, y = y_0\},\$$

then $h \equiv 0$ on D. Of course, this statement is valid also in the case if we replace this real neighborhood by an imaginary neighborhood of z_0 , i.e., on the set $\{z = x + iy \in D: x = x_0, |y - y_0| < r\}$. Take any $z_0 = iy_0 \in T_{\Gamma}$. By (45), analytic functions $F_{\gamma}(z)$ and $K_{\Gamma}(f)(i\gamma + z)$ coincide on any image neighborhood $I_{z_0} = \{z = x + iy \in \mathbb{C}^n: |y - y_0| < r, x = x_0\}$ of z_0 such that $I_{z_0} \subset T_{\Gamma}$. This yields the claim that

$$K_{\Gamma}(f)(\mathrm{i}\gamma+z) = F_{\gamma}(z) = \int_{\Gamma^*} \mathrm{e}^{\mathrm{i}(z,\zeta)} \,\mathrm{d}\mu_{\gamma}(\zeta) = \int_{\Gamma^*} \mathrm{e}^{\mathrm{i}(x,\zeta)} \mathrm{e}^{-(y,\zeta)} \,\mathrm{d}\mu_{\gamma}(\zeta) \tag{46}$$

for $z = x + iy \in T_{\Gamma}$.

Using the representation (46) and having the Bochner theorem, we see that for any $y \in \Gamma$, the function $x \to F_{\gamma}(x + iy)$ is continuous and positive definite on \mathbb{R}^n . This is also true for all $\gamma \in \Gamma$. Thus, since Γ is an open cone and $F_{\gamma}(z) = K_{\Gamma}(f)(i\gamma + z)$ on T_{Γ} , we obtain that for any fixed $y \in \Gamma$, the function

$$x \to K_{\Gamma}(f)(x + \mathrm{i}y)$$
 (47)

is continuous and positive definite for $x \in \mathbb{R}^n$.

Suppose now that $\{\Gamma_k\}_1^m$ is a family of regular cones such that $\{\Gamma_k^*\}_1^m$ covers \mathbb{R}^n exactly. Next, take any collection $y_k \in \Gamma_k$ for $k = 1, \ldots, m$. Let $\omega \in D(\mathbb{R}^n)$. Since f is a linear functional on $D_{L^2}(\mathbb{R}^n)$, we get

$$\int_{\mathbb{R}^n} \left(\sum_{k=1}^m K_{\Gamma_k}(f)(x+\mathrm{i}y_k) \right) \omega(x) \, \mathrm{d}x$$

$$= \frac{1}{(2\pi)^n} \sum_{k=1}^m \int_{\mathbb{R}^n} \left(f(\cdot), \omega(x) K_{\Gamma_k}(x+\mathrm{i}y_k-\cdot) \right) \, \mathrm{d}x$$

$$= \frac{1}{(2\pi)^n} \sum_{k=1}^m \int_{\mathbb{R}^n} \left(f_t, \omega(x) K_{\Gamma_k}(x+\mathrm{i}y_k-t) \right) \, \mathrm{d}x$$

$$= \frac{1}{(2\pi)^n} \sum_{k=1}^m \int_{\mathbb{R}^n} f_t \left(\omega(x) K_{\Gamma_k}(x+\mathrm{i}y_k-t) \right) \, \mathrm{d}x.$$
(48)

We claim that

$$\sum_{k=1}^{m} \int_{\mathbb{R}^n} f_t \left(\omega(x) K_{\Gamma_k}(x + \mathrm{i}y_k - t) \right) \mathrm{d}x = \sum_{k=1}^{m} f_t \left(\int_{\mathbb{R}^n} \omega(x) K_{\Gamma_k}(x + \mathrm{i}y_k - t) \, \mathrm{d}x \right).$$
(49)

To verify the claim, let us recall from the proof of Lemma 3 that for fixed $x \in \mathbb{R}^n$ and $y_k \in \Gamma_k$, the map

$$t \to K_{\Gamma_k}(x + \mathrm{i}y_k - t)$$
 (50)

is an element of $D_{L^2}(\mathbb{R}^n)$. Therefore, the map defined by

$$\Psi_{k,t}(x) := \omega(x) K_{\Gamma_k}(x + iy_k - t), \tag{51}$$

 $x \in \operatorname{supp}(\omega)$, is a vector-valued function

$$\Psi_{k,t}$$
: supp $(\omega) \to D_{L^2}(\mathbb{R}^n)$.

Therefore, (49) is equivalent to the condition that these functions $\Psi_{k,t}$ are Pettis integrable over $\operatorname{supp}(\omega)$ (see, e.g., [11, p. 164]). Since $D_{L^2}(\mathbb{R}^n)$ is a Frechet space, $\operatorname{supp}(\omega)$ is a compact subset of \mathbb{R}^n , and the dual space $D'_{L^2}(\mathbb{R}^n)$ separates $D_{L^2}(\mathbb{R}^n)$ elements (indeed, it is easy to see that already regular distributions from $L^2(\mathbb{R}^n)$ separate points of $D_{L^2}(\mathbb{R}^n)$), it follows (see, e.g., [14, pp. 77–78]) that if $\Psi_{k,t}$ is continuous, then

$$\int_{\mathbb{R}^n} f(\omega(x)K_{\Gamma_k}(x+\mathrm{i}y_k-t))\,\mathrm{d}x = \int_{\mathbb{R}^n} f(\Psi_{k,t}(x))\,\mathrm{d}x = f\left(\int_{\mathbb{R}^n} \Psi_{k,t}(x)\,\mathrm{d}x\right)$$
$$= f\left(\int_{\mathbb{R}^n} \omega(x)K_{\Gamma_k}(x+\mathrm{i}y_k-t)\,\mathrm{d}x\right)$$
(52)

for all $f \in D'_{L^2}(\mathbb{R}^n)$. Now, by comparing (49) and (52), we see that it remains to show that $\Psi_{k,t}$, $k = 1, \ldots, m$, are continuous. This means that for each $x \in \text{supp}(\omega)$ and any non-negative multi-index u, it should be true that

$$\begin{split} \lim_{\varepsilon \to 0} \left\| D_t^u \left(\Psi_{k,t}(x+\varepsilon) - \Psi_{k,t}(x) \right) \right\|_{L^2(\mathbb{R}^n)} \\ &= \lim_{\varepsilon \to 0} \left(\int_{\mathbb{R}^n} \left| D_t^u \left[\omega(x+\varepsilon) K_{\Gamma_k}(x+\varepsilon+\mathrm{i}y_k-t) - \omega(x) K_{\Gamma_k}(x+\mathrm{i}y_k-t) \right] \right|^2 \mathrm{d}t \right)^{1/2} \\ &= 0. \end{split}$$
(53)

Obviously,

$$\begin{split} \left\| D_{t}^{u} \left(\Psi_{k,t}(x+\varepsilon) - \Psi_{k,t}(x) \right) \right\|_{L^{2}(\mathbb{R}^{n})} \\ &\leqslant \max_{x \in \mathbb{R}^{n}} \left| \omega(x+\varepsilon) - \omega(x) \right| \left(\int_{\mathbb{R}^{n}} \left| D_{t}^{u} K_{\Gamma_{k}}(x+\mathrm{i}y_{k}-t) \right|^{2} \mathrm{d}t \right)^{1/2} + \max_{x \in \mathbb{R}^{n}} \left| \omega(x+\varepsilon) \right| \\ &\times \left(\int_{\mathbb{R}^{n}} \left| D_{t}^{u} K_{\Gamma_{k}}(x+\mathrm{i}\varepsilon+\mathrm{i}y_{k}-t) - D_{t}^{u} K_{\Gamma_{k}}(x+\mathrm{i}y_{k}-t) \right|^{2} \mathrm{d}t \right)^{1/2}. \end{split}$$
(54)

Since all functions (50) and their derivatives in t are in $L^2(\mathbb{R}^n)$, it follows that they are L^2 -continuous. This means that if a function g belongs to $L^2(\mathbb{R}^n)$, then

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} \left| g(v + \varepsilon) - g(v) \right|^2 \mathrm{d}v = 0$$

Then (53) is an immediate consequence of (54). Thus, our claim (49) is proved.

S. Norvidas

By (50), we have

$$\frac{1}{(2\pi)^n} \sum_{k=1}^m \int_{\mathbb{R}^n} K_{\Gamma_k}(x + iy_k - t)\omega(x) \, \mathrm{d}x = \sum_{k=1}^m K_{\Gamma_k}(\omega)(-t + iy_k),$$
(55)

 $t \in \mathbb{R}^n$. This, together with (48) and (49), gives that

$$\int_{\mathbb{R}^n} \left(\sum_{k=1}^m K_{\Gamma_k}(f)(-x + \mathrm{i}y_k) \right) \omega(x) \, \mathrm{d}x$$
$$= \frac{1}{(2\pi)^n} f_t \left(\sum_{k=1}^m \int_{\mathbb{R}^n} \omega(x) K_{\Gamma_k}(-x + \mathrm{i}y_k - t) \, \mathrm{d}x \right)$$
$$= f_t \left(\sum_{k=1}^m K_{\Gamma_k}(\omega)(-t + \mathrm{i}y_k) \right)$$
(56)

Clearly, a function $\zeta : \mathbb{R}^n \to \mathbb{C}$ is positive definite if and only if $\zeta_{(-)}(x) := \zeta(-x)$, $x \in \mathbb{R}^n$, is positive definite. Since (47) is continuous and positive definite, it follows that

$$x \to \sum_{k=1}^m K_{\Gamma_k}(f)(-x + \mathrm{i}y_k)$$

is also continuous and positive definite for $x \in \mathbb{R}^n$. Suppose now, in addition, that $\omega \in D(\mathbb{R}^n)$ is positive definite. Then by Remark 1, we have

$$\int_{\mathbb{R}^n} \left(\sum_{k=1}^m K_{\Gamma_k}(f)(-x + \mathrm{i} y_k) \right) \omega(x) \, \mathrm{d} x \ge 0.$$

This, conjugate with (56), implies that

$$f_t\left(\sum_{k=1}^m K_{\Gamma_k}(\omega)(-t+\mathrm{i} y_k)\right) \ge 0.$$

Thus, by Lemma 4, we have

$$(f,\omega_{(-)}) \ge 0.$$

Since ω was an arbitrary positive definite function in $D(\mathbb{R}^n)$, it follows from Remark 1 that f is a positive definite distribution. This completes the proof. \Box

Acknowledgment. The author thanks the referee for pointing out several mistakes and making a few other remarks which improved the exposition.

http://www.mii.lt/NA

224

Distributional boundary values of analytic functions

References

- 1. P. Blanchard, E. Brüning, Mathematical Methods in Physics. Distributions, Hilbert Space Operators and Variational Methods, Prog. Math. Phys., Birkhäuser, Boston, Basel, Berlin, 2003.
- 2. S. Bochner, Harmonic Analysis and the Theory of Probability, Dover Publications, New York, 2005.
- 3. H.J. Bremermann, Distributions, Complex Variables, and Fourier Transforms, Addison-Wesley, Reading, MA, 1965.
- 4. J.P. Gabardo, Extension of Positive-Definite Distributions and Maximum Entropy, Mem. Am. Math. Soc., Vol. 102, No. 489, 1993.
- 5. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, Vol. 2, Springer, Berlin, Heidelberg, 1997.
- 6. F. Hirsch, Familles résolvantes, générateurs, cogénérateurs, potentiels, Ann. Inst. Fourier, 22(1):89-210, 1972.
- 7. N.J. Kalton, M. Zymonopoulou, Positive definite distributions and normed spaces, Adv. Math., 227:986-1018, 2011.
- 8. E. Lukacs, Characteristic Functions, 2nd ed., Hafner Publishing Co., New York, 1970.
- 9. S. Norvidas, A note on positive definite distributions, Indag. Math., 24(3):505-517, 2013.
- 10. J.N. Pandey, O.P. Singh, Characterization of functions with Fourier transform supported on orthants, J. Math. Anal. Appl., 185(2):438-463, 1994.
- 11. A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser, Basel, 2007.
- 12. B.W. Ross, Analytic Functions and Distributions in Physics and Engeneering, John Wiley & Sons, New York, London, Sidney, Toronto, 1969.
- 13. W. Rudin, Lectures on the Edge-of-the-Wedge Theorem, Reg. Conf. Ser. Math., No. 6, Amer. Math. Soc., Providence, RI, 1971.
- 14. W. Rudin, Functional Analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1991.
- 15. L. Schwartz, Théorie des Distributions, Hermann, Paris, 1997.
- 16. B.V. Shabat, Introduction to Complex Analysis. Part II: Functions of Several Variables, Transl. Math. Monogr., Vol. 110, Amer. Math. Soc., Providence, RI, 1992.
- 17. O.J. Staffans, Positive definite measures with applications to a Volterra equation, Trans. Am. Math. Soc., 218:219–237, 1976.
- 18. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., No. 32, Princeton Univ. Press, Princeton, NJ, 1971.
- 19. J. Stewart, Positive definite functions and its generalizations, an historical survey, Rocky Mt. J. Math., 6:409-434, 1976.
- 20. H.G. Tillmann, Randvertailungen analytischer Funktionen und Distributionen, Math. Z., 59: 61-83, 1953.
- 21. V.S. Vladimirov, Methods of the Theory of Generalized Functions, Taylor & Francis, London, 2002.