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Abstract. Usually, the various empirical and semi-empirical equations and mathematical models are
used to study the dynamics of socio-economic systems. In this case, there are very often questions
related to the validity of application of such equations and models.

In this paper, it is shown that the dynamics of socio-economic systems can be described
by mathematical equations analogous to the motion equations that are well known in physics
(particularly in classical mechanics). In this connection, it is possible to say that the predictability
of the dynamics of a socio-economic system is described by the motion equations (i.e., Newton’s
equations) to the same degree that these equations predict the dynamics of the physical system.
Such models allow us to determine the trends of development in the dynamics of socio-economic
systems. The importance of this investigation in using adequate mathematical models is that they
allow us to notice those or other adverse trends in the socio-economic systems, therefore, ensuring
timely optimal management decisions.

Keywords: motion equations, system identification, making optimal management decisions,
mathematical models of socio-economic systems, predator–prey models, identification of
tendencies in the socio-economic systems.

1 Introduction

The development of mathematical models is very important for the adequate description
of the various processes that occur in socio-economic systems. These models identify
the hypothesis about the main factors of the development of socio-economic systems,
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which are expressed particularly in terms of satisfaction by social needs. The importance
of such models lies in the possibility of forecasting the final results of the evolution of
various socio-economic processes [17, 24]. During the development and implementation
of reform, the model allows us to take into account the problems that are most problematic
in terms of the development of the social sector, which may be both the direct targets of
state reform and the sources of risk. The identification of the main trends that prevail
in the dynamics of the socio-economic system and that determine its future evolution
is a key element in making certain management decisions. The possibility of predicting
the undesirable and uncontrolled aspects of the evolution of the processes before making
a decision allows the most optimal choice.

In previous years, for the description of the processes in socio-economic systems,
along with traditional statistical analysis and data processing, the methods based on the
use of approaches previously developed and used in physical sciences have been actively
developed [1, 15, 29, 35]. The mathematical formalism for analysing different aspects
of the evolution of the socio-economic system [27, 33, 36], including network meth-
ods [23], has been intensively developed. Moreover, in the studies of the dynamics of
socio-economic systems, the various phenomenological approaches based on physical
principles [12,16,22] as well as the mathematical models related to the class of so-called
predator–prey models [13, 20, 34, 38, 39], have been actively developed and applied. In
the listed papers, the Lotka–Volterra model is investigated. In one paper [13], the Lotka–
Volterra model was used to study the evolutionary dynamics of nationalism and migration.
In general, the models of population dynamics are used extensively to study various
processes of socio-economic dynamics [31, 32].

In our previous studies [3, 4, 5, 6, 7, 8, 9, 10, 11, 25, 26] the mathematical models based
on the predator–prey principles and intended for the investigation of the dynamics of
socio-economic systems are proposed and investigated. Such models were used for the
investigation of the dynamics of the socio-economic systems of Russia [3, 4, 5, 10, 11, 25,
26] and the United States [6, 7, 8, 9] at various stages of their evolution.

The predator–prey model allows us to identify the main trends of the dynamics of the
socio-economic system to a certain point in time, which determines its future evolution.
The main advantage of such mathematical models and methods of analysis is that they
may be used to control the dynamic states of socio-economic systems. By varying model
parameters that correspond to the change in impacts at various levels of governance at
certain time points, we can apply the model to determine the most acceptable tendencies
in the evolution of the socio-economic system in future. For example, it is possible to
obtain the estimation of results to which those or other tendencies that have prevailed
in the dynamics of the socio-economic system at present will lead in the future. If the
expected results in the future are not desirable, then on the basis of the model, it is possible
to define and develop such control actions for the socio-economic system that will initiate
the appearance of new tendencies that are favourable to long-term system functioning in
the desirable mode [10].

However, along with the effectiveness of the predator–prey model in the study of the
dynamics of socio-economic systems, there remains the question of the reasonableness of
its application in this field. This paper is devoted to the research of this problem.
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2 Interrelation between predator–prey models and motion equations

The complex system to which the socio-economic system belongs consists of a number of
interactions in accordance with certain laws of its constituent elements (i.e., subsystems).
Let us consider a complex system S. This system can be separated into a finite number
of parts Si, i = 1, . . . , n, called subsystems. It should be noted that the selection of
individual parts Si is not necessarily performed uniquely. As a rule, the decomposition
is caused by the aim and the research direction of specific features or steps of system
evolution. Subsystem Si, on the one hand, is a simpler part of a higher level, but on the
other hand, it may be a complex system of several elements of a lower level.

At each time t the element Si of a complex system S is located in one of the possible
states xi(t). From one state to another it passes under the influence of external factors
and internal patterns. Let us denote the ”force” of the interaction between the subsystems
Si and Sj through Fij . The dynamics of the behaviour of element Si of complex system
S is manifested in the following: the state of element Si and the output’s effects on other
elements Sj and j 6= i of a complex system at each time point are determined by the
previous states and by the input effects (including those at the moment of time t) on the
element Si from the other elements of the complex system (Fig. 1).

Usually, the dynamics of the continuous systems with lumped parameters are de-
scribed by a system of ordinary differential equations of the form

dx

dt
= f
(
xT,a, t

)
. (1)

Here x = (x1, . . . , xn)T is the vector of state variables of the system; t is the current time;
f(xT,a, t) is the vector-function (generally non-linear) that characterizes the internal
structure of the system; a = (a1, . . . , am) is the vector of system parameters that is
generally time-dependent.

It should be noted that the equations of system (1) are in fact motion equations if
the right-hand side of system (1) is interpreted as a type of force acting on the system S

Fig. 1. The scheme of interaction between the subsystems S1, S2, S3, . . . , Sn, belonging to the system S. By
the curves conditionally the “forces” of interaction between two subsystems are labeled.
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elements. In particular, if as the system elements Si, i = 1, . . . , n, consider the point
electric charges qi, i = 1, . . . , n, then the force of interaction between two charges qi and
qj is determined by Coulomb’s law

Fij =
kqiqj
R2

ij

.

Here k is the electric constant; Rij is the distance between two point electric charges qi
and qj .

Similarly, for the system S consisting of massive point bodies in accordance with
Newton’s law of universal gravitation, the force of interaction between two bodies with
masses mi and mj is expressed by the following equation:

Fij =
Gmimj

R2
ij

.

HereG is the gravitational constant;Rij is the distance between two massive point bodies
with masses mi and mj .

The state of such systems of point electric charges qi, i = 1, . . . , n, which have
the mass mi or massive point bodies interacting in accordance with the law of universal
gravity is determined by the motion equations (Newton’s second law)

mi
d2ri
dt2

=

n∑
j=1, j 6=i

Fij , i = 1, . . . , n. (2)

Here ri is the radius-vector that defines the position of the ith particle; Rij = |ri − rj |
is the distance between two massive point bodies with masses mi and mj . The system of
the second-order differential equations (2), taking into account the substitutions of view,

Y1i = ri, Y2i =
dri
dt
, i = 1, . . . , n,

can be represented as a system of differential equations of the first order

dY1i

dt
= Y2i, mi

dY2i

dt
=

n∑
j=1, j 6=i

Fij , i = 1, . . . , n. (3)

Taking into account that, for the particle with mass mi, the multiplication

miY2i = mi
dri
dt

= pi

determines its momentum pi, motion equations (2) (or equations (3)) also can be written
in the form of equations system

dpi

dt
=

n∑
j=1, j 6=i

Fij , i = 1, . . . , n. (4)
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Obviously, after the redesignation of some variables and parameters, the systems of ordi-
nary differential equations (3) and (4) will take the same form as in equations system (1).

It should be noted that it is not always possible in the system to distinguish the
individual elements (i.e., subsystems); the interactions are also described by such “sim-
ple” expressions, as considered in the above cases of interactions between point electric
charges or point massive bodies. In the study of complex system S when the question
about the laws that describe the interactions between its individual subsystems Si, i =
1, . . . , n, is open, some approximation methods, such as the Taylor series expansion of
the vector-function Fij in the right-hand sides of motion equations (2)–(4), are usually
applied.

Let the interaction intensity of the subsystems Si with each other be characterized by
set of variables ri, i.e., Fij = Fij(ri, rj). The Taylor series expansion to the second
order of vector-function Fij(ri, rj) at a point with coordinates (ri, rj) = (r0i, r0j) takes
the form of the following equation:

Fij(ri, rj) = Fij(r0i, r0j) + (ri − r0i)
∂Fij(ri, rj)

∂ri

∣∣∣∣ri=r0i
rj=r0j

+ (rj − r0j)
∂Fij(ri, rj)

∂rj

∣∣∣∣ri=r0i
rj=r0j

+
(ri − r0i)

2

2

∂2Fij(ri, rj)

∂r2i

∣∣∣∣ri=r0i
rj=r0j

+ (ri − r0i)(rj − r0j)
∂2Fij(ri, rj)

∂ri∂rj

∣∣∣∣ri=r0i
rj=r0j

+
(rj − r0j)

2

2

∂2Fij(ri, rj)

∂r2j

∣∣∣∣ri=r0i
rj=r0j

+ · · · . (5)

In equation (5), let us introduce the notation zi = ri − r0i, i = 1, . . . , n. Then, after the
introduction of designations Aij , Bij , Cij , Dij and Eij , equation (5) takes the following
form:

Fij(zi, zj) = Fij(0, 0) +Aijzi +Bijzj + Cijz
2
i + Dij(zizj) + Eijz

2
j + · · · . (6)

Here

Aij =
∂Fij(zi, zj)

∂zi

∣∣∣∣zi=0
zj=0

, Bij =
∂Fij(zi, zj)

∂zj

∣∣∣∣zi=0
zj=0

,

Cij =
∂2Fij(zi, zj)

∂z2i

∣∣∣∣zi=0
zj=0

, Dij =
∂2Fij(zi, zj)

∂zi∂zj

∣∣∣∣zi=0
zj=0

,

Eij =
∂2Fij(zi, zj)

∂z2j

∣∣∣∣zi=0
zj=0

.
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Thus, if we limit the terms of the Taylor series (6) to the second order, then motion
equations (3) will take the following form:

dY1i

dt
= Y2i,

mi
dY2i

dt
=

n∑
j=1, j 6=i

(
Fij(0, 0) +Aijzi +Bijzj + Cijz

2
i + Dij(zizj) + Eijz

2
j

)
,

i = 1, . . . , n.

(7)

Or, in case of using of equations of view (4), we have following equations:

dpi

dt
=

n∑
j=1, j 6=i

(
Fij(0, 0) +Aijzi +Bijzj + Cijz

2
i + Dij(zizj) + Eijz

2
j

)
,

i = 1, . . . , n.

(8)

In particular, if in the system of equations (7) and (8), Y2i = zi and Cij = 0, Eij = 0,
then we obtain the following system of equations:

mi
dzi
dt

=

n∑
j=1, j 6=i

(
Fij(0, 0) +Aijzi +Bijzj + Dij(zizj)

)
,

i = 1, . . . , n.

(9)

The mathematical model of form (9) describes the dynamics of a certain class of
complex systems. In particular, when n = 2, it represents the classic Lotka–Volterra
model (the predator–prey model), which describes the population dynamics of predators
and prey in the system in which the predators eat prey. In this case, the components
of the vector z = (z1, z2) represent the population size of predators (z1) and prey (z2)
accordingly.

In the case that n > 2, equations (9) can also be interpreted as a model that is related
to the class of predator–prey. In this case, for example, the ith element is a predator in
relation to some elements of a system and the prey in relation to the other elements. It
should also be noted that in equations (9), the assumptions Cij = 0 and Eij = 0 are not
required in a general case.

It is probable that the approximation of the right-hand sides of motion equations (3)
and (4) by the members of second-order Taylor series (5) and (6) is not sufficient for the
correct description of the dynamics of complex systems. In this case, it is necessary to add
to the right-hand side of motion equations (7) and (8) the members of the Taylor series of
the third or higher orders. In this case, motion equations (7) and (8) have to be different
from the equations of the classical Lotka–Volterra model in which in the right-hand sides
of the model equations, there are members of the Taylor series up to the second order
only. Thus, in the case that Y2i = zi, the system of differential equations in the vector
form describing the dynamics of the socio-economic system can be written in a general
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form as equations

mi
dzi
dt

=

n∑
j=1, j 6=i

(
Fij(0, 0)+Aijzi+Bijzj+Cijz

2
i +Dij(zizj)+Eijz

2
j +· · ·

)
,

i=1, . . . , n.

(10)

Here the values mi can be considered as some parameters of the system. It should also
be noted that in terms of equations (9) and (10) in the classical model of predator–prey,
it is reasonable to consider state variables z1 and z2, respectively, not as the numbers of
predators and prey but as the rate of the change of their numbers.

3 Identification of the parameters of motion equations

When studying the dynamics of complex systems by means of differential equation sys-
tems (7)–(10), a problem arises to determine the unknown parameters Fij(0, 0), Aij ,
Bij , Cij , Dij and Eij . If the dynamics of the physical system is analysed and separate
elements interact with each other, particularly in accordance with the laws of universal
gravity or Coulomb, then the mentioned parameters are the coefficients of expansion in
the Taylor series at the points with the coordinates (ri, rj) = (r0i, r0j) of the following
functions, respectively:

Fij =
kqiqj
R2

ij

, Fij =
Gmimj

R2
ij

.

In this case of the known masses mi of bodies or electric charges qi of the interacting
point bodies, all coefficients of the Taylor series can be easily calculated, and the number
of terms of the Taylor series is determined by the required accuracy of the calculations.
However, socio-economic systems cannot be shown by formulas that describe the interac-
tion of their individual subsystems (similar to the laws of universal gravity or Coulomb).
Therefore, the studying method of dynamics of the socio-economic system is, obviously,
used in which its main interacting elements, i.e., moving forces, are determined in the
first stage. Such elements, depending on the research aims, can be the following factors:
the consolidated budget revenues, the gross domestic product, the expenditure on science
funding, the incomes of the population, the size of population, the population’s welfare,
the capital flight, etc. The problem of choosing the basic interacting elements of socio-
economic systems was discussed in papers [3, 4, 5, 6, 7, 8, 9, 10, 11, 25, 26]. Therefore,
let us write the system of differential equations in one of forms (7)–(10). For example,
for the definition of the unknown coefficients Fij(0, 0), Aij , Bij , Cij , Dij and Eij , the
data from government statistics can be used. These coefficients are determined so that at
the specified time interval [t0, tF ], the discrepancy between the data of the government
statistics and the corresponding solutions of differential equations given in one of forms
(7)–(10) was minimal for each of the selected main interacting elements. The Levenberg–
Marquardt algorithm in the Fletcher modification [19, 21, 28, 30] is one of the most
effective methods for solving of this problem.
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The method of parametric identification by the Levenberg–Marquardt algorithm in
the Fletcher modification consists of minimizing the sum of squared discrepancies. The
discrepancies are determined by equation

r = |Z−Y|. (11)

The matrix

Y =

y(t1)
...

y(tl)


represents the experimental data obtained in the moments of time ti ∈ [t0, tF ]. Depending
on the subject area of research, as the such values y(ti) data from government statistics,
expert estimates, data from physical experiments or the indicators of continued monitor-
ing, etc., can be used. The matrix

Z =

z(t1,P)
...

z(tl,P)


represents the solutions of systems of differential equations, which are given in one of
forms (7)–(10). These solutions are taken at the appropriate time moments ti ∈ [t0, tF ].
Here P = P{Fij(0, 0), Aij , Bij ,Cij ,Dij ,Eijt} is the parameters vector, depending on
which of the differential equations systems of forms (7)–(10) have different solutions.

Thus, the goal is to obtain the regression of the vector-function z(t,P) on vector-
function y(t) at the specified time interval [t0, tF ]. At the same time, the column vector

r =

r(t1,P)
...

r(tl,P)


of discrepancy (11) should be minimal. For the definition of the minimum vector of
discrepancy r, the method of least squares is usually used:

S = rTr→ min . (12)

As a result of the minimization of value S, we obtain the vector of parameters Popt for the
system of differential equations given in one of forms (7)–(10), for which the solutions
zopt = z(t,Popt) on the specified time interval [t0, tF ] will be more accurately described
the vector-function y(t) of the experimental data.

The necessary conditions for a minimum of function (12) take the form∂S(P)/∂P1
...

∂S(P)/∂Pm

 = 2JTr = 2v = 0. (13)
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Here Pi is the component of the parameters vector P; m is the number of components
of the vector P; v = JTr; J is the Jacobi matrix, which is determined by the following
formula:

J =

∂r(t1,P)/∂P1 . . . ∂r(t1,P)/∂Pm
...

...
...

∂r(tl,P)/∂P1 . . . ∂r(tl,P)/∂Pm

 .

The vector v must strive to the zero vector at point Popt, corresponding to the optimal
parameter identification of models (7)–(10).

In the general case, the vector of parameters Popt cannot be obtained in explicit form
from equation (13). It must be calculated in the iterative process by using equation

P(k+1) = P(k) + ∆P(k). (14)

In the Levenberg–Marquardt method [21], the amendments ∆P(k) of iterative equa-
tion (14) are calculated by the following equation:(

A(k) + λ(k)D
)
∆P(k) = −v(k). (15)

Here λ(k) is the scaling parameter; D is the suitable diagonal matrix of weights, which
is often equal to the unit matrix I or D = diag(A(k)); A(k) = (JT)(k)J(k); J(k) is
the Jacobi matrix on the kth step of iteration. The idea of algorithm (15) belongs to
Levenberg [28]. Marquardt [30] improved the search strategy and introduced the diagonal
matrix of weights D = diag(A(k)) instead of unit matrix I. Then Fletcher [19] greatly
improved the strategy of Marquardt with an adaptation of parameter λ.

Iterations are repeated for as long as the following inequality (16) will not be correct:∣∣S(k+1) − S(k)
∣∣ < ε. (16)

Here S(k) is the sum of the squares of the discrepancies after k steps of iteration.
Previously, the application software realizing the algorithm of the identification (11)–

(16) of unknown parameters of the system of differential equations (7)–10, was developed
in paper [6]. It is noteworthy that in the case of an arbitrary number of elements of the
experimental data Y (i.e., in the case of an arbitrary length of time interval [t0, tF ] in
which the experimental data are taken), the mathematical model of forms (7)–(10) in
which the right-hand sides of the Taylor series are taken into account to only the second
order may not provide the desired accuracy in the description of experimental data. In this
case, it is necessary to take into account the right-hand sides of motion equations (7)–(10)
with members of higher-order Taylor series. However, this increases the intensity of the
computation process in the case of the identification of unknown model parameters.

If the number of elements of experimental data Y are not arbitrary but according to
certain criteria, then in some cases, it is possible to achieve at the specified time interval
[t0, tF ] a desirable agreement between vectors Y and Z in the case of the use of equa-
tions (7)–(10) with right-hand sides in which there are Taylor series with members only
up to the second order. To determine this time interval [t0, tF ] in the designed application
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software [6], the retrospective analysis of the changes of the observed trends Y of the
dynamics of a complex system with the help of the wavelet analysis is used. As a result
of this analysis of frequency changes corresponding to the local maximums of energy in
the wavelet spectrum of appropriate experimental data

Y =

y1(t0) . . . yn(t0)
...

...
...

y1(tF ) . . . yn(tF )

, (17)

the choice of data is made with the necessary step of discretization for further use of the
identification of parameters of motion equations, defined in one of forms (7)–(10).

It should also be noted that in equations (3) and (4) (and in equations (7)–(10)), in the
case of the investigation of physical systems, all values are specified in a certain system of
units, particularly in the international system of units SI. Therefore, there are no problems
connected with the calibration of the time scale t. In the case of the analysis of socio-
economic systems by using motion equations of one of forms (7)–(10), the problem
of the calibration of the time scale exists. The search strategy of the end tF of time
interval [t0, tF ] at the kth step of iteration, which is used in our algorithm, consists of
a corresponding decrease of the value tF M times in the case of fulfilling the following
mathematical inequality:

(
ZT
)(k)

Z(k) > M2
(
YT
)(k)

Y(k).

Here Y(k) is the experimental data obtained as a result of processing by using a wavelet
analysis (see formula (17)) at the kth step of iteration; Z(k) are the solutions of the one
of equations systems (7)–(10) at the kth step of iteration, which are computed at the same
points of the interval [t0, tF ] and the corresponding elements of the matrix (17); M is the
restrictive parameter that forms the search area [t0, tF ] of the solutions of motion equa-
tions. This parameterM has been introduced because of the poorly formalized constraints
of the parameters P in conditions in uncertainty of the time intervals of the solutions of
differential equations systems (7)–(10).

4 Investigation of the dynamics of the Russian socio-economic system

In the predator–prey model, the structure of inter-element interactions of which is shown
in Fig. 2, were chosen as key elements that determine the dynamics of the socio-economic
system in total: X1, denoting the incomes of consolidated budget x1; X2, denoting the
Gross domestic product (GDP) x2; X3, denoting the cost of funding for science x3;
X4, denoting the incomes x4 of the population; X5, denoting the outflow of capital x5.
The choice of this set of interacting elements X1, . . . , X5 is reasonable because they
characterize and determine the pace of the socio-economic development of the country as
a whole as well as the level of the welfare of the population.

Nonlinear Anal. Model. Control, 20(1):82–98
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Fig. 2. The structure of elements interaction of the socio-economic system in the predator–prey model.

In accordance with the interaction structure between predators and prey represented
in Fig. 2, the mathematical model can be written as the following equation system:

dx1
dt

= α1x1x2 − α2x1x3 − α3x1x4 − α4x1x5 − α5x1,

dx2
dt

= −β1x1x2 + β2x2x3 − β3x2x5 − β4x2,

dx3
dt

= γ1x1x3 − γ2x2x3 − γ3x3,

dx4
dt

= δ1x1x4 − δ2x4,

dx5
dt

= ϕ1x1x5 + ϕ2x2x5 − ϕ3x5.

(18)

In equations (18), the coefficients αi, βi, γi, δi and ϕi in a general case can depend on
time t. Let us assume that these coefficients are constants in the investigated time interval
[t0, tF ].

Summarizing the results of the studies [10,11], it can be argued that the predator–prey
model (18) adequately describes the dynamics of the Russian socio-economic system.
For example, from the study performed in paper [11], it follows that model (18) correctly
describes the socio-economic situation in the second half of the 1990s and the default that
occurred in Russia in 1998. In addition, from the analysis performed in papers [10,11], it
follows that the crisis phenomena after the year 2000 increased, especially in 2004–2005
and 2011–2012. These dates correlate with the years of presidential elections in Russia
(2004, 2008 and 2012). Apropos of 2008, it can be argued that the elections took place
with the background of the global financial crisis and a local crisis in Russia in 2008–
2009 that coincided with the global crisis. The results obtained in paper [10] show that
in maintaining the trends that have taken place in the Russian socio-economic system up
to the end of 2011, in the near future it will be particularly difficult in 2016–2017. It
should be noted that in paper [10], the identification of the parameters of model (18) in
accordance with algorithms (11)–(17) was performed with the use of data of government
statistics [2, 18] from 2000 to 2011, inclusively.

Let us analyse the dynamics of the Russian socio-economic system on the basis of
model (18) with the use of data from government statistics for the elements X1, . . . , X5

from 2005 to 2012 [2, 18]. The initial point of 2005 was studied in detail in paper [10].
During the identification of the unknown parameters of model (18), minimizing the
value S (see formula (12)), let us determine the optimal parameters vector Popt with
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which the solutions xi(t), i = 1, 2, . . . , 5, of model (18) most accurately describe quanti-
tatively and qualitatively the relevant data of government statistics in the analysed period
of time. The identification of the parameters of differential equations system (18) gives
the following their optimal values (19) in the time interval from 2005 to 2012:

α1 = 0.0098, α2 = 0.00158, α3 = −5.8111 · 10−4,

α4 = 0.0021, α5 = 0.09122, β1 = −8.0666 · 10−4,

β2 = −3.7113 · 10−4, β3 = 3.8624 · 10−4, β4 = −0.01947,
(19)

γ1 = 0.002517, γ2 = 9.4216 · 10−4, γ3 = −0.07443,

δ1 = −3.8554 · 10−4, δ2 = −0.0935, ϕ1 = 0.00857,

ϕ2 = −0.00232, ϕ3 = 0.259.

The dependencies xi(t), i = 1, 2, . . . , 5, obtained by the numerical solution of system
of differential equations (18) with the coefficients (19) are represented in Fig. 3 (the
dashed curves). The solid curves in Fig. 3 correspond to the data from government
statistics from 2005 to 2012. The initial conditions xi (t0 = 2005 year), i = 1, 2, . . . , 5,
were set equal to the corresponding data of the statistics in 2005.

The dotted curves in Fig. 3 correspond to the solutions xi(t0), i = 1, 2, . . . , 5,
of the system of differential equations (18) in the case, when for the identification of
unknown parameters vector P the data from government statistics from 2005 to 2011,
inclusively, were applied. The initial conditions, as in the previous case, were set equal to
the corresponding data of statistics in 2005. In this case, the optimal values of coefficients
of model (18) are as follows:

α1 = 0.001, α2 = 0.0015, α3 = −5.1099 · 10−4,

α4 = 0.002, α5 = 0.0913, β1 = −8.2943 · 10−4,

β2 = −4.601 · 10−4, β3 = 4.0486 · 10−4, β4 = −0.0193,
(20)

γ1 = 0.0024, γ2 = 9.6204 · 10−4, γ3 = −0.0744,

δ1 = −4.0673 · 10−4, δ2 = −0.0937, ϕ1 = 0.0091,

ϕ2 = −0.0027, ϕ3 = 0.2587.

The dashed curves in Fig. 3, which are extended outside the 2012 year, show the
dynamics of the Russian socio-economic system after 2012 in terms of the elements
X1, . . . , X5 in the case that the same trends that were established in the system at the
end of 2012 are retained. Similarly, the dotted curves in Fig. 3 show the dynamics of the
Russian socio-economic system in the case that the trends that were established in the
system by the end of 2011 remain unchanged in the future.

The comparison of the sets of parameters (19) and (20) of model (18) shows that
most significantly (approximately 10 times) only coefficient α1 has changed, while other
parameters have changed slightly. However, as a result, the solutions of model (18) have
qualitatively changed their patterns in the long-term. The parameter α1 is contained in
the first equation of model (18) as a multiplier in a member of the α1x1x2 type. The
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Fig. 3. The simulation results. The solid curves correspond to the data from government statistics from 2005
to 2012. The dashed curves correspond to the solution of model (18) with coefficients (19). The dotted curves
correspond to the solution of model (18) with coefficients (20). Here RUR are Russian Rubles.

function x1(t) describes the dynamics of the incomes of consolidated budgets, and the
function x2(t) describes the dynamics of GDP. Therefore, it is possible to conclude that
after the presidential elections in Russia in 2012, the change of the socio-economic course
implemented in the country has moved in the direction of the dynamic correction of
the incomes of consolidated budgets and GDP. Thus, in the case of the dotted curves
in Fig. 3, the decrease after 2011 of the incomes of consolidated budgets (the function x1)
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and GDP (the function x2) and the simultaneous increase of budget spending on science
funding (the function x3) and incomes of the population (the function x4 correspond to
the occurrence of high inflation and, consequently, the printing of money. Policy revisions
in the socio-economic field in 2012 likely consisted of the fact that the continued growth
of the incomes of consolidated budgets and GDP (see the dashed curves in Fig. 3) will
occur in the next few years. However, in this case, the tendencies of the decrease of
budget spending on science funding and of the incomes of the population are observed
(see the dashed curves x3(t) and x4(t) in Fig. 3 accordingly). At the same time, in the
case of the conservation of established trends, the capital outflow increases after 2012
(the dashed curve x5(t) in Fig. 3). This means that in the country in the coming years, the
policy of raising incomes of consolidated budgets and GDP will be implemented without
investing sufficient funds in the development of the socio-economic field. Such trends in
the Russian socio-economic system that emerged by the end of 2012, will lead to a highly
unstable situation in the country in the coming years.

At the same time, it was noted in paper [10] that in the case of the further development
of the socio-economic system of Russia in accordance with the trends that emerged at the
end of 2011, it will come to the so-called blow-up regime in 2017. The blow-up regime
is understood to occur when the behaviour of one or several functions xi(t) of the system
state begin to grow uncontrollably during the small time interval ∆t [14]. Obviously, the
real systems do not have resources for a sustainable existence in the blow-up regime. The
analysis of the dashed curves in Fig. 3 shows that the trend that will lead to a system under
the blow-up regime, which was observed when using the data from government statistics
from 2005 to 2011 (the dotted curves in Fig. 3) for the identification of model parameters,
has not changed. Possibly, the trends that emerged at the end of 2012 year will lead to the
failure of the socio-economic system of Russia in the blow-up regime just before 2017.
This fact by rapid growth of functions x2(t) and x5(t) is shown (see the dashed curves in
Fig. 3).

Thus, it is possible to conclude that in Russia, both short-term and long-term plans
of socio-economic development are absent. The state’s socio-economic policy will be
carried out from the most recent presidential elections until the next.

It should be noted that the divergence between the statistical data and the simulation
results of equations (18) is large (see Fig. 3). To provide greater accuracy, it is necessary
to include terms from the Taylor series of higher orders in the right-hand sides of the
equations of system (18). This leads to an increase in the complexity of solving the
identification problem of the model parameters (see equations (11)–(17)). However, for
the identification of key trends of the dynamic evolution of socio-economic systems, it is
sufficient to use the models that are similar to equation system (18) in the right-hand sides
of the equations, of which there are members of the Taylor series up to second order.

5 Conclusions

The models of the predator–prey class are widely used for research on socio-economic
systems. In addition to the papers listed above, which are devoted to the predator–prey
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models, paper [37] should be mentioned. This research [37] applies the Verhulst-Lotka-
Volterra (VLV) model to a social system in which individuals can choose how to follow
different ideologies or even be ideology-free individuals. Agents are influenced by binary
conversion (interpersonal contact) and unitary conversion (media influence).

The main aim of this study was to analyse the interrelations between the processes
in socio-economic systems and the physical processes that are described by motion equa-
tions. As a result of this research, it is shown that the dynamics of socio-economic systems
can be described by the mathematical equations that are analogues of the motion equations
(or Newton’s second law) that are well known in physics (particularly in classical mechan-
ics). Therefore, it is possible to confirm that the dynamics of socio-economic systems are
predictable to the same extent to which the dynamics of the physical system described by
the motion equations is predictable.

The models investigated allow us to determine the trends that are developed regarding
the dynamics of the socio-economic system. We need hardly mention that the modelling
and analysis of the trends that take place in socio-economic systems are extremely im-
portant for the timely assessment of the effectiveness of those or other accepted adminis-
trative decisions. It is obvious that the acceptance of effective administrative decisions
can help them be passed with minimal losses in crisis stages of the development of
socio-economic systems. Research on the basis of using adequate mathematical models
is important because it allows for the discovery of these or other undesirable trends in
the socio-economic system in advance. This allows the timely acceptance of effective
administrative decisions.
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