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Abstract. In this paper, the global dynamics of a class of HIV-1 infection models with different
infection rates and latently infected cells are investigated. We first modify the basic virus
infection model and propose two models with bilinear infection rate and saturation infection rate,
respectively, which take HIV-1 latency into consideration, and then study a model with a general
nonlinear infection rate. By using proper Lyapunov functions and LaSalle’s invariance principle, it
is proved that in the first two models, if the basic reproduction ratio is less than unity, each of the
infection-free equilibria is globally asymptotically stable; if the basic reproduction ratio is greater
than unity, each of the chronic-infection equilibria is globally asymptotically stable. For the last
model with general nonlinear infection rate, we obtain sufficient conditions for the global stability
of both the infection-free and chronic-infection equilibria of the model.

Keywords: HIV-1 infection model, nonlinear infection rate, global stability, LaSalle’s invariance
principle.

1 Introduction

Mathematical and computational models of the human immune response under viral
infection combined with experimental measurements has yielded important insights into
HIV-1 pathogenesis and has enhanced progress in the understanding of HIV-1 infection.
Hence, it is a useful tool to formulate meaningful mathematical models to help us better
understand the disease dynamics, make prediction of disease outbreak and evaluate the
prevention and drug therapy strategies used against HIV-1 infection.

It is well known that when HIV-1 enters the body, it targets cells with CD4 receptors,
including the CD4+ T-cells, the main driver of the immune response. Recent studies have
shown that a significant proportion of CD4+ T-cells are infected by the virus, and that this
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specific population of T-cells might be preferentially infected [5]. It is important and has
become a hot topic to formulate models to explain the exhaustion of the CD4+ T-cells.
Such models involve the concentrations of uninfected CD4+ T-cells, x, infected CD4+ T-
cells that are producing virus, y, and free virus, v. A basic mathematical model describing
HIV-1 infection dynamics that has been studied in [9, 16, 17, 19] is of the form

ẋ(t) = λ− dx(t)− βx(t)v(t),
ẏ(t) = βx(t)v(t)− ay(t),
v̇(t) = ky(t)− uv(t),

(1)

where uninfected, susceptible CD4+ T-cells are created from sources within the body at
a rate λ, uninfected CD4+ T-cells die at rate d, and become infected at rate βxv, where
β is the rate constant describing the infection process; infected cells are produced at rate
βxv and die at rate ay; free virus are produced from infected cells at rate ky and are
removed at rate uv. Korobeinikov in [9] gave a complete global analysis of this basic
virus infection model. After that, many authors modified the model and proposed many
models with more complicated infection rates based on scientific research, for example,
the saturation infection rate βxv/(1 + αv), where α > 0 in [21], nonlinear infection
rate βxqv, where q > 0 in [22] and general nonlinear infection rate with the form of an
unspecified function f(x, v) in [10].

However, in all previous works mentioned above, they all neglected the fact that once
in the cells not all virus initiate active virus production. An asymptomatic period of “clini-
cal latency” can intervene between infection and the development of the acquired immune
deficiency syndrome(AIDS) [15]. A large proportion of CD4+ T-cells are latently infected
following the integration of pro-viral DNA into the host cell genome, some of which
can remain quiescent for long periods of time before becoming activated [2]. In [18],
such cells are defined as latently infected cells, i.e., cells that contain integrated pro-
viral DNA and are transcriptionally silent, but upon activation are capable of producing
infectious virus. Latently infected cells became a subject of great interest when they were
subsequently shown to persist even in individuals on highly active antiretroviral therapy
(HAART) who no longer had clinically detectable viremia [14]. “The capability of the
HIV-1 to persist latent inside CD4+ T-cells is currently regarded as a barrier to recovery
from infection” [3]. But till now, as far as we know, only a few works(see, e.g., [3, 12])
concern the effects that latently infected cells expected to have on HIV-1 infection process.
In this paper, motivated by the works of [3, 12, 16], we modify the basic virus infection
model and add a further state variable, ω, which represents the population of latently
infected cells and propose a class of HIV-1 infection models with latently infected cells.

Our primary goal is to propose a class of HIV-1 infection models with different infec-
tion rates which take HIV-1 latency into consideration and carry out the global dynamics
of these models. The organization of this paper is as follows. In the next section, we
introduce an HIV-1 model with the simple mass-action infection rate and latently infected
cells based on the basic virus infection model and discuss the global stability of the
infection-free equilibrium and the chronic-infection equilibrium by means of constructing
suitable Lyapunov functions and LaSalle’s invariance principle, respectively. In Section 3,
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we modify the model in Section 2 and study the global properties of an HIV-1 model of
which the infection rate is given by saturation functional response. The infection rates
in both models of Sections 2 and 3 have specific forms. An HIV-1 infection model with
general nonlinear infection rate of unspecific form and latently infected cells is given in
Section 4. A brief remark is given in Section 5 to conclude our work.

2 HIV-1 infection model with the mass-action infection rate and
latency cells

In the rest of this paper, we suppose that infected CD4+ T-cells are either active or latent.
From the loss of healthy T-cells due to infection, one fraction of these cells become active,
or productively infected, while the rest remain latent. Both classes of infected cells are
assumed to die with exponentially distributed waiting time. With the simple mass-action
infection term, we first study the following system of differential equations:

ẋ(t) = λ− dx− βxv,
ω̇(t) = (1− q)βxv − eω − δω,
ẏ(t) = qβxv − ay + δω,

v̇(t) = ky − uv,

(2)

where the parameters λ, d, β, a, k, u are the same as that defined in model (1). Free
virus interact with the uninfected cells to produce actively infected cells at a rate qβxv
and latently infected cells at a rate (1 − q)βxv, where the parameter q: 0 < q < 1.
Latently infected cells containing pro-viral DNA die at a rate eω and become activated at
rate δω.

We note that model (2) is biologically acceptable in the sense that no population goes
negative. Denote N(t) = x(t) + ω(t) + y(t), then we get

Ṅ(t) = ẋ(t) + ω̇(t) + ẏ(t) 6 λ− σṄ(t),

where σ = min{d, e, a}. Hence, 0 6 N(t) 6 λ/σ for all t > 0 ifN(0) 6 λ/σ. It follows
that 0 6 x(t), ω(t), y(t) 6 λ/σ for all t > 0 if x(0) + ω(0) + y(0) 6 λ/σ. On the other
hand,

v̇(t) 6
kλ

σ
− uv,

then 0 6 v(t) 6 kλ/(σu) for all t > 0 if v(0) 6 kλ/(σu). Mathematical properties of
the solutions lead us to studying system (2) in the closed set:

D =

{
(x, ω, y, v) ∈ R+

4 : x+ ω + y 6
λ

σ
, v(t) 6

kλ

σu

}
,

which is usually considered as the phase space of the system. It is easy to show that D is
positively invariant with respect to (2).
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2.1 The existence of feasible equilibria

Clearly, system (2) always has an infection-free equilibrium E0(x0, 0, 0, 0), where
x0 = λ/d.

Following the next generation matrix method formulated in [6], we define

R0 =
kλβ(eq + δ)

adu(e+ δ)
. (3)

Here R0 is called the basic reproduction ratio of system (2). This ratio describes the
average number of newly infected cells generated from one infected cell at the beginning
of the infectious process. Thus, it is a fundamental measure, which determines whether
a virus spreads within the host or becomes extinct.

It is easy to show that if R0 > 1, system (2) admits a unique chronic-infection
equilibrium E∗(x∗, ω∗, y∗, v∗), where

x∗ =
au(e+ δ)

kβ(eq + δ)
, ω∗ =

(1− q)adu
βk(eq + δ)

(R0 − 1),

y∗ =
du

βk
(R0 − 1), v∗ =

d

β
(R0 − 1).

2.2 Global stability

In this part, we study the global stability of each of feasible equilibria of system (2). The
strategy of proofs is to use suitable Lyapunov functions and LaSalle’s invariance principle
in [13].

Define
F (x) = x− 1− lnx. (4)

Clearly, for x ∈ (0,+∞), F (x) is non-negative and has the global minimum at x = 1
and F (1) = 0.

We first state and prove our result on the global stability of the infection-free equilib-
rium E0(λ/d, 0, 0, 0).

Theorem 1. The infection-free equilibriumE0(x0, 0, 0, 0) of system (2) is globally asymp-
totically stable if R0 6 1.

Proof. Define a Lyapunov function of the form

W0(t) = x0F

(
x

x0

)
+

δ

eq + δ
ω +

e+ δ

eq + δ
y +

a(e+ δ)

k(eq + δ)
v. (5)

Calculating the derivative of W0(t) along positive solutions of system (2), it follows that

Ẇ0(t) =

(
1− x0

x

)
(λ− dx− βxv) + δ

eq + δ

[
(1− q)βxv − eω − δω

]
+

e+ δ

eq + δ
(qβxv − ay + δω) +

a(e+ δ)

k(eq + δ)
(ky − uv). (6)
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Since λ = dx0 holds, we derive that

Ẇ0(t) = dx0

(
2− x0

x
− x

x0

)
+
βλ

d

(
1− 1

R0

)
v. (7)

Since the arithmetical mean is greater than or equal to the geometrical mean, then the
first term of (7) is less than or equal to zero. Noting that 1 − 1/R0 6 0 if R0 6 1, it
follows from (7) that Ẇ0(t) 6 0 for all (x, ω, y, v) > 0. Also, it is easy to verify that
Ẇ0(t) = 0 if and only if x = x0, ω = y = v = 0. The maximal compact invariant set in
{(x, ω, y, v) ∈ D: Ẇ0(t) = 0} is the singleton {E0} if R0 6 1. Accordingly, the global
asymptotic stability ofE0 follows from LaSalle’s invariance principle. This completes the
proof.

We are now in a position to establish the global stability of the chronic-infection
equilibrium E∗ of system (2). The form of Lyapunov function used here is motivated
by the work in [23].

Theorem 2. If R0 > 1, then the chronic-infection equilibrium E∗(x∗, ω∗, y∗, v∗) of
system (2) is globally asymptotically stable.

Proof. Define a Lyapunov function of the form

W1(t) = x∗F

(
x

x∗

)
+ k1ω

∗F

(
ω

ω∗

)
+ k2y

∗F

(
y

y∗

)
+ k3v

∗F

(
v

v∗

)
, (8)

where k1, k2 and k3 are positive constants to be determined later.
Calculating the derivative of W1(t) along positive solutions of system (2), we derive

that

Ẇ1(t) =

(
1− x∗

x

)
(λ− dx− βxv) + k1

(
1− ω∗

ω

)[
(1− q)βxv − eω − δω

]
+ k2

(
1− y∗

y

)
(qβxv − ay + δω) + k3

(
1− v∗

v

)
(ky − uv). (9)

By substituting λ = dx∗ + βx∗v∗, ky∗ = uv∗ into (9), it follows that

Ẇ1(t) =

(
1− x∗

x

)[
−d(x− x∗) + βx∗v∗

]
− βxv + βx∗v

+ k1
[
(1− q)βxv − eω − δω

]
+ k1

[
−(1− q)βxvω

∗

ω
+ (e+ δ)ω∗

]
+ k2

[
qβxv − ay + δω

]
+ k2

[
−qβxv y

∗

y
+ ay∗ − δω y

∗

y

]
+ k3

(
ky − uv − ky v

∗

v
+ ky∗

)
. (10)

Letting

k1 =
δ

eq + δ
, k2 =

e+ δ

eq + δ
, k3 =

a(e+ δ)

k(eq + δ)
,
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it is easy to verify that

k1(1− q) + k2q = 1, k1(e+ δ) = k2δ, k2a = k3k.

Then from (10) we can get

Ẇ1(t) =

(
1− x∗

x

)[
−d(x− x∗) + βx∗v∗

]
+ βx∗v − k1(1− q)βxv

ω∗

ω

+ k1(e+ δ)ω∗ − k2qβxv
y∗

y
+ k2ay

∗ − k2δω
y∗

y
− k3uv

− k3ky
v∗

v
+ k3ky

∗. (11)

Noting that

ay∗ = qβx∗v∗ + δω∗, (e+ δ)ω∗ = (1− q)βx∗v∗,

(11) can be rewritten as

Ẇ1(t) =

(
1− x∗

x

)[
−d(x− x∗) + βx∗v∗

]
+ βx∗v∗

v

v∗
+ k1(e+ δ)ω∗

− k1(1− q)βx∗v∗
xv

x∗v∗
ω∗

ω
− k2qβx∗v∗

xv

x∗v∗
y∗

y
+ k2(qβx

∗v∗+ δω∗)

− k2δω∗
ω

ω∗
y∗

y
− k2(qβx∗v∗ + δω∗)

v

v∗
− k2(qβx∗v∗ + δω∗)

y

y∗
v∗

v

+ k2(qβx
∗v∗ + δω∗)

=

(
1− x∗

x

)[
−d(x− x∗) + βx∗v∗

]
+ βx∗v∗

v

v∗
+ 3k1(1− q)βx∗v∗

+ 2k2qβx
∗v∗ − k1(1− q)βx∗v∗

xv

x∗v∗
ω∗

ω
− k2qβx∗v∗

xv

x∗v∗
y∗

y

− k1(1− q)βx∗v∗
ω

ω∗
y∗

y
− k1(1− q)βx∗v∗

v

v∗
− k2qβx∗v∗

v

v∗

− k2qβx∗v∗
y

y∗
v∗

v
− k1(1− q)βx∗v∗

y

y∗
v∗

v

= −d(x− x
∗)2

x
+
δ(1− q)
eq + δ

βx∗v∗
(
4− x∗

x
− xv

x∗v∗
ω∗

ω
− ω

ω∗
y∗

y
− y

y∗
v∗

v

)
+
q(e+ δ)

eq + δ
βx∗v∗

(
3− x∗

x
− xv

x∗v∗
y∗

y
− y

y∗
v∗

v

)
. (12)

Noting that x∗, ω∗, y∗, v∗ > 0, and the arithmetical mean is greater than or equal to the
geometrical mean, then the last two terms of (12) are less than or equal to zero. Then we
have Ẇ1(t) 6 0, where the equality holds if and only if (x, ω, y, v) = (x∗, ω∗, y∗, v∗).
Using a similar argument as that in the proof of Theorem 1 and by LaSalle’s invariance
principle, the global asymptotic stability of E∗ follows. This completes the proof.
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3 HIV-1 infection model with saturation infection rate and latency
cells

It is assumed in model (2) that the rate of infection is bilinear in the uninfected CD4+
T-cells and free virus, i.e., the infection rate per host and per virus is a constant. However,
“actual incidence rates are probably not strictly linear in each variable over the entire
range of CD4+ T-cells and virus” [21]. The basic virus infection model with infection rate
of the bilinear term needs modification. Experiments reported in [7] strongly suggested
that the infection rate of microparasitic infections is an increasing function of the parasite
dose, and is usually sigmoidal in shape (see, for example, [20]). In [20], to place the
basic virus infection model on more sound biological grounds, Regoes et al. replaced the
bilinear infection rate with a saturation infection rate. In this section, we modify model (2)
and propose a new model taking into account the saturation infection rate and investigate
its global dynamics. The model is given by

ẋ(t) = λ− dx− βxv

1 + αv
,

ω̇(t) =
(1− q)βxv
1 + αv

− eω − δω,

ẏ(t) =
qβxv

1 + αv
− ay + δω,

v̇(t) = ky − uv.

(13)

The parameters λ, d, β, q, e, δ, a, k, u are the same as that defined in model (2) and
α > 0. We note that the closed set D defined in Section 2 is positively invariant with
respect to system (13).

3.1 The existence of feasible equilibria

It is easy to verify that system (13) always has an infection-free equilibriumE0(x0, 0, 0, 0),
where x0 = λ/d.

Following the method in [6], the basic reproduction ratio of system (13) can be defined
as

R0 =
kλβ(eq + δ)

adu(e+ δ)
. (14)

Then if R0 > 1, in addition to the infection-free equilibrium, system (13) also admits
a unique chronic-infection equilibrium E∗(x∗, ω∗, y∗, v∗), where

x∗ =
λ(1 + αv∗)

d(1 + αv∗) + βv∗
, ω∗ =

βλ(1− q)v∗

(e+ δ)[d(1 + αv∗) + βv∗]
,

y∗ =
uv∗

k
, v∗ =

d

αd+ β
(R0 − 1).
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3.2 Global stability

In this part, we study the global stability of each of feasible equilibria of system (13).
The strategy of proofs is also to use suitable Lyapunov functions and LaSalle’s invariance
principle.

Theorem 3. The infection-free equilibrium E0(x0, 0, 0, 0) of system (13) is globally
asymptotically stable if R0 6 1.

Proof. Define

W0(t) = x0F

(
x

x0

)
+

kβλδ

adu(e+ δ)
ω +

kβλ

adu
y +

βλ

du
v, (15)

where the function F (x) is defined in (4). The time derivative of W0(t) along positive
solutions of system (13) is given by

Ẇ0(t) =

(
1− x0

x

)(
λ− dx− βxv

1 + αv

)
+

kβλδ

adu(e+ δ)

[
(1− q)βxv
1 + αv

− eω − δω
]

+
kβλ

adu

(
qβxv

1 + αv
− ay + δω

)
+
βλ

du
(ky − uv). (16)

Since λ = dx0, from (16) we can get that

Ẇ0(t) = dx0

(
2− x0

x
− x

x0

)
+ (R0 − 1)

βxv

1 + αv
− αβx0v

2

1 + αv
. (17)

Since the arithmetical mean is greater than or equal to the geometrical mean, then the
first term of (17) is less than or equal to zero. Noting that R0 6 1, by (17) we have that
Ẇ0(t) 6 0, where the equality holds if and only if (x, ω, y, v) = E0(x0, 0, 0, 0). Using
a similar argument as that in the proof of Theorem 1 and by LaSalle’s invariance principle,
the global asymptotic stability of E0 follows. This completes the proof.

We are now in a position to establish the global stability of the chronic-infection
equilibrium E∗ of system (13).

Theorem 4. If R0 > 1, then the chronic-infection equilibrium E∗(x∗, ω∗, y∗, v∗) of
system (13) is globally asymptotically stable.

Proof. Define

W1(t) = x∗F

(
x

x∗

)
+ k1ω

∗F

(
ω

ω∗

)
+ k2y

∗F

(
y

y∗

)
+ k3v

∗F

(
v

v∗

)
, (18)

where the parameters k1, k2 and k3 are defined in (8) in Section 2.
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Calculation of the derivative of W1(t) along positive solutions shows that

Ẇ1(t) =

(
1− x∗

x

)[
λ− dx− βxv

1 + αv

]
+ k1

(
1− ω∗

ω

)[
(1− q)βxv
1 + αv

− eω − δω
]

+ k2

(
1− y∗

y

)[
qβxv

1 + αv
− ay + δω

]
+ k3

(
1− v∗

v

)
(ky − uv). (19)

By substituting λ = dx∗ + βx∗v∗/(1 + αv∗), ky∗ = uv∗ into (19), we get that

Ẇ1(t) =

(
1− x∗

x

)[
−d(x− x∗) + βx∗v∗

1 + αv∗

]
− βxv

1 + αv
+

βx∗v

1 + αv

+ k1

[
(1− q)βxv
1 + αv

− eω − δω
]
+ k1

[
− (1− q)βxv

1 + αv

ω∗

ω
+ (e+ δ)ω∗

]
+ k2

[
qβxv

1 + αv
− ay + δω

]
+ k2

[
− qβxv

1 + αv

y∗

y
+ ay∗ − δω y

∗

y

]
+ k3

(
ky − uv − ky v

∗

v
+ ky∗

)
. (20)

Noting that

k1(1− q) + k2q = 1, k1(e+ δ) = k2δ, k2a = k3k,

we derive from (20) that

Ẇ1(t) =

(
1− x∗

x

)[
−d(x− x∗) + βx∗v∗

1 + αv∗

]
+

βx∗v

1 + αv

− k1(1− q)
βxv

1 + αv

ω∗

ω
+ k1(e+ δ)ω∗ − k2q

βxv

1 + αv

y∗

y

+ k2ay
∗ − k2δω

y∗

y
− k3uv − k3ky

v∗

v
+ k3ky

∗. (21)

Since the coordinates of the chronic-infection equilibrium E∗ satisfy the equalities

ay∗ =
qβx∗v∗

1 + αv∗
+ δω∗, (e+ δ)ω∗ =

(1− q)βx∗v∗

1 + αv∗
,

equation (21) can be rewritten as

Ẇ1(t) =

(
1− x∗

x

)[
−d(x− x∗) + βx∗v∗

1 + αv∗

]
+

βx∗v∗

1 + αv∗
v(1 + αv∗)

v∗(1 + αv)
+ k1(e+ δ)ω∗

− k1(1− q)
βx∗v∗

1 + αv∗
xv(1 + αv∗)

x∗v∗(1 + αv)

ω∗

ω
− k2q

βx∗v∗

1 + αv∗
xv(1 + αv∗)

x∗v∗(1 + αv)

y∗

y
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+ k2q
βx∗v∗

1 + αv∗
+ k2δω

∗ − k2δω∗
ω

ω∗
y∗

y
−
(
k2q

βx∗v∗

1 + αv∗
+ k2δω

∗
)
v

v∗

−
(
k2q

βx∗v∗

1 + αv∗
+ k2δω

∗
)
y

y∗
v∗

v
+ k2q

βx∗v∗

1 + αv∗
+ k2δω

∗

=

(
1− x∗

x

)[
−d(x− x∗) + βx∗v∗

1 + αv∗

]
+

βx∗v∗

1 + αv∗
v(1 + αv∗)

v∗(1 + αv)
+ 2k2q

βx∗v∗

1 + αv∗

− k1(1− q)
βx∗v∗

1 + αv∗
xv(1 + αv∗)

x∗v∗(1 + αv)

ω∗

ω
− k2q

βx∗v∗

1 + αv∗
xv(1 + αv∗)

x∗v∗(1 + αv)

y∗

y

− k2q
βx∗v∗

1 + αv∗
v

v∗
− k1(1− q)

βx∗v∗

1 + αv∗
ω

ω∗
y∗

y
− k1(1− q)

βx∗v∗

1 + αv∗
v

v∗

− k2q
βx∗v∗

1 + αv∗
y

y∗
v∗

v
+ 3k1(1− q)

βx∗v∗

1 + αv∗
− k1(1− q)

βx∗v∗

1 + αv∗
y

y∗
v∗

v

= −d(x− x
∗)2

x
− βx∗v∗

1 + αv∗
α(v − v∗)2

v∗(1 + αv)(1 + αv∗)

+
δ(1− q)
eq + δ

βx∗v∗

1 + αv∗

[
5− x

∗

x
− xv(1 + αv∗)

x∗v∗(1 + αv)

ω∗

ω
− ω

ω∗
y∗

y
− y

y∗
v∗

v
− 1 + αv

1 + αv∗

]
+
q(e+ δ)

eq + δ

βx∗v∗

1 + αv∗

[
4− x

∗

x
− y

y∗
v∗

v
− xv(1 + αv∗)

x∗v∗(1 + αv)

y∗

y
− 1 + αv

1 + αv∗

]
. (22)

Noting that x∗, ω∗, y∗, v∗ > 0, and the arithmetical mean is greater than or equal to the
geometrical mean, then the last two terms of (22) are less than or equal to zero. Hence,
from (22) we derive that Ẇ1(t) 6 0, where the equality holds if and only if (x, ω, y, v) =
(x∗, ω∗, y∗, v∗). Using a similar argument as that in the proof of Theorem 1, the global
asymptotic stability of E∗ follows from LaSalle’s invariance principle. This completes
the proof.

4 HIV-1 infection model with general nonlinear infection rate and
latency cells

In order to obtain a comprehensive form of mathematical model describing nonlinear
phenomena of HIV-1 infection process, in this section, we propose an HIV-1 infection
model with a general form of nonlinear infection rate, of which the infection rate is given
by an unspecified function of the concentrations of the uninfected CD4+ T-cells and free
virus. The model we discuss is of the following form:

ẋ = λ− dx− f(x, v),
ω̇ = (1− q)f(x, v)− eω − δω,
ẏ = qf(x, v)− ay + δω,

v̇ = ky − uv,

(23)

where the function f(x, v) represents the rate for the uninfected CD4+ T-cells to be
infected by the virus. All the other parameters are the same as that defined in model (2).
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We assume that the infection rate f(x, v) is always positive, continuous and differen-
tiable. From the discussion in [11] we further assume that f(x, v) grows monotonically
with respect to both its variables, x and v and satisfy the conditions

f(x, 0) = f(0, v) = 0, (24)

∂f(x, v)

∂x
> 0,

∂f(x, v)

∂v
> 0 (25)

for all x > 0, v > 0. Also, one can easily show that the closed set D defined in Section 2,
is positively invariant with respect to system (23).

4.1 The existence of feasible equilibria

It is straightforward to show that condition (24) ensures the existence of the infection-free
equilibrium E0(x0, 0, 0, 0) of system (23), where x0 = λ/d.

The basic reproduction ratio describes the expected number of secondary cases pro-
duced by a typical infective individual in a completely susceptible population [4]. Follow-
ing the result in [6], we can get the basic reproduction ratio of system (23)

R0 =
k(eq + δ)

au(e+ δ)

∂f(x0, 0)

∂v
. (26)

The system can also have a positive chronic-infection equilibrium E∗(x∗, ω∗, y∗, v∗),
and, if it exists, the coordinates of the E∗ satisfy the equalities

λ = dx∗ + f(x∗, v∗), (27)

(1− q)f(x∗, v∗) = (e+ δ)ω∗, (28)

qf(x∗, v∗) = ay∗ − δω∗, (29)

ky∗ = uv∗. (30)

4.2 Global stability

In this part, we constrain the function f(x, v), so that it is sufficient to guarantee the
global stability of the infection-free and chronic-infection equilibria of system (23). The
Lyapunov functions that we construct in this part are partly inspired by Elaiw [8] and
Ansari [1].

We first make two assumptions of the nonlinear infection rate f(x, v).
(H1) The function f(x, v) is concave with respect to the variable v, i.e.;

∂2f(x, v)

∂v2
6 0.

(H2) ∂f(x, 0)/∂v is monotonically increasing with respect to x, i.e.,

∂f(x0, 0)

∂v
>
∂f(x, 0)

∂v
if 0 < x < x0,

∂f(x0, 0)

∂v
<
∂f(x, 0)

∂v
if x > x0.
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Theorem 5. Assume R0 6 1. Then the infection-free equilibrium E0(x0, 0, 0, 0) of
system (23) is globally asymptotically stable if (H1)–(H2) hold.

Proof. Define

W0(t) = x− x0 −
x∫

x0

lim
v→0+

f(x0, v)

f(s, 0)
ds+

δ

eq + δ
ω +

e+ δ

eq + δ
y +

a(e+ δ)

k(eq + δ)
v. (31)

It is easily seen that, for all x, ω, y, v > 0, W0(t) is defined and continuous. Moreover,
W0(t) reaches its global minimum at E0 of system (23), and W0(E0) = 0. Therefore,
W0(t) is a Lyapunov function. Calculation of the derivative of W0(t) along positive
solutions shows that

Ẇ0(t) =

[
1− lim

v→0+

f(x0, v)

f(x, 0)

][
λ− dx− f(x, v)

]
+

δ

eq + δ

[
(1− q)f(x, v)− eω − δω

]
+

e+ δ

eq + δ

[
qf(x, v)− ay + δω

]
+

a(e+ δ)

k(eq + δ)
(ky − uv). (32)

Noting that λ = dx0,

Ẇ0(t) = λ

(
1− x

x0

)(
1− ∂f(x0, 0)

∂v

/∂f(x, 0)
∂v

)
+ f(x, v)

∂f(x0, 0)

∂v

/∂f(x, 0)
∂v

− au(e+ δ)

k(eq + δ)
v. (33)

The concavity of f(x, v) with respect to v ensures that

f(x, v) 6 v
∂f(x, 0)

∂v
(34)

holds for any x > 0, v > 0. Then from (33) and (34) we can show that

Ẇ0(t) 6 λ

(
1− x

x0

)(
1− ∂f(x0, 0)

∂v

/∂f(x, 0)
∂v

)
+ v

∂f(x0, 0)

∂v
− au(e+ δ)

k(eq + δ)
v

= λ

(
1− x

x0

)(
1− ∂f(x0, 0)

∂v

/∂f(x, 0)
∂v

)
+
au(e+ δ)

k(eq + δ)
(R0 − 1)v. (35)

Furthermore, by (H2), it is easy to get that(
1− x

x0

)(
1− ∂f(x0, 0)

∂v

/∂f(x, 0)
∂v

)
6 0 (36)

for all x, v > 0, and the equality holds only when x = x0. Hence, if R0 6 1, from
(35) and (36), Ẇ0(t) 6 0. It is easy to verify that Ẇ0(t) = 0 if and only if x = x0,
ω = y = v = 0. Accordingly, using a similar argument as that in the proof of Theorem 1
and by LaSalle’s invariance principle, the global asymptotic stability of E0 follows. This
completes the proof.
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We now state and prove our result on the global stability of the chronic-infection
equilibrium E∗ of system (23).

Theorem 6. Assume that the chronic-infection equilibrium E∗(x∗, ω∗, y∗, v∗) of sys-
tem (23) exists. If (H1) holds, then E∗ is globally asymptotically stable.

Proof. Define the Lyapunov function as

W1(t) = x−x∗−
x∫

x∗

f(x∗, v∗)

f(s, v∗)
ds+k1ω

∗F

(
ω

ω∗

)
+k2y

∗F

(
y

y∗

)
+k3v

∗F

(
v

v∗

)
, (37)

where the function F (x) is defined in (4) and the parameters k1, k2, k3 are defined in (8).
Calculating the derivative of W1(t) along positive solutions, we derive that

Ẇ1(t) =

[
1− f(x∗, v∗)

f(x, v∗)

][
λ− dx− f(x, v)

]
+ k1

(
1− ω∗

ω

)[
(1− q)f(x, v)− eω − δω

]
+ k2

(
1− y∗

y

)[
qf(x, v)− ay + δω

]
+ k3

(
1− v∗

v

)
(ky − uv). (38)

By substituting λ = dx∗ + f(x∗, v∗), ky∗ = uv∗ into (38), it follows that

Ẇ1(t) =

[
1− f(x∗, v∗)

f(x, v∗)

][
dx∗ + f(x∗, v∗)− dx− f(x, v)

]
+ k1

[
(1− q)f(x, v)− eω − δω

]
+ k1

[
−(1− q)f(x, v)ω

∗

ω
+ (e+ δ)ω∗

]
+ k2

[
qf(x, v)− ay + δω

]
+ k2

[
−qf(x, v)y

∗

y
+ ay∗ − δω y

∗

y

]
+ k3

(
ky − uv − ky v

∗

v
+ ky∗

)
. (39)

Noting that

k1(1− q) + k2q = 1, k1(e+ δ) = k2δ, k2a = k3k,

we, therefore, derive from (39) that

Ẇ1(t) = dx∗ + f(x∗, v∗)− dx− dx∗ f(x
∗, v∗)

f(x, v∗)
− f(x∗, v∗)f(x

∗, v∗)

f(x, v∗)

+ dx
f(x∗, v∗)

f(x, v∗)
+ f(x, v)

f(x∗, v∗)

f(x, v∗)
+ k1

[
−(1− q)f(x, v)ω

∗

ω
+ (e+ δ)ω∗

]
+ k2

[
−qf(x, v)y

∗

y
+ ay∗ − δω y

∗

y

]
+ k3

(
−uv − ky v

∗

v
+ ky∗

)
. (40)
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From (28) and (29) we can easily get that

k2ay
∗ = f(x∗, v∗), k1(1− q)f(x∗, v∗) = k1(e+ δ)ω∗ = k2δω

∗.

Then (40) can be rewritten as

Ẇ1(t) = dx∗
(
1− x

x∗

)[
1− f(x∗, v∗)

f(x, v∗)

]
+ f(x∗, v∗)− f(x∗, v∗)f(x

∗, v∗)

f(x, v∗)

+ f(x∗, v∗)
f(x, v)

f(x, v∗)
− k1(1− q)f(x∗, v∗)

f(x, v)

f(x∗, v∗)

ω∗

ω

+ k1(1− q)f(x∗, v∗)− k2qf(x∗, v∗)
f(x, v)

f(x∗, v∗)

y∗

y
+ 2f(x∗, v∗)

− k1(1− q)f(x∗, v∗)
ω∗

ω

y∗

y
− f(x∗, v∗) v

v∗
− f(x∗, v∗) y

y∗
v∗

v

= dx∗
(
1− x

x∗

)[
1− f(x∗, v∗)

f(x, v∗)

]
+ f(x∗, v∗)

f(x, v)

f(x, v∗)
− f(x∗, v∗) v

v∗

+ 3f(x∗, v∗)− f(x∗, v∗)f(x
∗, v∗)

f(x, v∗)
− k2qf(x∗, v∗)

f(x, v)

f(x∗, v∗)

y∗

y

− k1(1− q)f(x∗, v∗)
ω∗

ω

y∗

y
− k1(1− q)f(x∗, v∗)

f(x, v)

f(x∗, v∗)

ω∗

ω

+ k1(1− q)f(x∗, v∗)− f(x∗, v∗)
y

y∗
v∗

v

= dx∗
(
1− x

x∗

)[
1− f(x∗, v∗)

f(x, v∗)

]
+
δ(1− q)
eq + δ

f(x∗, v∗)

×
[
5− f(x∗, v∗)

f(x, v∗)
− ω

ω∗
y∗

y
− f(x, v)

f(x∗, v∗)

ω∗

ω
− y

y∗
v∗

v
− v

v∗
f(x, v∗)

f(x, v)

]
+
q(e+ δ)

eq + δ
f(x∗, v∗)

[
4− f(x∗, v∗)

f(x, v∗)

f(x, v)

f(x∗, v∗)

y∗

y
− y

y∗
v∗

v
− v

v∗
f(x, v∗)

f(x, v)

]
+ f(x∗, v∗)

[
1− f(x, v∗)

f(x, v)

][
f(x, v)

f(x, v∗)
− v

v∗

]
. (41)

We notice that f(x, v) grows monotonically with respect to variable x, which ensures that(
1− x

x∗

)[
1− f(x∗, v∗)

f(x, v∗)

]
6 0.

By assumption (H1), we have that

f(x, v∗)

f(x, v)
>

v

v∗
if v 6 v∗,

f(x, v∗)

f(x, v)
6

v

v∗
if v > v∗.
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Then the monotonicity of f(x, v) with respect to variable v guarantees that

f(x, v∗)

f(x, v)
>

v

v∗
if f(x, v) 6 f(x, v∗),

f(x, v∗)

f(x, v)
6

v

v∗
if f(x, v) > f(x, v∗).

Therefore, it is easily seen that[
1− f(x, v∗)

f(x, v)

][
f(x, v)

f(x, v∗)
− v

v∗

]
6 0

holds for any x > 0, v > 0. Then the first and the fourth two terms of (41) are non-
positive. Noting that x∗, ω∗, y∗, v∗ > 0, f(x, v) > 0, and the arithmetical mean is greater
than or equal to the geometrical mean, the second and the third two terms of (41) are also
non-positive. From (41) we have that Ẇ1(t) 6 0 for all x, ω, y, v > 0, where the equality
holds if and only if (x, ω, y, v) = (x∗, ω∗, y∗, v∗). Using a similar argument as that in the
proof of Theorem 1 and by LaSalle’s invariance principle, the global asymptotic stability
of E∗ follows. This completes the proof.

5 Conclusion

In this paper, we have investigated the global dynamics of a class of HIV-1 infection
models with different infection rates and latently infected cells. The global stability of
the infection-free equilibria and the chronic-infection equilibria have been completely
established by using the Lyapunov–LaSalle type theorem. The basic reproduction ratio
R0 which determines the dynamics of the HIV-1 models was obtained. By Theorems 1
and 3, we see that, in the first two models, if the basic reproduction ratio R0 < 1, each
of the disease-free equilibria is a global attractor, and the infections cannot persist. In this
case, the virus is cleared up. From Theorems 2 and 4 we see that if the basic reproduction
ratio R0 > 1, each of the chronic-infection equilibria becomes a global attractor, and the
infections persist indefinitely. In the last model, we have used a general form of nonlinear
infection rate to describe the nonlinear phenomena of HIV-1 infection process. By giving
Theorems 5 and 6, we showed that assumption (H1) and (H2) ensure the global stability
of the infection-free equilibrium of this model; under assumption (H1), i.e., the concavity
of the infection rate f(x, v), the chronic-infection equilibrium of this model is globally
asymptotically stable whenever it exists.
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