Compound orbits break-up in constituents: An algorithm

Jesús San Martín ${ }^{\text {a }}$, Antonia González Gómez ${ }^{\text {b }}$, María José Moscoso ${ }^{\text {a }}$, Daniel Rodriguez-Perez ${ }^{\text {c }}$
${ }^{\text {a }}$ ETSIDI, Technical University of Madrid (UPM)
Ronda de Valencia 3, 28012 Madrid, Spain
jesus.sanmartin@upm.es; mariajose.moscoso@upm.es
${ }^{\mathrm{b}}$ ETSIM, Techical University of Madrid (UPM)
Ciudad Universitaria s/n, 28040 Madrid, Spain antonia.gonzalez@upm.es
${ }^{\text {c }}$ Department of Mathematical Physics and Fluids, National Distance Education University (UNED) Senda del Rey 9, 28040 Madrid, Spain daniel@dfmf.uned.es

Received: July 18, 2013 / Revised: March 27, 2014 / Published online: November 14, 2014

Abstract

In this paper, decomposition of periodic orbits in bifurcation diagrams are derived in unidimensional dynamics system $x_{n+1}=f\left(x_{n} ; r\right)$, being f an unimodal function. We prove a theorem, which states the necessary and sufficient conditions for the break-up of compound orbits in their simpler constituents. A corollary to this theorem provides an algorithm for the computation of those orbits. This process closes the theoretical framework initiated in [J. San Martín, M.J. Moscoso, A. González Gómez, Composition law of cardinal ordering permutations, Physica D, 239:1135-1146, 2010]. Theorem 1 of present work closes the theoretical frame of composition and decomposition.

Keywords: visiting order permutation, next visiting permutation, decomposition theorem.

1 Introduction

Dynamical systems underlie in any science we can imagine, from mathematical to social sciences. Countless mathematical models have been developed to describe temporal evolution of the world around us: planets orbiting the Sun, flow of water in a river, people waving in a stadium, cells forming tissues in our body, cars moving along a road, etc. As a consequence of the extraordinary variety of phenomena studied, there exists a huge number of possible behaviors. An efficient way to address these issues is using symbolic dynamics [3]. In that case, the dynamical systems are modeled in a discrete space, resulting of a partition of phase space into disjoint regions. Every region is labeled by a symbol. System evolution is given by a sequence of symbols, each of them representing a region
of the system. Although one might think that no crucial information about the system may be obtained by this process there are some groundbreaking results in this subject. Special attention should be given to pioneering works by Metropolis et al. [11] about symbolic sequences and by Milnor and Thurston [12] who developed the kneading theory. In this context, Byers seminal work [4] becomes useful for our work as we will show later. Byers states the conditions an application has to fulfill to serve as a "model" for the behavior of a more general set of functions. This result will endow our theorems with further reach and generality than could be thought of at a first sight. In particular, kneading theory is more easily understood when the dynamical system

$$
\begin{equation*}
x(n+1)=f(x(n)) \tag{1}
\end{equation*}
$$

is ruled by an unimodal function, the function we will work with in this paper. The relationship between periodic orbits of unimodal functions (those we will focus on) and kneading theory was given by Jonker [10]. Jonker found the precise relationship between the periodicity of the orbit of a point and the periodicity of the invariant coordinate of that point. Some tools we will need to harness the power of symbolic dynamics are periodic orbits. They have a periodic symbolic sequence and play an important role in dynamical systems, in particular the unstable ones as we will see later.

The composition law of Derrida et al. [7] allows the generation of a symbolic sequence of complex structure from its constituents (periodic orbits). In particular, starting from the symbolic sequence of the supercycle of period one it is possible to build up symbolic sequences of Feigenbaum cascade orbits [8, 9]. So, one of the most important ways of transition to chaos is characterized. But not only that, by using saddle-node bifurcation cascades [15] and symbolic sequences of Feigenbaum cascade orbits, the structure of chaotic bands of the bifurcation diagram is also characterized (see Fig. 1). Working with an unimodal function, the symbolic sequence is obtained as follows: the critical point of unimodal function is denoted by C, points located to the right of C are denoted R (right) and the ones located to its left as L (left). However, if we label the points in the orbit with natural numbers ordering their positions relative to each other, then every periodic orbit can be associated with a permutation. There are permutations that give rise to the visiting order in Feigenbaum cascade orbits [16] and there exists a composition law of permutations [17] replacing the composition law of Derrida et al. Consequently, the characterization of bifurcation diagram structure is given by permutations. We have just outlined how to build up the bifurcation diagram from its constituents. From a mathematical point of view, however, it would be interesting to solve the inverse problem: what are the constituents of a complex structure? More specifically, given a structure we would like to answer two questions:
(i) Can we break down the structure? That is, is the structure made up of smaller constituents?
(ii) If the answer to the first question is in the affirmative, how can we break down the structure and what are its constituents?
In other words, we are looking for the necessary and sufficient conditions that allow a structure to be decomposed into its constituents. That is the goal of this paper.

Fig. 1. Canonical bifurcation diagram. 3, 3 2 2, 3 2^{2} and 4-periodic windows are marked. Some Misiurewicz points (A, B, C) where chaotic bands merge are shown above. A fractal structure can be observed in the bifurcation diagram. Compound orbits generating this fractal structure can be splited by using the algorithm in Section 4.

Solving the inverse problem of composition is already interesting because we complete the composition-decomposition problem. But the most important consequence is that the decomposition process is not limited to stable orbits; unstable orbits may also be obtained from such a process. The understanding of unstable orbits (limit cycles) is fundamental because they are the underlying skeleton of chaotic attractors [2, 6]. The shorter the cycles, the better the approximation to the strange attractor [5], that is why it is interesting to split large cycles into smaller constituents. On the other side, the unstable orbits in the skeleton are the corner-stones of many chaos control techniques [13, 14]. To implement theses techniques the unstable orbits need to be determined beforehand.

Orbital decomposition can also be applied to continuous dynamical systems. They can be cast as discrete dynamical systems by using Poincaré section. Points of Poincaré section corresponding to a continuous orbit lay out a periodic orbit in a discrete space. If that orbit can be decomposed then the continuous orbit is a composed orbit. Decomposition of these orbits is crucial to calculate Gutzwiller trace formula [21], which relates spectrum of quantum system with periodic orbits of the equivalent semiclassical system. Roughly speaking, decomposition law of periodic trajectories will be useful every time cycle expansion techniques [1] are being used.

Decomposition law is also important from a practical or experimental point of view. For example, if we have a 12 -periodic orbit we may be interested in knowing if the orbit is located in a primary period 12 window or in a period 3 window inside of a period 4 window (see Fig. 2).

The first appearance orbits in the chaotic bands of the logistic map bifurcation diagram follow Sharkovsky's ordering [20]. The decomposition of a $q \cdot 2^{p}$-periodic orbit within the 2^{p}-chaotic band (see Fig. 1) will lead to a period q orbit located within the 2^{0}-chaotic

Fig. 2. Highlight of the 3-periodic window of Fig. 1. This window mimics the canonical bifurcation diagram but repeated three times. The $3 \cdot 4$-periodic window is marked.
band and the 2^{p}-periodic orbit of Feigenbaumn's cascade [15]. It was Jonker [10] who proved Sharkovsky's theorem in the context of kneading theory, showing that kneading theory underlies orbit composition processes.

A very intuitive way of looking at the decomposition process exists. If we have a period $h s$ orbit, that is with $h s$ points, we can imagine that every point is a chair in a room. The chairs are visited according to a permutation β_{s}. We split the $h s$ chairs into h rooms with s chairs each. We visit the rooms in accordance to one permutation β_{h} and every time we visit the same room we sit down in a different chair of the room due to another permutation β_{s}. We must find β_{h} and β_{s} from $\beta_{h s}$. We are going to solve this task by using of couple of tricks. If we leave only one chair in every room the result would be like an h-periodic orbit such that a point is located at the critical point C of the unimodal function f of (1) and the rest of points are located where f is either increasing or decreasing. The chairs of a room located where f is increasing (decreasing) are mapped into the next room preserving their relative location (flipped from right to left). So, we split the $\beta_{h s}$ permutation into h rooms of s elements each, in such a way that images of these sets (except one of them) are either preserved or flipped from right to left. The set whose elements are neither preserved nor flipped will be β_{s}, because they are the chairs of the room associated with the critical point C.

This paper is organized as follows. Definitions and notations are introduced in Section 2 . Next, we prove decomposition theorem to solve the mentioned problems. Then we develop an algorithm to implement the theorem. We then finish with our conclusions. We will also show some examples to highlight how the theorems and algorithms work.

2 Definitions and notation

Let $f: I \rightarrow I$ be an unimodal map with critical point at C, that is, f is continuous and strictly increasing (decreasing) on $[a, C)=J_{\mathrm{L}}$ and strictly decreasing (increasing) on $(C, b]=J_{\mathrm{R}}$. Without loss of generality it can be assumed the critical point C is a maximum (see Fig. 3). So, f is decreasing in J_{R} and increasing in J_{L}. Let $O_{q}=$ $\left\{x_{1}, \ldots, x_{q}\right\}=\left\{C, f(C), \ldots, f^{q}(C)\right\}$ be a q-periodic supercycle of f and let $\left\{C_{(1, q)}^{*}\right.$, $\left.C_{(2, q)}^{*}, \ldots, C_{(q, q)}^{*}\right\}$ be the set that denotes the descending cardinality ordering of the orbit O_{q} [16]. Let $f\left(C_{(i, q)}^{*}\right)$ be the next to $C_{(i, q)}^{*}$ (see [17]).
Definition 1. The natural number $\beta(i, q), i=1, \ldots, q$, will denote the ordinal position of the cardinal point $f\left(C_{(i, q)}\right), i=1, \ldots, q$. That is, $f\left(C_{(i, q)}\right)=C_{(\beta(i, q), q)}, i=1, \ldots, q$ (see Fig. 4).

Remark 1. If c denotes the ordinal position of the critical point C of f as $f(C)$ is in the first position (see [16, Remark 1]), it results that $\beta(c, q)=1$.

Definition 2. We denote as β_{q} the permutation $\beta_{q}=(\beta(1, q) \beta(2, q) \ldots \beta(q, q))$. β_{q} will be called the next visiting permutation of O_{q} (see Fig. 4).
Remark 2. If the visiting order permutation is such that $f\left(C_{(i, q)}\right)=C_{(j, q)}$, that is, $C_{(i, q)} \rightarrow C_{(j, q)}$, we write

$$
\left(\begin{array}{ccc}
\cdots & i & \cdots \\
\cdots & j & \cdots
\end{array}\right)
$$

Fig. 3. 12-periodic orbit O_{12} whose next visiting permutation is $\beta_{12}=(121110932145678)$.

Fig. 4. Given $C_{(i, q)}$, the second label " q " indicates the period of the orbit (in this case, $q=4$). The first label " i " denotes ordinal position (1 2334) of the points on the orbit. According to the 4 -periodic orbit shown in the figure, the visiting order is $C_{(1,4)} \rightarrow C_{(4,4)} \rightarrow C_{(3,4)} \rightarrow C_{(2,4)}$ or, equivalently, $f\left(C_{(1,4)}\right)=C_{(4,4)}$, $f\left(C_{(2,4)}\right)=C_{(1,4)}, f\left(C_{(3,4)}\right) \stackrel{=}{=} C_{(2,4)}$ and $f\left(C_{(4,4)}\right)=C_{(3,4)}$. According to Definition 1, $f\left(C_{(i, q)}\right)=$ $C_{(\beta(i, q), q)}$, consequently, $\beta(1,4)=4, \beta(2,4)=1, \beta(3,4)=2, \beta(4,4)=3$. Hence, according to Definition 2, $\beta_{4}=\left(\begin{array}{lll}4 & 1 & 2\end{array}\right)$.
then we reorder the pairs $\binom{i}{j}$ in such a way that the index i has the natural order. For example, let O_{4} be a 4-periodic orbit (see Fig. 4) with visiting order permutation

$$
1 \rightarrow 4 \rightarrow 3 \rightarrow 2
$$

so, we write

$$
\left(\begin{array}{llll}
1 & 4 & 3 & 2 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
4 & 3 & 2 & 1
\end{array}\right) \Longrightarrow\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
4 & 1 & 2 & 3
\end{array}\right) .
$$

After reordering we obtain the next visiting permutations

$$
\beta_{4}=\left(\begin{array}{llll}
4 & 1 & 2 & 3
\end{array}\right) .
$$

Definition 3. Let β_{q} be the next visiting permutation of O_{q} and let $q=h s$. We define the j-box of O_{q} by $H_{j}=\{(j-1) s+k ; k=1, \ldots, s\}$ for $j=1, \ldots, h$. We denote by $\beta_{q}\left(H_{j}\right)$ the set given by $\beta_{q}\left(H_{j}\right)=\{\beta((j-1) s+k, q) ; k=1, \ldots, s\}$ (see Fig. 3).

In Fig. 3, by taking $h=3$ and $s=4$, the cardinals $C_{(1,12)}, C_{(2,12)}, C_{(3,12)}$ and $C_{(4,12)}$ are located in H_{1}; cardinals $C_{(5,12)}, C_{(6,12)}, C_{(7,12)}$ and $C_{(8,12)}$ are located in H_{2}, and $C_{(9,12)}, C_{(10,12)}, C_{(11,12)}$ and $C_{(12,12)}$ are located in H_{3}. From the visiting permutation
it results

$$
\left(\right) .
$$

Definition 4. Let β_{q} be the next visiting permutation of O_{q} and let $q=h s$. We denote by $\left(\beta_{q}^{j}\right)$ with $j=1, \ldots, h$

$$
\beta_{q}^{j}=\left(\begin{array}{ccc}
(j-1) s+1 & \ldots & (j-1) s+s \\
\beta((j-1) s+1, q) & \ldots & \beta((j-1) s+s, q)
\end{array}\right)
$$

and $\beta^{j}(r, q)=\beta((j-1) s+r, q)$ with $r=1, \ldots, s$ (see Fig. 3).
Definition 5. Let γ_{n} be a permutation of n elements. We define the inversion permutation of γ_{n}, denoted by γ_{n}^{*}, as the permutation given by $\gamma_{n}^{*}=\left(\gamma^{*}(1, n) \ldots \gamma^{*}(n, n)\right)$ with

$$
\gamma^{*}(i, n)=n+1-\gamma(i, n), \quad i=1, \ldots, n .
$$

Notice that if $I_{n}=(I(1, n) \ldots I(n, n))$ is the identity permutation, then $I_{n}^{*} \circ I_{n}^{*}=I_{n}$.
Definition 6. Let γ_{n} be a permutation of n elements. We define the conjugated permutation of γ_{n}, denoted by $\bar{\gamma}_{n}$, as the permutation given by $\bar{\gamma}_{n}=(\bar{\gamma}(1, n) \ldots \bar{\gamma}(n, n))$ with

$$
\bar{\gamma}(i, n)=n+1-\gamma(n+1-i, n), \quad i=1, \ldots, n .
$$

3 Theorem of periodic orbit decomposition

In order to obtain the decomposition theorem below, we need to revisit the composition process and state it in terms of next visiting permutations.

Let O_{h}, O_{s} be supercycles of a C^{2}-unimodal map f with next visiting permutations β_{h} and β_{s}, respectively. The geometric meaning of composing O_{h} and O_{s} involves replacing the h points of O_{h} by h boxes, with s points each, such that all points of a same box are mapped into the same box. It is important to point out that boxes are visited consecutively according to β_{h} and that every time the same box is visited then the box points are visited according to β_{s} if f^{h} has a maximum and according to $\bar{\beta}_{s}$ if f^{h} has a minimum (see [17] for more details). As boxes (see Definition 3) $H_{i}, i=1, \ldots, h$, are visited according to β_{h}, we split the visit in two parts:

$$
\begin{gather*}
H_{c} \rightarrow H_{1} \tag{2}\\
H_{1} \rightarrow \cdots \rightarrow H_{i} \rightarrow \cdots \rightarrow H_{c} . \tag{3}
\end{gather*}
$$

In sequence (3), excluding H_{c}, boxes are located in J_{R} or J_{L}. Every time the orbit leaves a box located in J_{L} the points in that box are mapped according to the identity permutation, I_{s}, because f is increasing in J_{L}. On the contrary, every time the orbit leaves a box located in J_{R}, the points in that box are mapped reverted from left to right
because f is decreasing in J_{R}, that is, they are linked by I_{s}^{*}. As $I_{s}^{*} \circ I_{s}^{*}=I_{s}$ it results that H_{1} is linked with H_{c} by I_{s} or I_{s}^{*}. It only remains to know the link between H_{c} and H_{1} of sequence (2) to close the orbit (see Fig. 3)

This is the geometrical mechanism underlying the proof of the following lemma. This lemma is essential to prove the Theorem 1, which is the goal of this paper.

Lemma 1. Let O_{h}, O_{s} be two supercycles of a C^{2}-unimodal map f with next visiting permutations β_{h} and β_{s}, respectively. Let c be such that $\beta(c, h)=1$. If $O_{h s}$ is the supercycle resulting of composing O_{h} with O_{s}, then its next visiting permutation

$$
\left.\begin{array}{rl}
\beta_{h s}=\left(\begin{array}{lllll}
\beta^{1}(1, h s) & \ldots & \beta^{1}(s, h s) & \beta^{2}(1, h s) & \ldots
\end{array} \beta^{2}(s, h s)\right. & \ldots \\
& \beta^{h}(1, h s)
\end{array} \beta^{h}(s, h s)\right) .
$$

is given for all $k=1, \ldots, s$ by:
(a) $\beta^{i}(k, h s)=\beta(i, h) s-(k-1)$ if $i=1, \ldots, c-1$;
(b) $\beta^{c}(k, h s)= \begin{cases}\beta(k, s) & \text { if } i=c \text { is odd, } \\ \beta(s+1-k, s) & \text { if } i=c \text { is even; }\end{cases}$
(c) $\beta^{i}(k, h s)=(\beta(i, h)-1) s+k$ if $i=c+1, \ldots, h$.

Proof. As i th box is preceded by $(i-1)$ boxes with s elements each, the elements of i th box are given by $(i-1) s+k, k=1, \ldots, s$.

As i th box is mapped into $\beta(i, h)$ th box, it results that the s elements of the i th box are mapped into the s elements of the $\beta(i, h)$ th box. In order to know the images of the s elements in the i th box, we have to consider where the i th box is located:
(a) i th box located in J_{R}, that is, $i=1, \ldots, c-1$.

As f is strictly decreasing in J_{R}, the order of the elements in i th box are reverted from left to right after mapping into $\beta(i, h)$ th box, that is,

$$
(i-1) s+k \rightarrow \beta(i, h) s-(k-1) \text { with } k=1, \ldots, s,
$$

so, $\beta^{i}(k, h s)=\beta(i, h) s-(k-1)$ with $k=1, \ldots, s$ if $i=1, \ldots, c-1$.
(b) i th box located in J_{L}, that is, $i=c+1, \ldots, h$.

As f is strictly increasing in J_{L}, the elements of i th box are mapped into the elements of $\beta(i, h)$ th box conserving their relative order, that is,

$$
(i-1) s+k \rightarrow(\beta(i, h)-1) s+k \quad \text { with } k=1, \ldots, s,
$$

so, $\beta^{i}(k, h s)=(\beta(i, h)-1) s+k$ with $k=1, \ldots, s$ if $i=c+1, \ldots, h$.
(c) The i th box is H_{c}, the so-called central box. The proof splits into two steps:
(c1) c is odd. As C is odd, the number of points of O_{h} located in J_{R} is even (in [17] this is said as the R-parity of I_{1}, \ldots, I_{h-1} is even [17, Def. 2], so, f^{h} has a maximum [17, Lemma 3] and then the link of a point of the central box with the next visiting point in this same box is given by β_{s} as we have just explained above. But the linking of these two points requires visiting all boxes before they connect between themselves. Therefore, as the number of O_{h} located in J_{R} is even, if we set off H_{1} to reach H_{c}, we will have visited an even number of boxes located in J_{R}. Given that images of points located in J_{R}, where f is decreasing, are reverted from left to right and two reversion are equivalent to an identity, it results that the s elements of H_{1} are linked with the s elements of H_{c} by the identity permutation I_{s}. So, we have to connect the central box with the first one by an unknown permutation, γ_{s}, such that $I_{s} \circ \gamma_{s}=\beta_{s}$. Then $\gamma_{s}=\beta_{s}$. So, the elements of the central box, given by $(c-1) s+k, k=1, \ldots, s$, are mapped into the elements of first box by β_{s}, that is,

$$
(c-1) s+k \rightarrow \beta(k, s) \quad \text { with } k=1, \ldots, s
$$

so, $\beta^{c}(k, h s)=\beta(k, s)$ with $k=1, \ldots, s$ if c is odd.
(c2) c is even. By a similar argument to the one given above, the elements of H_{1} and H_{c} are linked by I_{s}^{*} given that there is an odd number of reversions. Furthermore, the link of a point of the central box with the next visiting point in this same box is given by $\bar{\beta}_{s}$ because f^{h} has a minimum [17] as we have just explained above. So, we have to connect the central box with the first one by an unknown permutation, γ_{s}, such that $I_{s}^{*} \circ \gamma_{s}=\bar{\beta}_{s}$. Then $I_{s}^{*} \circ I_{s}^{*} \circ \gamma_{s}=I_{s}^{*} \circ \bar{\beta}_{s}$. Since $\overline{\beta_{s}}=I_{s}^{*} \circ \beta_{s} \circ I_{s}^{*}$, we have $\gamma_{s}=\beta_{s} \circ I_{s}^{*}$. So, $\beta^{c}(k, h s)=\beta(s+1-k, s)$ with $k=1, \ldots, s$ if c is even.

Remark 3. Notice that, under conditions of Lemma 1, if $O_{h s}$ is the composed supercycle of O_{h} with O_{s}, when $\beta(c, h)=1$ with c even, its next visiting permutation $\beta_{h s}=$ $(\beta(j, h s))$ is given by

$$
(\left.\begin{array}{c|c}
\begin{array}{c}
(i-1) s+k \\
\beta(i, h) s-(k-1)
\end{array} & \begin{array}{c}
(c-1) s+k \\
k=1, \ldots, s \\
i=1, \ldots, c-1
\end{array}
\end{array} \underbrace{\beta(s+1-k, s)}_{\substack{k=1, \ldots, s \\
i=c}} \right\rvert\, \begin{array}{ccc}
(i-1) s+k \\
(\beta(i, h)-1) s+k \\
i=c+1, \ldots, h
\end{array}) .
$$

Notice also that if $i<c$, then $\beta^{i}(r+1, h s)=\beta^{i}(r, h s)-1$ for all $r=1, \ldots, s-1$, whereas if $i>c$, then $\beta^{i}(r+1, h s)=\beta^{i}(r, h s)+1$ for all $r=1, \ldots, s-1$, and that $\left\{\beta^{c}(r, h s)\right\}_{r=1, \ldots, s} \equiv\{1, \ldots, s\}$.

Our next step is to determine necessary and sufficient conditions in order to know whether a periodic orbit is compound or not. Below, an algorithm will be given to breakup periodic orbits into their constituent elements.

Remark 4. [$\cdot]$ means integer part of a real number.

Theorem 1. Let O_{q} be a supercycle of a C^{2}-unimodal map f with the next visiting permutation $\beta_{q}=(\beta(1, q) \ldots \beta(q, q))$, and $\beta(z, q)=1$. Let $h, s \in \mathbb{N}$, be such that $q=h s . O_{q}$ is the composition of two supercycles O_{h} and O_{s} if only if β_{q} is given for all $k=1, \ldots, s$ by:
(a) $\beta^{i}(k, q)=\beta^{i}(1, q)-(k-1)$ if $i=1, \ldots,[z / s]$;
(b) $\beta^{i}(k, q)=\beta^{i}(1, q)+(k-1)$ if $i=[z / s]+2, \ldots, h$;
(c) $\beta^{i}(k, q)= \begin{cases}\beta(k, s) & \text { if } i=[z / s]+1 \text { is odd, } \\ \beta(s+1-k, s) & \text { if } i=[z / s]+1 \text { is even, }\end{cases}$
where $\beta(k, s)$ is the kth element of a next visiting permutation, β_{s}, of an orbit with periods.

Proof. (\Rightarrow) Let O_{q} be the composition of two supercycles O_{h} and O_{s}. Let β_{h} and β_{s} be the next visiting permutations of O_{h} and O_{s}, respectively. As $\beta(z, q)=1$ then $\beta([z / s]+1, h)=1$. If $i \neq[z / s]+1$, by Lemma 1 we have

$$
\beta^{i}(k, q)= \begin{cases}\beta(i, h) s-(k-1) & \text { if } i=1, \ldots,[z / s] \tag{4}\\ (\beta(i, h)-1) s+k & \text { if } i=[z / s]+2, \ldots, h\end{cases}
$$

It follows from (4)

$$
\beta^{i}(1, q)= \begin{cases}\beta(i, h) s & \text { if } i=1, \ldots,[z / s] \tag{5}\\ (\beta(i, h)-1) s+1 & \text { if } i=[z / s]+2, \ldots, h\end{cases}
$$

After substituting (5) in Eq. (4), we get for $i \neq[z / s]+1$

$$
\beta^{i}(k, q)= \begin{cases}\beta^{i}(1, q)-(k-1) & \text { if } i=1, \ldots,[z / s] \tag{6}\\ \beta^{i}(1, q)+(k-1) & \text { if } i=[z / s]+2, \ldots, h\end{cases}
$$

The case $i=[z / s]+1$ follows directly from (b) in Lemma 1.
(\Leftarrow) We assume that β_{q} satisfies conditions (a)-(c) of Theorem 1 and want to proof that O_{q} is the composition of two supercycles O_{h} and O_{s}. For this, we will build up two next visiting permutations β_{s} and β_{h} whose composition is β_{q}.

We define $\beta_{s}=(\beta(1, s) \ldots \beta(s, s))$, where

$$
\beta(k, s)= \begin{cases}\beta^{[z / s]+1}(k, q) & \text { if }[z / s]+1 \text { is odd } \tag{7}\\ \beta^{[z / s]+1}(s+1-k, q) & \text { if }[z / s]+1 \text { is even }\end{cases}
$$

As β_{q} verifies condition (c) in Theorem 1, it results that (7) is a next visiting permutations of a s-periodic orbit O_{s}.

Now we define $\beta_{h}=(\beta(1, h) \ldots \beta(h, h))$ with

$$
\beta(i, h)= \begin{cases}\beta((i-1) s+1, q) / s, & i=1, \ldots,[z / s] \tag{8}\\ 1, & i=[z / s]+1 \\ \beta((i-1) s+1, q)+(s-1) / s, & i=[z / s]+2, \ldots, h\end{cases}
$$

In order to prove that β_{h} is a next visiting permutation, one of the things we have to prove is that the set $\{\beta(i, h) ; i=1, \ldots, h\}$ coincides with the set $\{1, \ldots, h\}$. Let us study the different values of i in (8).

- Let $i=1, \ldots,[z / s]$. According to (8), it results

$$
\begin{equation*}
\beta(i, h)=\frac{\beta((i-1) s+1, q)}{s} . \tag{9}
\end{equation*}
$$

Given that, for every $i=1, \ldots, h$, there exists only one $j \in\{1, \ldots, h\}$ such that $\beta_{q}\left(H_{i}\right)=H_{j}$ (see Appendix), it results that

$$
\begin{equation*}
\beta((i-1) s+1, q)=(j-1) s+r, \quad r=1, \ldots, s \tag{10}
\end{equation*}
$$

Taking into account (9) and (10), in order to prove that $\beta(i, h)$ is a natural number, let us see that $\beta((i-1) s+1, q)=(j-1) s+s$. Let us assume it were false, that is,

$$
\begin{equation*}
\beta((i-1) s+1, q)=(j-1) s+r \quad \text { for some } r=1, \ldots, s-1 \tag{11}
\end{equation*}
$$

Applying condition (a) for $k=s$ and taking into account Definition 4, it yields

$$
\begin{equation*}
\beta((i-1) s+s, q)=\beta((i-1) s+1, q)-(s-1) \tag{12}
\end{equation*}
$$

Then from Eqs. (11) and (12) it results

$$
\begin{equation*}
\beta((i-1) s+s, q)=(j-1) s+(r+1-s) \quad \text { for some } r=1, \ldots, s-1 \tag{13}
\end{equation*}
$$

From (13), given that $r+1-s \leqslant 0, \beta((i-1) s+s, q) \notin H_{j}$, which is in contradiction with $\beta_{q}\left(H_{i}\right)=H_{j}$ (see Appendix). So, $\beta((i-1) s+1, q)=(j-1) s+s$ and replacing it in (9), we obtain

$$
\begin{equation*}
\beta(i, h)=\frac{\beta((i-1) s+1, q)}{s}=j \in\{1, \ldots, h\} . \tag{14}
\end{equation*}
$$

According to (c) of this theorem, it holds $\beta_{q}\left(H_{[z / s]+1}\right)=H_{1}$. Given that $i \leqslant[z / s]$, it results that $j \neq 1$ in (14). Hence, $j \in\{2, \ldots, h\}$.

- Let $i=[z / s]+2, \ldots, h$. Taking into account Definition 4 and condition (b) of this theorem, it results from (8) that

$$
\begin{equation*}
\beta(i, h)=\frac{\beta((i-1) s+s, q)}{s} . \tag{15}
\end{equation*}
$$

As $\beta((i-1) s+s, q)=(j-1) s+s$ (proof is similar to the case $i \leqslant[z / s]$), it results from (15) that, for every $i \geqslant[z / s]+2$, there exists only one $j \in\{2, \ldots, h\}$ such that $\beta(i, h)=j$. Furthermore, these $j \in\{2, \ldots, h\}$ are different from those obtained for the case $i \leqslant[z / s]$ (because, for every $i=1, \ldots, h$, there exists only one $j \in\{1, \ldots, h\}$ such that $\beta_{q}\left(H_{i}\right)=H_{j}$, see Appendix).

- Let $i=[z / s]+1$. According to (c) of this theorem, $\beta_{q}\left(H_{[z / s]+1}\right)=H_{1}$, that is, $j=1$.
Consequently, the set $\{\beta(i, h) ; i=1, \ldots, h\}$ coincides with the set $\{1, \ldots, h\}$.
Our final goal is to prove that O_{q} is the composition of O_{h} and O_{s}, that is, $O_{q} \equiv O_{h s}$.
We denote by O_{h} the h-periodic orbit whose next visiting permutation is given by β_{h} (see Eq. 8). We denote by O_{s} the orbit of period s, whose next visiting permutation is given by β_{s} (see Eq. 7).

According to Lemma 1 , for $i \neq[z / s]+1$, it holds

$$
\beta^{i}(k, h s)= \begin{cases}\beta(i, h) s-(k-1), & i=1, \ldots,[z / s] \tag{16}\\ (\beta(i, h)-1) s+k, & i=[z / s]+2, \ldots, h\end{cases}
$$

By taking account (8), (16) is rewritten as

$$
\beta^{i}(k, h s)= \begin{cases}\beta((i-1) s+1, q)-(k-1), & i=1, \ldots,[z / s] \tag{17}\\ \beta((i-1) s+1, q)+(k-1), & i=[z / s]+2, \ldots, h\end{cases}
$$

According to Lemma 1, for $i=[z / s]+1$, it holds

$$
\beta^{[z / s]+1}(k, h s)= \begin{cases}\beta(k, s), & i=[z / s]+1 \text { is odd } \tag{18}\\ \beta(s+1-k, s), & i=[z / s]+1 \text { is even. }\end{cases}
$$

By using (7), (18) is rewritten as

$$
\beta^{[z / s]+1}(k, h s)= \begin{cases}\beta^{[z / s]+1}(k, q), & i=[z / s]+1 \text { is odd } \tag{19}\\ \beta^{[z / s]}(s+1-(s+1-k), q), & i=[z / s]+1 \text { is even }\end{cases}
$$

so, $\beta^{[z / s]+1}(k, h s)=\beta^{[z / s]+1}(k, q)$.
By hypothesis of the theorem both $O_{h s}$ and O_{s} are admissible orbits, it remains to be seen that O_{h} is also an admissible one. By construction the h first elements of the symbolic sequence of $O_{h s}$ coincide with the symbolic sequence of O_{h}, therefore, by using shift operator and the kneading theory if O_{h} were not an admissible orbit neither $O_{h s}$ would be $[1,2]$, that is a contradiction, consequently, O_{h} is an admissible orbit.

Therefore, $\beta_{h s}=\beta_{q}$. As β_{s} and β_{h} are the next visiting permutations of O_{s} and O_{h}, respectively, it yields that O_{q} is the composition of O_{h} and O_{s}.

This decomposition of the logistic map orbits can be obtained from our theorem, taking into account that the visiting order permutation of a periodic orbit of the logistic map remains the same from the appearance of the orbit (in a period doubling bifurcation
or in a saddle-node bifurcation) up to its disappearance (and, in particular, it remains the same for the supercycle where our theorem applies).

Notice that Theorem 1 not only provides the decomposition of a compound periodic orbit, but also it allows one to deduce what orbits are not decomposable because they do not originate from the composition of two orbits (see Example 1, below). Given that a compound orbit is associated with a window within a window (in the bifurcation diagram), a non decomposable orbit is associated with a primary window. This is a direct application of the theorem that distinguishes primary windows from windows within windows.

Translation of Theorem 1 to plain language is as follows:

1. Split the next visiting permutation β_{q} in h sets $\beta_{q}^{i}, i=1, \ldots, h$, with s elements each. The set β_{q}^{i} containing $\beta(z, q)=1$ is denoted as β_{q}^{c}.
2. The sets β_{q}^{i} located to the left of β_{q}^{c} must satisfy condition (a) of Theorem 1. In plain language, condition (a) means that the elements in these sets are successively decreasing natural numbers.
3. The sets β_{q}^{i} located to the right of β_{q}^{c} must satisfy condition (b) of Theorem 1. In plain language, condition (b) means that the elements in these sets are successively increasing natural numbers.
4. The set β_{q}^{c} must satisfy condition (c) of Theorem 1. In plain language, condition (c) says that β_{q}^{c} determines the next visiting permutation of an admissible orbit of period s.

Let us see this in detail along the following examples.
Example 1. Let the visiting sequence of the 15 -periodic orbit be given by

$$
1 \rightarrow 15 \rightarrow 8 \rightarrow 7 \rightarrow 9 \rightarrow 6 \rightarrow 10 \rightarrow 5 \rightarrow 11 \rightarrow 4 \rightarrow 12 \rightarrow 3 \rightarrow 13 \rightarrow 2 \rightarrow 14
$$

so, its next visiting permutations is

$$
\beta_{15}=\left(\begin{array}{lllllllllllllll}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 8 \tag{20}
\end{array}\right) .
$$

β_{15} can be decomposed as $\beta_{3} \circ \beta_{5}$ or $\beta_{5} \circ \beta_{3}$.
(a) If $h=3$ and $s=5$, we split β_{15} as
$\beta_{15}^{3} \equiv \beta_{15}^{c}$ because it contains the number 1 . From β_{15}^{3} it results $\beta^{3}(5,15)=8>$ $s=5$. This is not the next visiting permutation of an admissible orbit of period 5 , so, this decomposition is not possible.
(b) If $h=5$ and $s=3$, we split β_{15} as

$$
\begin{array}{lcc|ccc|ccc|ccc|ccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 8 \\
& \beta_{15}^{1} & & & \beta_{15}^{2} & & & \beta_{15}^{3} & & & \beta_{15}^{4} & & & \beta_{15}^{5} &
\end{array} .
$$

$\beta_{15}^{5} \equiv \beta_{15}^{c}$ because it contains the number 1 . The elements of β_{15}^{3} are not successively decreasing natural numbers, so, this decomposition is not possible either.

Consequently, the O_{15} orbit given is not a composed orbit.
Example 2. Let the visiting sequence of the 12 -periodic orbit (see Fig. 3) be given by

$$
1 \rightarrow 12 \rightarrow 8 \rightarrow 4 \rightarrow 9 \rightarrow 5 \rightarrow 3 \rightarrow 10 \rightarrow 6 \rightarrow 2 \rightarrow 11 \rightarrow 7
$$

so, its next visiting permutation of O_{12} is

$$
\beta_{12}=\left(\begin{array}{llllllllllll}
12 & 11 & 10 & 9 & 3 & 2 & 1 & 4 & 5 & 6 & 7 & 8 \tag{21}
\end{array}\right) .
$$

β_{12} could be decomposed as $\beta_{2} \circ \beta_{6}, \beta_{6} \circ \beta_{2}, \beta_{4} \circ \beta_{3}$ or $\beta_{3} \circ \beta_{4}$.

1. If $h=2$ and $s=6$, we split β_{12} as

$$
\begin{array}{llllll|llllll}
12 & 11 & 10 & 9 & 3 & 2 & 1 & 4 & 5 & 6 & 7 & 8
\end{array} .
$$

$\beta_{12}^{2} \equiv \beta_{12}^{c}$ because it contains the number 1. The elements of β_{12}^{1} are not successive, hence, this decomposition is not possible.
2. If $h=6$ and $s=2$, we split β_{12} as

12	11	10	9	3	2	1	4
β_{12}^{1}	β_{12}^{2}	β_{12}^{3}	β_{12}^{4}	β_{12}^{5}	78		
β_{12}^{6}							

$\beta_{12}^{4} \equiv \beta_{12}^{c}$ because it contains the number 1. From β_{12}^{4} it results $\beta^{4}(2,12)=4>$ $s=2$, so, this is not the visiting permutation of an admissible orbit of period 2 . This decomposition is not possible.
3. If $h=4$ and $s=3$, we split β_{12} as

$\beta_{12}^{1} \equiv \beta_{12}^{c}$ because it contains the number 1. The elements of β_{12}^{2} are not successive, so, the decomposition is still not possible.
4. If $h=3$ and $s=4$, we split β_{12} as

$\beta_{12}^{2} \equiv \beta_{12}^{c}$ because it contains the number 1 . The elements of β_{12}^{1} are successively decreasing natural numbers. The elements of β_{12}^{3} are successively increasing natural numbers. $\beta_{12}^{2} \equiv \beta_{12}^{c}$ determine an order 4 permutation. It is still left to determine β_{3} and β_{4} such that $\beta_{12}=\beta_{3} \circ \beta_{4}$. This will be done below after the introduction of the corresponding algorithm (see Section 4).

Notice that the factorization of a natural number is not unique. For instance, the above compound 12 -periodic orbit could be associated with: a 3 -periodic window inside a 4 -periodic one, a 4 -periodic inside a 3 -periodic, a 2 -periodic inside a 6 -periodic, or a 6 -periodic inside the 2 -chaotic band. Although we have not yet given a meaning to β_{3} and β_{4}, the theorem gives the only admissible decomposition, that is, this 12 -periodic orbit is located inside a 4 -periodic window within a 3 -periodic window.

4 Algorithm

The following corollary to Theorem 1 provides a decomposition algorithm for compound orbits.

Corollary 1. Let O_{q} be a supercycle of a C^{2}-unimodal map f with the next visiting permutation β_{q}. Let z be such that $\beta(z, q)=1$. If O_{q} is the result of composing two supercycles O_{h} and O_{s}, then the next visiting permutations β_{h} and β_{s} are given by

$$
\beta(k, s)= \begin{cases}\beta^{[z / s]+1}(k, q) & \text { if }[z / s]+1 \text { is odd } \\ \beta^{[z / s]+1}(s+1-k, q) & \text { if }[z / s]+1 \text { is even }\end{cases}
$$

and

$$
\beta(i, h)= \begin{cases}\beta((i-1) s+1, q) / s, & i=1, \ldots,[z / s] \\ 1 & i=[z / s]+1 \\ \beta((i-1) s+s, q) / s, & i=[z / s]+2, \ldots, h\end{cases}
$$

This corollary is direct consequence from (7), (8) and (15).
Theorem 1 determines how β_{q} is decomposed as $\beta_{q}=\beta_{h} \circ \beta_{s}$. This corollary gives the explicit expression of β_{h} and β_{s}.

Algorithm says, in plain language:

1. Split β_{q} into h subsets $\beta_{q}^{i}, i=1, \ldots, h$, with s elements each. β_{q}^{i} containing $\beta(z, q)=1$ will be denoted β_{q}^{c}.
2. The next visiting permutation β_{s} is given by the images of $\beta_{q}^{c}\left(\bar{\beta}_{q}^{c}\right)$ if c is odd (even). Being $\bar{\beta}_{q}^{c}$ the mirror of β_{q}^{c}.
3. The next visiting permutation β_{h} is obtained as follows:
(a) If β_{q}^{i} is placed to the left of β_{q}^{c}, divide the first element in β_{q}^{i} by s. Then assign to i (from β_{q}^{i}) the number thus obtained.
(b) If β_{q}^{i} is placed to the right of β_{q}^{c}, divide the last element in β_{q}^{i} by s. Then assign to i (from β_{q}^{i}) the number thus obtained.
(c) The number i such that $\beta_{q}^{i} \equiv \beta_{q}^{c}$ gets assigned to number 1.

The permutation thus obtained will be the next visiting permutation β_{h}.

Example 3. According to Example 2, we know that the orbit O_{12}, whose next visiting permutation is

$$
\beta_{12}=\left(\begin{array}{llllllllllll}
12 & 11 & 10 & 9 & 3 & 2 & 1 & 4 & 5 & 6 & 7 & 8
\end{array}\right),
$$

can be splitted as $\beta_{12}=\beta_{3} \circ \beta_{4}$. We want to determinate β_{3} and β_{4} by using Corollary 1 (by using the algorithm in plain language).

According to Example 2, $\beta_{12}^{c} \equiv \beta_{12}^{2}=\left(\begin{array}{lll}3 & 2 & 1\end{array} 4\right.$, the next visiting permutation is either

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right)
$$

As $c=2$ is even, we must take the second permutation, that is,

$$
\beta_{s=4}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right)
$$

We also have to calculate β_{h}. According to the plain language algorithm, as $s=4$, it results

So,

$$
\beta_{h=3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) \longleftarrow i
$$

Example 4. Let the next visiting permutation of the 12 -periodic orbit O_{12} be given by

$$
\beta_{12}=\left(\begin{array}{llllllllllll}
12 & 11 & 10 & 9 & 8 & 7 & 3 & 1 & 2 & 4 & 5 & 6
\end{array}\right)
$$

In a similar way as we did in Examples 1 and 2, we obtain the decomposition $\beta_{12}=$ $\beta_{4} \circ \beta_{3}$.

We write

$$
\begin{array}{lll|ll|ll|lll}
12 & 11 & 10 & 9 & 8 & 7 & 3 & 1 & 2 & 4 \\
& 5 & 6 \\
& \beta_{12}^{1} & & & \beta_{12}^{2} & & \beta_{12}^{3} & & & \\
& \beta_{12}^{4} &
\end{array} .
$$

$\beta_{12}^{3} \equiv \beta_{12}^{c}$ because it contains the number 1 . As $c \equiv 3$ is odd, it results

$$
\beta_{s=3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

According to the plain language algorithm, as $s=3$, it results

So,

$$
\beta_{h=4}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{array}\right) \longleftarrow i
$$

β_{h} is an orbit of a period doubling cascade, therefore, $\beta_{4} \circ \beta_{3}$ represents an orbit of a saddle-node bifurcation cascade [15] located in the 2^{2}-chaotic band (see the $3 \cdot 2^{2}$ window in Fig. 1). In general, when β_{h} is an orbit of a period doubling cascade [16, 18], the $\beta_{h} \circ \beta_{s}$ represents an orbit of a saddle-node bifurcation cascade. However, with the same β_{3} and β_{4}, the 12 -periodic orbit given by $\beta_{12}=\beta_{3} \circ \beta_{4}$ would correspond to a period-doubling cascade orbit within the 3 -periodic window. This type of nuances are very important to understand the onset of chaos [19].

5 Conclusion

If we had a compound $h s$-periodic orbit, we could decompose it in two orbits of periods h and s, respectively, according to Theorem 1. This process is the opposite to that described in [17], where two orbits with periods h and s were composed to generate an $h s$-periodic orbit. Therefore, Theorem 1 closes the theoretical frame of composition and decomposition.

Theorem 1 states the necessary and sufficient conditions for the decomposition in simpler orbits. Meanwhile, Corollary 1 provides an algorithm for the computation of those orbits. As it was remarked in Section 3, Theorem 1 can be generalized using Byers' results in [4].

The decomposition theorems treated in this paper have an immediate application (through Poincaré section) to those continuous physical systems showing bifurcation diagrams similar that of Fig. 1.

Two periodic orbits (with h and s points in their respective Poincaré sections) can be composed into another periodic orbit having $h s$ points in their Poincaré map in accordance with the composition theorem in [17] (or Lemma 1). Now the opposite result can also be achieved using Theorem 1.

An s-periodic orbit inside the h-periodic window must follow a visiting order in its Poincaré map that can be decomposed using decomposition Theorem 1: from a known periodic orbit another two unique orbits can be described. This link between periodic orbits (not only from simpler to more complex as studied in [17], but also from complex
to simpler orbits as studied in this paper) imposes strong restrictions on a physical system dependent on one control parameter, whose underlying origin must be studied.

Acknowledgments. The authors would like to thank the reviewers for their useful comments and recommendations.

Appendix

Theorem A. Let O_{q} be an supercycle of a C^{2}-unimodal map f with the next visiting permutation $\beta_{q}=(\beta(1, q) \beta(2, q) \ldots \beta(q, q))$. If β_{q} is given by:
(a) $\beta^{i}(k, q)=\beta^{i}(1, q)-(k-1)$ if $i=1, \ldots,[z / s]$;
(b) $\beta^{i}(k, q)=\beta^{i}(1, q)+(k-1)$ if $i=[z / s]+2, \ldots, h$;
(c) $\beta^{i}(k, q)= \begin{cases}\beta(k, s) & \text { if } i=[z / s]+1 \text { is odd, } \\ \beta(s+1-k, s) & \text { if } i=[z / s]+1 \text { is even }\end{cases}$
for all $k=1, \ldots, s$.
Then, for each $i=1, \ldots, h$, there exists only one $j \in\{1, \ldots, h\}$ such that

$$
\beta_{q}\left(H_{i}\right)=\{\beta((i-1) s+k, q) ; k=1, \ldots, s\}=\{(j-1) s+r ; r=1 \ldots, s\}=H_{j} .
$$

Furthermore,

$$
\bigcup_{i=1}^{h} \beta_{q}\left(H_{i}\right)=\bigcup_{j=1}^{h} H_{j}=\{1, \ldots, h s\}
$$

Proof. (i) Let $i=[z / s]+1$. From (c) it results that $\beta_{q}\left(H_{i}\right)=\beta_{q}\left(H_{[z / s]+1}\right)=H_{1}$.
(ii) Let $i \neq[z / s]+1$. The proof is by contradiction. We suppose that $\beta_{q}\left(H_{i}\right) \neq H_{j}$, $j=1, \ldots, h$.

Let $i<[z / s]+1$ (for $i>[z / s]+1$, the proof is similar). As $\beta_{q}\left(H_{i}\right) \neq H_{j}$ and β_{q} maps s successive elements to s successive elements (see item (a) in Theorem 1), it results

$$
(\beta(i-1) s+1, q) \neq \dot{s} \quad \text { and } \quad(\beta(i-1) s+s, q) \neq \dot{s}
$$

(where \dot{s} denotes a multiple of s), consequently,

$$
\begin{equation*}
(\beta(i-1) s+1, q)=n s+r, \quad r<s, n, r \in \mathbb{N} . \tag{A.1}
\end{equation*}
$$

Taking into account (A.1), item (a) in Theorem 1 and Definition 4, it results

$$
\begin{equation*}
(\beta(i-1) s+s, q)=n s+r-(s-1), \quad r<s, n, r \in \mathbb{N} . \tag{A.2}
\end{equation*}
$$

As β_{q} takes every value in $\{1,2, \ldots, h s\}$, it results from (A.1) and (A.2) that

$$
\{1, \ldots, h s\}=A \cup \beta_{q}\left(H_{i}\right) \cup B
$$

where

$$
\begin{gathered}
A=\{1, \ldots, n s+r-(s-1)-1\}, \quad B=\{n s+r+1, \ldots, h s\}, \\
\beta_{q}\left(H_{i}\right)=\{n s+r-(s-1), \ldots n s+r\}
\end{gathered}
$$

Notice that the cardinality of the sets A and B are, respectively, $(n-1) s+r$ and $(h-n) s-(r-1)$. Except for H_{i}, the images of the other boxes will be mapped into s successive elements either in A or in B (see (a) and (b) in Theorem A). Consequently, the elements of A and B will be exhausted but, for r elements in A and $s-(r-1)$ in B, therefore, the image of some boxes will not be formed by successive elements, which is in contradiction with the definition of β_{q}.

From items (i) and (ii) above it results

$$
\bigcup_{i=1}^{h} \beta_{q}\left(H_{i}\right)=\bigcup_{j=1}^{h} H_{j}=\{1, \ldots, h s\}
$$

where it has been taken into account that, as β_{q} is a permutation for every $i=1, \ldots, h$, there exists only one $j=1, \ldots, h$ such that $\beta_{q}\left(H_{i}\right)=H_{j}$.

References

1. R. Artuso, E. Aurell, P. Cvitanovic, Recycling of Strange Sets: I. Cycle Expansions, Nonlinearity, 3:325-359, 1990.
2. D. Auerbach, P. Cvitanovic, J.P. Eckmann, G. Gunarathe, I. Procaccia, Exploring chaotic motions through periodic orbits, Phys. Rev. Lett., 58:2387-2389, 1987.
3. H. Bai-Lin, Elementary Symbolic Dynamics, World Scientific, Singapore, 1989.
4. B. Byers, Topological semiconjugacy of piecewise monotone maps of the interval, Trans. Am. Math. Soc., 276(2):489-495, 1983.
5. T.L. Carroll, Approximating chaotic time series through unstable periodic orbits, Phys. Rev. E, 59:1615-1621, 1999.
6. P. Cvitanovic, Invariant measurements of strange sets in terms of cycles, Phys. Rev. Lett., 61:2729-2732, 1988.
7. B. Derrida, A. Gervois, Y. Pomeau, Iteration of endomorphisms on the real axes and representation of numbers, Ann. Inst. Henri, Nouv. Sér. Sect. A, 29:305-356, 1978.
8. M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 19:25-52, 1978.
9. M.J. Feigenbaum, The universal metric properties for nonlinear transformations, J. Stat. Phys., 21:669-706, 1979.
10. L. Jonker, Periodic orbits and kneading invariants, Proc. London Math. Soc. 39(3):428-450, 1979.
11. N. Metropolis, M.L. Stein, P.R. Stein, On finite limit sets for transformations on the unit interval, J. Comb. Theory, 15:25-44, 1973.
12. J. Milnor, W. Thurston, On iterated maps of the interval, in: Dynamical Systems, Lect. Notes Math., Vol. 1342, Springer, Berlin, 1988, pp. 465-563.
13. E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos, Phys. Rev. Lett., 64:1196-1199, 1990.
14. K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170:421427, 1992.
15. J. San Martín, Intermittency cascade, Chaos Solitons Fractals, 32:816-831, 2007.
16. J. San Martín, M.J. Moscoso, A. González Gómez, The universal cardinal ordering of fixed points, Chaos Solitons Fractals, 42:1996-2007, 2009.
17. J. San Martín, M.J. Moscoso, A. González Gómez, Composition law of cardinal ordering permutations, Physica D, 239:1135-1146, 2010.
18. J. San Martín, D. Rodriguez-Perez, Conjugation of cascades, Chaos Solitons Fractals, 39:666681, 2009.
19. E. Sander, J.A. Yorke, Connecting period-doubling cascades to chaos, Int. J. Bifurcation Chaos Appl. Sci. Eng., 22, 1250022, 2012.
20. A.N. Sharkovsky, Coexistence of cycles of continuous mapping of the line into itself, Ukrainian Math. J., 16:61-71, 1964 (in Russian). English transl.: Int. J. Bifurcation Chaos Appl. Sci. Eng. 5(5):1263-1273, 1995.
21. J. Xu, K.W. Chung Chaos in Classical and Quantum Mechanics, Springer, New York, 1990.
