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Abstract. In classical epidemic models, it is common to observe that a disease-free equilibrium
looses its stability for R0 = 1 and a transcritical bifurcation takes place. We analyze this aspect
from the point of view of the mathematical structure of models, in order to assess which parts
of the structure might be responsible of the direction of the transcritical bifurcation. We formulate
a general criterion, which gives sufficient (resp. necessary) conditions for the occurrence of forward
(resp. backward) bifurcations. The criterion, obtained as consequence of a well known analysis of
the centre manifold for general epidemic models, is applied to several epidemic models taken from
the literature.
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1 Introduction

One of the main goals of mathematical modelling of epidemics is to understand under
which conditions an infectious disease spreading within a host population may be erad-
icated or will persist. At this aim, very useful insights may come from the qualitative
analysis of compartmental models [1,4,8,11,12,22,26] where, as it is well known, a key
role is played by the so-called basic reproduction number, R0 [9, 12, 13, 34]. Indeed,
assessing the “direction” of the transcritical bifurcation arising at R0 = 1 is a primary
issue in epidemic modelling. For many compartmental epidemic models, the sometimes
called R0-dogma [28] can be proved: if R0 is greater than unity, then the disease will
spread and possibly persist within the host population; if R0 is less than the unity, then
the infection cannot maintain itself [1, 4, 22]. When this happens, the bifurcation at the
criticality is said to be a transcritical forward bifurcation (see Fig. 1, left). However, in
some cases the dynamics may be more complex than that. This happens, in particular,
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Transcritical bifurcation in epidemic models 39

Fig. 1. Qualitative bifurcation diagrams for the forward bifurcation (left) and backward bifurcation (right).
The values of infectious at equilibrium are on the vertical axis. The bifurcation parameter, which is the basic
reproductive number R0, is on the horizontal axis. The solid line (–) denotes stability; the dashed line (- -)
denotes instability.

when the model exhibits the phenomenon of backward bifurcation [3,21]. This occurrence
implies that a stable endemic equilibrium may also exist when R0 is less than unity (see
Fig. 1, right). From the epidemiological point of view, this phenomenon has important
public health implications because reducing R0 below the unity is no longer sufficient
to guarantee disease elimination; the basic reproduction number must be reduced under
a smaller threshold in order to avoid endemic states and get the elimination.

Backward bifurcation has been detected for many epidemic models, both generic
compartmental models [3,14,21,33,35] and models for the spread of specific diseases like
tuberculosis [10], dengue [17], malaria [7] and sexually-transmitted diseases [29, 30, 36].
For this reason, it is very important to understand the mechanisms that can induce the
transcritical bifurcation at R0 = 1 to be forward or backward.

Several investigations on the epidemiological mechanisms leading to backward bifur-
cation have shown that this phenomenon has been often found for models of vaccine-
preventable diseases [2, 3, 5, 6, 24, 25, 30]. The acquired immunity is also a debated
cause for its occurrence [28]. In a very recent study, a list of epidemiological causes
of backward bifurcation has been provided, based on the review of models from the
literature [19]. The list includes (among others): exogenous re-infection (of latently-
infected individuals) in models for the spread of tuberculosis; re-infection in general;
Host(s) disease-induced mortality in models for the transmission of vector-borne diseases
and several mechanisms related to vaccination (imperfect vaccine efficacy; slow vaccine-
derived immunity waning, etc.). Furthermore, it has been shown that the introduction of
vectored immunoprophylaxis can induce backward bifurcation [36].

As a matter of fact, many compartmental epidemic models given by nonlinear ordi-
nary differential equations have a similar structure and this gives the opportunity to assess
which parts of the model structure, independently of their epidemiological meaning, play
a major role in inducing a given direction to the transcritical bifurcation.

In [10], a theory was introduced for the analysis of general epidemic models. It settles
the question of the existence of equilibria bifurcating from a nonhyperbolic equilibrium.
Such theory is based on the general centre manifold theory [18] and extends some similar
results previously obtained in [34] and [14].

In this paper, we obtain a criterion, based on the results given in [10, 14, 34], which
provides sufficient (resp. necessary) conditions for the occurrence of forward (resp.
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backward) bifurcations. When analyzing an epidemic model, after a preliminary analysis
on existence and stability of disease-free equilibria, our criterion allows to check, simply
looking at the structure of the model, if the direction of the transcritical bifurcation is
forward or there is the possibility for the backward bifurcation to occur.

As in [34], the host population is grouped in two general classes, the infected and un-
infected compartments. Under general and common assumptions on the epidemic model,
we show that a sufficient condition for a forward bifurcation to occur is that all the
following features are included in the model’s structure: (i) In the balance equations for
the infected compartments, nonlinear terms are present only in the rate of appearance of
new infections; (ii) Nonlinear terms are bilinear; (iii) There is no transfer from infected
to uninfected compartments. As a corollary, if at least one of these features is not present
in the model structure, then a backward bifurcation may occur. For this reason, the cri-
terion is a sufficient condition for the occurrence of forward bifurcation and a necessary
condition for the occurrence of backward bifurcation.

We provide several applications of this result to epidemic models taken from the
literature, including transmission of hepatitis, tuberculosis, dengue, West Nile virus and
HIV.

The rest of the paper is organized as follows. In Section 2, we give our main result.
In Section 3, we give the proof and recall the centre manifold analysis for general com-
partmental epidemic models as developed in [10, 14, 34]. In Section 4, we illustrate the
analysis of a SIS model with vaccination and treatment as specific example. In Section 5,
the SIS model is viewed as an application of our criterion together with several more
examples taken from the literature. Concluding remarks are given in Section 6. In the
Appendix, the normal form of transcritical bifurcation is derived for the sake of com-
pleteness.

2 Sufficient conditions for forward bifurcation

We begin by recalling the general compartmental model describing an infectious disease
transmission within a heterogeneous population [34]. Then, we will state our main result.

Let us consider a heterogeneous population whose individuals can be grouped into n
homogeneous compartments. Let x = (x1, . . . , xn)

T represent the state vector, where
each xi > 0. Suppose that the first m compartments correspond to infected individuals
(infected class) and the remaining n −m compartments to uninfected individuals (unin-
fected class).

The dynamics of x is assumed to be given by a system of nonlinear ordinary differen-
tial equations

ẋ = f(x), x ∈ Rn, f ∈ Rn, (1)

where the upper dot denotes derivative respect to t (time) and f is continuously differen-
tiable at least twice in x.

It is possible to distinguish new infections from all other changes in population by
writing system (1) as

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, . . . , n, (2)

http://www.mii.lt/NA



Transcritical bifurcation in epidemic models 41

where Vi = V−i −V
+
i . Here Fi(x) is the rate of appearance of new infections in compart-

ment i; V+
i (x) is the rate of transfer of individuals into compartment i by all other means;

V−i (x) is the rate of transfer of individuals out of compartment i.
Denote by Xs the set of all disease free states: Xs = {x ∈ R+

n : xi = 0, i =
1, . . . ,m}. The following conditions, which are commonly satisfied by epidemic models,
are assumed to hold:

(A1) In the nonnegative cone (xi > 0 for all i = 1, . . . , n), Fi, V+
i , V−i are all non

negative for i = 1, . . . , n;
(A2) If xi = 0 (empty compartment), then V−i = 0 (no transfer out of compartment).

In particular, if x ∈ Xs, then V−i = 0 for i = 1, . . . ,m;
(A3) Fi = 0 if i > m (the incidence of infection for uninfected compartment is zero);
(A4) If x ∈ Xs, then Fi(x) = 0 and V+

i (x) = 0 for i = 1, . . . ,m (no density
dependent immigration of infectives. This ensures that the disease free subspace is
invariant).

(A5) If Fi(x) = 0 for all i = 1, . . . , n, then all eigenvalues of Df(x0) have negative
real parts, where x0 denotes a disease-free equilibrium (DFE) andDf(x0) denotes
the Jacobian matrix of f evaluated in the DFE (this means that the DFE is stable
in absence of new infections).

The main result of this paper is the following:

Proposition 1. Assume that conditions (A1)–(A5) are satisfied. Furthermore, assume
that the following hypotheses are satisfied by system (2):

(H1) In the balance equations for the infected compartments, nonlinear terms are present
only in the rate of appearance of new infections;

(H2) Nonlinear terms are bilinear;
(H3) There is no linear transfer from infected to uninfected compartments.

Then the transcritical bifurcation of system (2) at R0 = 1 is forward.

Note that (H1) excludes the presence of negative nonlinear terms in the balance equa-
tions of infected compartments. We will give the proof at the end of next section.

3 Centre manifold analysis

In this section, we recall some results concerning with the existence and stability of
equilibria for system (2) under assumptions (A1)–(A5). The approach is based on the
centre manifold analysis.

Proposition 2. (See [34].) If x0 is a DFE of (2) and fi(x) satisfies (A1)–(A5), then the
derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =

(
F 0
0 0

)
, DV(x0) =

(
V 0
J3 J4

)
,
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where F and V are m×m matrices defined by

F =

[
∂Fi
∂xj

(x0)

]
and V =

[
∂Vi
∂xj

(x0)

]
with 1 6 i, j 6 m.

Further, F is nonnegative, V is a non-singular M -matrix and all the eigenvalues of J4
have positive real part.

Remark 1. We remark that anM -matrixA is a squared matrix whose off-diagonal entries
are less than or equal to zero and one of the twelve properties listed in the theorem by
Fiedler and Ptak [16] is satisfied (see also [32, Thm. A.2]). Among these properties, there
are the following ones:
• The inverse A−1 exists and all its entries are nonnegative;
• The real part of each eigenvalue of A is positive.

Now, let R0 denote the spectral radius of the next generation matrix FV −1 [12], i.e.,

R0 = ρ
(
FV −1

)
.

R0 is a threshold parameter for the stability of the DFE, as established in the next propo-
sition, and can be taken as basic reproduction number [12].

Proposition 3. (See [34].) Under the assumptions (A1)–(A5), x0 is locally asymptoti-
cally stable if R0 < 1, and unstable if R0 > 1.

We now recall the analysis of the centre manifold near the criticality (x = x0,R0 = 1)
which allows to clarify the direction of the bifurcation near the bifurcation point.

Let us consider system (1) and take a parameter µ as bifurcation parameter. That is,
consider

ẋ = f(x, µ), x ∈ Rn, µ ∈ R, f ∈ Rn, (3)

where f is continuously differentiable at least twice in both x and µ.
Assume that:

(i) x0 be an equilibrium for all µ, that is: f(x0, µ) = 0 for all µ (x0 is the DFE);
(ii) x0 be locally asymptotically stable for µ < 0 and unstable for µ > 0;

(iii) The Jacobian matrix evaluated at x0 and µ = 0, that is A = Df(x0, 0), where
Df(x, µ) denotes the derivative [∂fi/∂xj ], i, j = 1, . . . , n, evaluated in (x, µ),
admits a single zero eigenvalue, λ0 = 0 and all the other eigenvalues have negative
real parts.

Note that the properties (i)–(iii) are very common for epidemic models. Condi-
tions (ii)–(iii) mean that x0 looses its stability and a transcritical bifurcation may take
place at µ = 0. In other words, conditions (ii)–(iii) recall Proposition 3 with R0 = 1,
replaced by µ = 0.

Let us denote by v = (v1, . . . , vn) and w = (w1, . . . , wn)
T the left and right

nullvectors, chosen such that v ·w = 1, corresponding to the zero eigenvalue of matrixA.
The normal form of the bifurcation, i.e., the analytic form of the vector field on

the center manifold, may be derived by using the centre manifold theorem [18]. More
precisely, the following theorem may be proved [10, 14, 34]:
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Proposition 4. In a neighborhood of µ = 0, the normal form of the bifurcation of
system (3) subject to (i)–(iii) is given by

u̇ = au2 + bµu, (4)

where

a =
v

2
·Dxxf(x0, 0)w

2 ≡ 1

2

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(x0, 0) (5)

and

b = v ·Dxµf(x0, 0)w ≡
n∑

k,i=1

vkwi
∂2fk
∂xi∂µ

(x0, 0). (6)

Note that, in (5) and (6), the fk’s denote the right-hand side of system (3).
A simple proof of this theorem is reported in the Appendix. We refer to [10, 14, 34]

for more details.
It is easy to check that the equilibria of (4) are given by u1 = 0 and u2 = −bµ/a.

Note that b > 0 due to the hypothesis (ii). As a consequence, we have that:

(a) If a < 0, then u2 is negative and unstable if µ < 0 and positive and stable if µ > 0;
(b) If a > 0, then u2 is positive and unstable if µ < 0 and negative and stable if µ > 0.

These conditions, which characterize the bifurcation locally at R0 = 1, are compat-
ible with the scenarios depicted in Fig. 1. Precisely, condition (a) indicates a forward
bifurcation scenario and condition (b) indicates the occurrence of a backward bifurcation.

The parameter a given by (5) may be written in a different way, as stated by the
following proposition:

Proposition 5. (See [34].) Assume that conditions (A1)–(A5) are satisfied, and 0 is
a simple eigenvalue of A. Then in the nullvectors of A, vi > 0 and wi > 0 for i =
1, . . . ,m, vi = 0 for i = m+ 1, . . . , n, and

a =
1

2

m∑
i,j,k=1

viwjwk

(
1

2

∂2fi
∂xj∂xk

(x0, 0) +

n∑
l=m+1

αlk
∂2fi
∂xj∂xl

(x0, 0)

)
(7)

with [αlk], l = m + 1, . . . , n, k = 1, . . . ,m, denoting the (l −m, k) entry of −J−14 J3,
where J3 and J4 are the lower blocks of A, as defined in Proposition 2.

We are now in position to prove the main result of this note.

Proof of Proposition 1. Due to Proposition 3, hypotheses (i)–(iii) are satisfied. There-
fore, in order to prove that the transcritical bifurcation is forward, we have to show that
the coefficient a of the normal form, given by (7), is negative. Now, (H1)–(H2) imply
that the nonlinear terms are bilinear terms involving one infected and one uninfected
compartments, so that

∂2fi
∂xj∂xk

= 0, j, k = 1, . . . ,m. (8)
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Moreover, note that (H1)–(H2) imply also that there are no negative bilinear terms in the
equations of infected compartments, so that

∂2fi
∂xj∂xl

> 0, j = 1, . . . ,m, l = m+ 1, . . . , n. (9)

Now, let us focus on the terms αlk, that is the (l −m, k) entry of −J−14 J3 (see Proposi-
tion 5). Hypothesis (H3) ensures that J3 has nonnegative entries. On the other hand, taking
into account that the functions F and V represent directed transfer of individuals and that
the entries of J4, due to hypothesis (H1), are given by the opposites of the coefficients of
linear transfers between uninfected compartments, it follows that J4 is a squared matrix
with off diagonal nonpositive entries. Furthermore, from Proposition 2 and Remark 1 it
follows that J4 is a M -matrix and matrix J−14 has nonnegative entries. Hence, all the
terms αlk are nonpositive and this, together with (8) and (9), ensures that coefficient (7),
if not zero, is negative. In view of Proposition 4, we can conclude that the bifurcation of
system (2) at R0 = 1 is forward.

4 SIS model with vaccine and treatment

In a recent paper [6], the theory described in the previous section has been applied to an
SIS epidemic model which includes a general force of infection, an imperfect preventive
vaccine and treatment. We recall the main results obtained in [6] and discuss them in view
of the aims of this paper, that is to detect the parts of the model’s mathematical structure
that might be responsible of a given direction (forward or backward) of the transcritical
bifurcation.

The model is given by the following nonlinear ordinary differential equations:

Ṡ = π − cβ1F (I)S − (ξ + µ)S + αI,

V̇ = ξS − cβ2F (I)V − µV,
İ = cβ1F (I)S + cβ2F (I)V − (α+ µ)I.

(10)

Here the state variables are the fractions in which the host population is divided: S, V and
I denote the size of compartments of susceptible, vaccinated and infectious individuals,
respectively. All the parameters are positive constants with the following interpretation:
π is the recruitment rate of susceptibles; β1 and β2 are the transmission probabilities of
susceptibles and vaccinated individuals, respectively; c is the average number of contact
partners; ξ is the vaccination rate of susceptibles; α is the therapeutic treatment rate of
infectious individuals; µ is the natural death.

The treatment does not confer permanent immunity, so that a linear transfer (at rate α)
goes from I to S. The disease transmission is represented by a general force of infection,
F (I) ∈ C2(R) such that F (0) = 0, and F (I) > 0 for I > 0.

The following assumptions are also considered: (i) β2 < β1, due to the fact that
vaccination can reduce or eliminate the incidence of infection; (ii) the prevalent disease
does not kill infected individuals.
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Model (10), with a specific force of infection, has been originally introduced in [20],
and later generalized in [5, 6], where the occurrence of backward bifurcations and the
effect of nonlinear forces of infection have been studied.

It can be easily checked that model (10) admits the disease-free equilibrium

E0 =

(
π

ξ + µ
,

ξ π

µ(ξ + µ)
, 0

)
.

Taking the contact partners as bifurcation parameter, the following property holds: E0 is
locally stable when c < c∗, and unstable when c > c∗, where

c∗ =
µ(α+ µ)(ξ + µ)

πF ′(0)(β1µ+ ξβ2)
.

As a consequence, the critical value c = c∗ is a bifurcation value.
The next step is to investigate the nature of the bifurcation involving E0 at c = c∗.

Following the above procedure, in [6], it has been shown that coefficients (5) and (6) for
model (10) are given by

a = (µ+ α)

[
F ′′(0)

F ′(0)
− 2µa0
π(β1µ+ ξβ2)2

]
, b =

πF ′(0)(β1µ+ ξβ2)

µ(ξ + µ)
,

where

a0 = ξβ2(β1 − β2)(αc − α), αc =
ξ2β2

2 + β2
1µ

2 + ξµβ1β2 + ξβ2
2µ

ξβ2(β1 − β2)
.

The coefficient b, as expected, is always positive so that the local dynamics around E0 for
c = c∗ is determined by the sign of the coefficient a.

As a consequence, the following condition ensures the occurrence of a backward
bifurcation at c = c∗

F ′′(0)

F ′(0)
> K(αc − α), (11)

where

K =
2ξβ2µ(β1 − β2)
π(β1µ+ β2ξ)2

.

On the contrary, condition
F ′′(0)

F ′(0)
< K(αc − α) (12)

implies that a forward bifurcation occurs at c = c∗.
Conditions (11) and (12) put in evidence the interplay between the treatment rate and

the force of infection in determining the occurrence of forward or backward bifurcation.
In the special case of a linear force of infection, F (I) = I , it follows F ′(0) = 1 and
F ′′(0) = 0, so that backward (forward) bifurcation will occur at c = c∗ when α > αc
(α < αc).

Note also that α = 0 implies forward bifurcation.
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In [6], it has been also proved that:
• When the force of infection is a Michaelis–Menten functional, F (I) = I/(1 + I),

or a non-monotone functional, F (I) = I/(1 + I2), a threshold value αc between
forward and backward bifurcation still exists;

• When the force of infection is convex, F (I) = I(1 + I), then the backward
bifurcation occurs for every α > 0.

Summarizing, from conditions (11) and (12) the role played by any single parameter in
the occurrence of forward/backward bifurcation can be deduced, as well as the role played
by the force of infection. We see that the treatment must be greater than a threshold value,
although in some cases such threshold may be zero. In such cases, the backward bifurca-
tion occurs independently of the treatment values. On the other hand, other mechanisms
contribute to the occurrence of the phenomenon, as, for example, the level of vaccine
protection. In fact, in case of a perfect vaccine, β2 = 0, it can be seen that a > 0, only
if F ′′(0) > (2µ/π)F ′(0), and the backward bifurcation in several cases, as mass action
incidence, will not take place.

From the point of view of the mathematical structure, these results suggest that for this
model, a major role in determining the direction of the transcritical bifurcation is given
by the nonlinearity of the interaction term (transmission) and the linear transfer from the
infected to the susceptibles compartment (treatment).

This is in line with Proposition 1, as it will be underlined in the next section, where
several more examples taken from the literature will be also provided.

5 Applications

5.1 SIS model with treatment and imperfect vaccine

We begin with model (10), presented in the previous section. In this case, we can classify
the state variables as follows. Uninfected class: susceptibles S and vaccinated V. Infected
class: infectious I .

In the previous section, we have seen that backward bifurcation is possible if the force
of infection is nonlinear, or the force of infection is linear and the treatment is not zero
(α > 0). In the former case, hypothesis (H2) of Proposition 1 is not satisfied; in the
latter, hypothesis (H3) is not satisfied. On the other hand, we have also proved that α = 0
implies forward bifurcation in case of linear force of infection. Note that, in this case,
conditions (H1)–(H3) are satisfied.

We also stress that Proposition 1 is necessary but not sufficient for the occurrence of
backward bifurcation. Indeed, if β2 = 0, then condition (H3) is not satisfied due to linear
transfer from I to S (treatment). However, as we mentioned in the previous section, the
transcritical bifurcation is forward.

5.2 Model of hepatitis B and C virus

In [27], the transmission of hepatitis C and B viruses is studied by assuming that the virus
is present in two reservoirs, the liver and the blood of host individuals. The model is the
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following:

Ẋ = λx − βxXV − dxX,
Ẏ = βxXV − ayY,
V̇ = kxY + kzW − uV − αxβxXV − αzβzZV,
Ż = λz − βzZV − dzZ,
Ẇ = βzZV − awW.

(13)

The state variables are the target cells in liver (X) and blood (Z); the infected cells in liver
(Y ) and blood (W ) and the free virus (V ). HereX and Z belong to uninfected class; Y , V
and W belong to the infected class. The parameters are described in Table 1. This model
extends some previous models on HBV and HCV dynamics because the virions losses
when they infect healthy cells is explicitly taken into account (i.e., the terms αxβxXV
and αzβzZV in the r.h.s. of the third equation). In order to emphasize the role of these
two terms, we have slightly modified the original model by introducing the constants αx
and αz .

In [27], it is proved that if αx = 1 or αz = 1 (which means that condition (H1) of
Proposition 1 is not satisfied), then backward bifurcation occurs if (kz−aw)(kx−ay) < 0,
whereas forward bifurcation occurs if the reversed inequality holds. On the other hand,
it is also shown that if αx = 0 and αz = 0 (which means that conditions (H1)–(H3) are
satisfied), then forward bifurcation occurs.

5.3 Dengue transmission dynamics

Here we consider the model for the transmission dynamics of a strain of dengue disease,
including vaccination, studied in [17],

ṠH = ΠH + ωPH − ξSH − λHSH − µHSH ,
ṖH = ξSH − λH(1− ε)PH − ωPH − µHPH ,
ĖH = λH

[
SH + PH(1− ε)

]
− σHEH − µHEH ,

İH = σHEH − τHIH − µHIH − δHIH ,
ṘH = τHIH − µHRH ,
Ṡv = Πv − λvSv − µvSv,
Ėv = λvSv − σvEv − µvEv,
İv = σvEv − µvIv − δvIv.

(14)

The state variables are the humans susceptibles (SH ), vaccinated (PH ), exposed (EH ),
infectious (IH ), removed (RH ) and the vector susceptibles (Sv), exposed (Ev), infec-
tious (Iv).

Here the variables SH , PH , Sv , RH belong to uninfected class; the variables EH , IH ,
Ev and Iv belong to the infected class. The parameters are described in Table 2.
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Table 1. Description of parameters of model (13).

Parameter Description
λx (λz) Production rate of target cells in liver (blood)
dx (dz) Death rate of target cells in liver (blood)
ay (aw) Death rate of infected cells in liver (blood)
kx (kz) Production rate of virus from infected cells in liver (blood)
βx (βz) Infected cells production rate in liver (blood)
αx, αz Virions decay constants
u Virus clearance rate

Table 2. Description of parameters of model (14).

Parameter Description
ΠH (Πv) Recruitment rate of humans (vectors)
λH (λv) Infection rate of susceptible humans (vectors)
µH (µv) Natural death rate of humans (vectors)
σH (σv) Progression rate to infectious of exposed humans (vectors)
δH (δv) Disease-induced death rate of humans (vectors)
kH (kv) Infection rate of humans (vectors)
τH Recovery rate of humans
ε Vaccination efficacy
ω Vaccination rate
ξ Waning rate of vaccination

In [17], it is proved that if the infection rates are given by the following nonlinear
terms:

λH = kH
ηvEv + Iv

SH + PH + EH + IH +RH
,

λv = kv
ηHEH + IH

SH + PH + EH + IH +RH
,

which means that condition (H2) is not satisfied, then backward bifurcation is possible
under certain conditions (see [17, Thm. 7]). However, if the forces of infection are linear,
that is:

λH = kH(ηvEv + Iv), λv = kv(ηHEH + IH),

which means that conditions (H1)–(H3) are satisfied, then forward bifurcation occurs
(see [17, Thm. 8]).

5.4 Exogeneous re-infection in TB

The synergistic interaction between HIV and mycobacterium tuberculosis has been in-
vestigated in [31] by using a compartmental model, which incorporates many biological
and epidemiological features of the two diseases. In particular, as suggested in [15], TB
infection is not only seen as progression from primary infection but also as possibility of
exogenous reinfection (i.e., acquiring a new infection from another infectious individual).

http://www.mii.lt/NA



Transcritical bifurcation in epidemic models 49

The model for the transmission dynamics of TB only is given by

Ṡ = Π − λS − µS,
L̇ = fλS + ρW − ηRλL− (α+ µ)L,

Ṫ = (1− f)λS + ηRλL+ αL− (τ + µ+ δ)T,

Ẇ = τT − (ρ+ µ)W,

(15)

where state variables are the susceptibles (S), newly-infected with latent-TB (L), infected
with active-TB (T ) and unprotected treated individuals (W ).

Here the variable S belongs to uninfected class; the variables L, T and W belong to
the infected class. The parameters are described in Table 3.

In [31], it is proved that if the force of infection is described by the nonlinear function

λ = β
T + ηTW

S + L+ T +W
,

which means that condition (H2) is not satisfied, then backward bifurcation is possible
when ηR is larger than a certain positive quantity [31, Thm. 3.9]. As a consequence,
backward bifurcation will not occur if ηR = 0. In other words, the model will not undergo
backward bifurcation in the absence of exogenous re-infection. A further confirm comes
from a global stability result for the disease-free equilibrium when the basic reproduction
number of model (15) is less than unity [19, Thm. 2].

We note that ηR = 0 implies that conditions (H1)–(H3) are satisfied, so that, according
to our criterion, forward bifurcation occurs.

We finally remark that neglecting the disease-induced mortality, i.e., by setting, δ = 0,
it follows that the limiting system has a mass-action incidence, however backward bifur-
cation may still occur (see [19]). On the other hand, when δ = 0 condition (H1) is not
satisfied due to the term −ηRλL in the right-hand side of second equation.

5.5 West Nile virus transmission

The following model for the transmission of the West Nile virus within the mosquito, bird
(intermediate host) and human population has been considered in [23]:

ṀS = λM − b1ΛMMS − µMMS ,

ṀI = b1ΛMMS − µMMI ,

ḂS = λB − b1ΛBBS − (µB + δB)BS ,

ḂI = b1ΛBBS − (µB + δB)BI − dBBI ,
Ṡ = λH − b2ΛHS − µHS,
Ė = b2ΛHS − αE − µHE,
İ = αE − δI − (dI + r + µH)I,

Ḣ = δI − dHH − τH − µHH,
Ṙ = τH + rI − µHR,

(16)
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Table 3. Description of parameters of model (15).

Parameter Description
Π Recruitment rate
β Effective contact rate
µ Natural death rate
α Progression rate to active TB of individuals with latent TB
ρ Progression rate to latent TB of treated individuals
ηT Weight parameter
ηR Probability of (exogeneous) re-infection of latently-infected individuals
f Fraction of newly-infected individuals with latent TB
1− f Fraction of newly-infected individuals with active TB
τ Treatment rate
δ Disease-induced death rate

Table 4. Description of parameters of model (16).

Parameter Description
λB (λH , λv) Recruitment rate of birds (humans, mosquitoes)
µB (µH , µv) Death rate of birds (humans, mosquitoes)
b Average biting rate of mosquitoes
b1β1 (b1β2) Transmission rate from birds to mosquitoes (from mosquitoes to birds)
b2β3 Transmission rate from mosquitoes to humans
dB (dI , dH ) Disease-induced death rate of birds (infectious humans, hospitalized)
δB Migration rate of birds
α Progression rate of humans from latent to infectious
δ Hospitalization rate of humans
r (τ ) Recovery rate of infectious (hospitalized) humans

where state variables are the susceptible (MS) and infected (MI ) mosquitoes; the sus-
ceptible (BS) and infected (BI ) birds; the susceptible (S), exposed (E), infectious (I),
hospitalized (H) and recovered (R) humans.

In this case, the variables MS , BS , S, H and R belong to uninfected class; the
variables MI , BI , E, I belong to the infected class. The parameters are described in
Table 4.

The forces of infection are nonlinear (so that condition (H2) is not satisfied) and
given by

ΛM = β1
BI

BS +BI
, ΛB = β2

MI

BS +BI
, ΛH = β3

MI

S + E + I +H +R
.

In [23], it is proved that backward bifurcation occurs under certain conditions. However,
when the disease-induced deaths are neglected (dB = dI = dH = 0) the limiting system
has a mass-action incidence (so that conditions (H1)–(H3) are satisfied) and the forward
bifurcation occurs.

5.6 HIV infection model

In [36], a mathematical model for the HIV infection was developed based on vectored
immunoprophylaxis experiments. The major novelty of the model, compared to previous
HIV models, is that it includes the production and losses of antibodies in humoral immune
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Table 5. Description of parameters of model (17).

Parameter Description
λ Recruitment rate of uninfected cells
d Natural death rate of healthy cells
β Infection coefficient
δ Death rate of infected cells
N Total number of free virus particles released by

each productively infected cells over its lifespan
c Clearance rate of virus particles
p Killing rate of antibodies
q Loss rate of antibodies
a Production rate of antibodies
b Clearance rate of antibodies

response. It is shown that the introduction of vectored immunoprophylaxis can induce
backward bifurcation. The model is the following:

Ṫ = λ− dT − βTV,
Ṫ ∗ = βTV − δT ∗,
V̇ = NδT ∗ − cV − pAV,
Ȧ = µ− bA− qAV,

(17)

where state variables are the healthy cells T , the antibodies in humoral immune re-
sponse A, the infected cells T ∗ and the virus V . Here, the variables T and A belongs
to uninfected class; the variables T ∗, V belong to the infected-class. The parameters are
describedin Table 5.

In [36], it has been proved that backward bifurcation occurs if β < pdqµ/(b(cb+pµ)).
On the other hand, condition (H1) is not satisfied because of the negative bilinear term
−pAV in the third equation. However, if the virus losses are neglected (p = 0), so that
conditions (H1)–(H3) are fulfilled, then forward bifurcation occurs.

6 Concluding remarks

In this paper, we give a criterion in form of sufficient conditions for the occurrence of
forward bifurcation and necessary conditions for the occurrence of backward bifurcation
in epidemic models.

We provide several applications to models from the literature, including transmission
of hepatitis, tuberculosis, dengue, West Nile virus and HIV.

Our result comes as a corollary of the theory developed in [10,14,34] and gives a direct
way to evaluate the direction of the transcritical bifurcation by simply looking at the model
structure.

We stress that the criterion does not include the possibility of nonlinearities other
than transmission, as for example the nonlinear treatment term considered in [35], which
results in backward bifurcation from an endemic (disease-present) equilibrium.
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We feel that once that many investigations on the same phenomena for models with
a similar structure are available from the literature, the necessity of general criterion
based on the mathematical common aspects arises. This paper is therefore intended to
give a contribution, albeit small, in this direction.

Acknowledgments. We thank an anonymous referee for his/her useful comments and
D. Lacitignola for her kind suggestions.

Appendix: Derivation of the normal form

It is well know that the centre manifold theorem ensures the existence of the manifold [18]

W c =
{
(xc, y): y = h(xc)

}
,

where xc ∈ Ec = R, y ∈ Es = R(n−1), and

h: Ux0 ⊂ R→ R(n−1), h(x0) = 0, Dh(x0) = 0.

Introduce now vα and wα, left and right eigenvectors of A corresponding to the αth
eigenvalue λα with α = 1, . . . , n (denote by vn := v and wn := w the eigenvectors
corresponding to the zero eigenvalue, taken such that v ·w = 1).

Since in our setting Rn can be decomposed as Rn = Ec ⊕ Es ≡ span(v)⊕ Es, the
center manifold may be parameterized by u(t) and decomposed into Ec and Es to give

W c =
{
x = x0 + u(t)w + z(u, µ)

}
,

where z(u, µ) =
∑n−1
α=1 βαwα is orthogonal to v and is second order in both u and µ.

Moreover, the center manifold W c is invariant under ẋ = f(x, µ) so that

ẋ = u̇w +
dz

dt
= f
(
x0 + u(t)w + z(u, µ), µ

)
.

Multiplying by v, we get

v · u̇w + v · dz
dt

= v · f .

Observe that v · u̇w = u̇v ·w = u̇; and v · z = 0⇒ v · dz/dt = 0, so that

u̇ = v · f
(
x0 + u(t)w + z(u, µ), µ

)
.

By expanding in Taylor series, we obtain

u̇ = v ·
[
f(x0, 0) +Dµf(x0, 0)µ+Dxf(0, 0)(x− x0) +

1

2
Dµµf(x0, 0)µ

2

+Dxµf(x0, 0)µ(x− x0) +
1

2
Dxxf(x0, 0)(x− x0)

2 +O(3)

]
,

http://www.mii.lt/NA



Transcritical bifurcation in epidemic models 53

whereO(3) denotes terms that are third order or higher. In this last equality, several terms
vanish to give

u̇ = v ·Dxµf(x0, 0)µ(x− x0) + v · 1
2
Dxxf(x0, 0)(x− x0)

2 +O(3).

Recall that x− x0 = u(t)w + z(u, µ), so that we have

u̇ = v ·Dxµf(x0, 0)µ(uw + z) + v · 1
2
Dxxf(x0, 0)(u

2w2 + z2 + 2uw · z) +O(3).

Since z is second order in both u and µ, it follows:

u̇ =
v

2
·Dxxf(x0, 0)w

2 u2 + v ·Dxµf(x0, 0)w µu+O(3).

Consider now quantities (5) and (6). Then, for |µ| < δ, the normal form (4) follows.

References

1. R.M. Anderson, R.M. May, Infectious Diseases in Humans: Dynamics and Control, Oxford
University Press, Oxford, 1991.

2. J. Arino, C.C. McCluskey, P. van den Driessche, Global results for an epidemic model with
vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64:260–276, 2003.

3. F. Brauer, Backward bifurcations in simple vaccination models, J. Math. Anal. Appl., 298:418–
431, 2004.

4. F. Brauer, P. van den Driessche, J. Wu (Eds.), Mathematical Epidemiology, Lect. Notes Math.,
Math. Biosci. Subser., Vol. 1945, Springer, Berlin, 2008.

5. B. Buonomo, D. Lacitignola, On the backward bifurcation of a vaccination model with
nonlinear incidence, Nonlinear Anal. Model. Control, 16:30–46, 2011.

6. B. Buonomo, D. Lacitignola, Forces of infection allowing for backward bifurcation in an
epidemic model with vaccination and treatment, Acta Appl. Math., 122:283–293, 2012.

7. B. Buonomo, C. Vargas-De-León, Stability and bifurcation analysis of a vector-bias model of
malaria transmission, Math. Biosci., 242:59–67, 2013.

8. V. Capasso, Mathematical Structures of Epidemic Systems, Lect. Notes Biomath., Vol. 97,
Springer, Berlin, 1993.

9. C. Castillo-Chavez, Z. Feng, W. Huang, On the computation R0 and its role on global stability,
in: C. Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A.A. Yakubu (Eds.),
Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction,
IMA Vol. Math. Appl., Vol. 125, Springer, 2002, pp. 229–250.

10. C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math.
Biosci. Eng., 1:361–404, 2004.

11. A. d’Onofrio, P. Manfredi (Eds.), Modeling the Interplay Between Human Behavior and the
Spread of Infectious Diseases, Springer, 2013.

Nonlinear Anal. Model. Control, 20(1):38–55



54 B. Buonomo

12. O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases. Model
building, Analysis and Interpretation, John Wiley & Sons, Chichester, 2000.

13. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the
basic reproductive ratio, R0 in models of infectious diseases in heterogeneous populations,
J. Math. Biol., 28:365–382, 1990.

14. J. Dushoff, W. Huang, C. Castillo-Chavez, Backward bifurcations and catastrophe in simple
models of fatal diseases, J. Math. Biol., 36:227–248, 1998.

15. Z. Feng, C. Castillo-Chavez, A.F. Capurro, A model for tuberculosis with exogenous
reinfection, Theor. Popul. Biol., 57:235–247, 2000.

16. M. Fiedler, V. Pták, Some generalizations of positive definitness and monotonicity, Numer.
Math., 9:163–172, 1966.

17. A.M. Garba, A.B. Gumel, M.R. Abu Bakar, Backward bifurcation in dengue transmission
dynamics, Math. Biosci., 215:11–25, 2008.

18. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of
Vector Fields, Springer, Berlin, 1983.

19. A.B. Gumel, Causes of backward bifurcations in some epidemiological models, J. Math. Anal.
Appl., 395:355–365, 2012.

20. A.B. Gumel, S.M. Moghadas, A qualitative study of a vaccination model with non-linear
incidence, Appl. Math. Comput., 143:409–419, 2003.

21. K.P. Hadeler, P. van den Driessche, Backward bifurcation in epidemic control, Math. Biosci.,
146:15–35, 1997.

22. H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42:599–653, 2000.

23. J. Jiang, Z. Qiu, J. Wu, H. Zhu, Threshold Conditions forWest Nile Virus Outbreaks, Bull.
Math. Biol., 71:627–647, 2009.

24. C.M. Kribs-Zaleta, M. Martcheva, Vaccination strategies and backward bifurcation in an age-
since-infection structured model, Math. Biosci., 177/178:317–332, 2002.

25. C.M. Kribs-Zaleta, J.X. Velasco-Hernandez, A simple vaccination model with multiple endem-
ic states, Math. Biosci., 164:183–201, 2000.

26. Z. Ma, Y. Zhou. J. Wu (Eds.), Modeling and Dynamics of Infectious Diseases, Ser. Contemp.
Appl. Math. CAM , Vol. 11, World Scientific, New Jersey, 2009.

27. R. Qesmi, J. Wu, J. Wu, J.M. Heffernan, Influence of backward bifurcation in a model of
hepatitis B and C viruses, Math. Biosci., 224:118–125, 2010.

28. T.C. Reluga, J. Medlock, A.S. Perelson, Backward bifurcations and multiple equilibria in
epidemic models with structured immunity, J. Theor. Biol., 252:155–165, 2008.

29. O. Sharomi, A.B. Gumel, Re-infection-induced backward bifurcation in the transmission
dynamics of Chlamydia trachomatis, J. Math. Anal. Appl., 356:96–118, 2009.

30. O. Sharomi, C.N. Podder, A.B. Gumel, E.H. Elbasha, J. Watmough, Role of incidence function
in vaccine-induced backward bifurcation in some HIV models, Math. Biosci., 210:436–463,
2007.

http://www.mii.lt/NA



Transcritical bifurcation in epidemic models 55

31. O. Sharomi, C.N. Podder, A.B. Gumel, B. Song, Mathematical analysis of the transmission
dynamics of HIV/TB coinfection in the presence of treatment, Math. Biosci. Eng., 5:145–174,
2008.

32. D.D. Šilijak, Large-Scale Dynamical Systems. Stability and Structure, Dover Publications, New
York, 1978.

33. P. van den Driessche, J. Watmough, A simple SIS epidemic model with a backward bifurcation,
J. Math. Biol., 40:525–540, 2000.

34. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equi-
libria for compartmental models of disease transmission, Math. Biosci, 180:29–48, 2002.

35. W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201:58–
71, 2006.

36. X. Wang, W. Wang, An HIV infection model based on a vectored immunoprophylaxis
experiment, J. Theor. Biol., 313:127–135, 2012.

Nonlinear Anal. Model. Control, 20(1):38–55


	Introduction
	Sufficient conditions for forward bifurcation
	Centre manifold analysis
	SIS model with vaccine and treatment
	Applications
	SIS model with treatment and imperfect vaccine
	Model of hepatitis B and C virus
	Dengue transmission dynamics 
	Exogeneous re-infection in TB
	West Nile virus transmission
	HIV infection model

	Concluding remarks
	Appendix

