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Abstract. The nonlocal initial and boundary value problem for Lavrentiev–Bitsadze equation is
considered. By this problem the nonstacionary one-dimentional motion of a groundwater with
horizontal stopping is modeling. The existence and the uniqueness of the classical (in the elliptic
part of the domain) and generalized (in the hyperbolic part of the domain) solution of the considered
problem is proved.
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1 Introduction

The nonstacionary one-dimentional motion of a groundwater with the weakly varying free
surface and with the horizontal water bed is described in the classical filtration theory by
the Boussinesq’s equation [1]

σ
∂h

∂t
= k

∂

∂ξ

(
h
∂h

∂ξ

)
− k0
M0

(h−H0) + w(ξ, t); (1)

here by the σ and k are denoted the water removal and the filtration coefficient, which are
proposed to be constant, k0 is the coefficient of the filtration by the weak permeability of
the water bed of constant thickness M0, H0 is the water pressure in the underneath water-
bearing layer, w(ξ, t) is the discrepancy between the infiltration and the evaporation, h =
h(ξ, t) is the level of the groundwater in a point ξ at moment t. We assume that a motion
of groundwater is observed on the prognosticated interval 0 < ξ < l for t > 0.

Many investigations of the groundwater dynamics are based on the mathematical
models by a reduction of Boussinessq’s equation into linear parabolic equation with non-
local condition. The differential problems of such type were proposed and considered, for
instance, in [2–4]. Unfortunately, it was shown experimentally that such models describe
the motion of the groundwater in porous environment not adequately. Qualitatively new
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mathematical models of the groundwater dynamics are proposed in [5–7]. It is based on
the the elliptic-hyperpolic equation with nonlocal condition and is more suitable for the
porous environment.

Our goal in this paper is to reduce the filtration problem described by equation (1) to
the classical partial differential equations of the mixed type with nonlocal condition and
to obtain the conditions of the solvability of the reduced problem.

If the solution h of equation (1) has the derivatives of a proper order, then it satisfies
the equation

σ
∂2h

∂t2
= k

∂2

∂ξ2

(
h
∂h

∂t

)
− k0
M0

∂h

∂t
+
∂w(ξ, t)

∂t
. (2)

We will use below the denotation

δ(t) =

l∫
0

h(ξ, t) dξ.

Then σδ′(t) is the average of groundwater flux on the interval (0, l) at the moment t. Let
us assume that ∂h/∂t is proportional with a constant coefficient γ to the average of the
groundwater flux:

∂h

∂t
= γσδ′(t). (3)

Under this hypothesis, equation (2) takes the form

∂2h

∂t2
= kγδ′(t)

∂2h

∂ξ2
− 1

σ

k0
M0

∂h

∂t
+

1

σ

∂w(ξ, t)

∂t
. (4)

It is evident that a type of this equation depends on the sign of function δ′(t) and it can be
elliptic or hyperbolic as well. It is easily seen that at the line t = t∗, for which δ′(t∗) = 0,
equation (4) degenerate into parabolic one. It is well known that, for a broad class of the
melioration problems of the prognostication of a dynamics of the groundwater, one can
take that

kγδ′(t) = c|t− t∗|m sgn(t∗ − t), (5)

where m > 0 and c > 0 are some constants, t∗ is an extreme time when the groundwater
flux attains its maximum on the interval 0 < ξ < l and decreases after that till the
value, which does not violate the ecology of the aeration area. The law of the groundwater
motion described by (5) is reasoned properly in [8].

Due to (5), we get from (4) the equation

∂2h

∂t2
= c|t− t∗|m sgn(t∗ − t)∂

2h

∂ξ2
− k0
σM0

∂h

∂t
+

1

σ

∂w(ξ, t)

∂t
(6)

of mixed type, which is elliptic on semi-plane R2
+ = {(ξ, t): t > t∗}, hyperbolic on

semi-plane R2
− = {(ξ, t): t < t∗} and parabolic at the line t = t∗.
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Let us introduce the new variables

x =
ξ√
c
, y = t− t∗

and the function

u(x, y) = h

(
ξ√
c
, y + t∗

)
.

Then we obtain for function u the equation

|y|m sgn y uxx + uyy + βuy = f(x, y), (7)

where
β =

k0
σM0

, f(x, y) =
1

σ

∂

∂y
w
(
x
√
c, y + t∗

)
.

Moreover, taking in account both presumptions (3) and (4), we obtain the relation

∂

∂y

r∫
0

u(x, y) dx = A|y|m sgn y, (8)

where r = l/
√
c, A = −

√
c/(kγ).

Thus, equation (7) jointly with nonlocal condition (8) represents the linear mathe-
matical model of a groundwater dynamics with weakly varying free surface and with
weak permeability of the horizontal water bed. There is important to observe that this
nonlocal conditions comments on the finite rate of the spread of any small disturbance of
groundwater motion in the porous medium.

Notice, one can assume in the case of a horizontal water bed that it is impervious, i.e.,
k0 = 0. Then β = 0, evidently. If M0 � 1, i.e., if the thickness is very high, then we can
take β = 0 again. In these both cases, we get from (7) the equation

|y|muxx sgn y + uyy = f(x, y).

Further, if m = 0 in relation (5), then this equation takes the shape

uxx sgn y + uyy = f(x, y),

evidently. Obtained equation is well known as Lavrentiev–Bitsadze equation [4]. If an
external disturbance on the flow absent, i.e., the infiltration in unit time is zero, then
w(x, y) = 0 and f(x, y) = 0, consequently. In such case, we get the homogeneous case
of Lavrentiev–Bitsadze equation

uxx sgn y + uyy = 0. (9)

We shall consider below the model described by equation (9) and non-local condition

∂

∂y

r∫
0

u(x, y) dx = A sgn y (10)

obtained from (8) withm = 0, which quite adequate corresponds to the filtration problem
in porous medium.
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2 Statement of the nonlocal problem to Lavrentiev–Bitsadze
equation

We will analyze equation (9) in the rectangle

Ωn =
{

(x, y): 0 < x < a, −na < y < b
}
,

where both a and b are positive numbers, n is an natural number.
Introduce the subdomains

Ω+ =
{

(x, y): 0 < x < a, 0 < y < b
}
,

Ω−n =
{

(x, y): 0 < x < a, −na < y < 0
}

of domain Ωn. Notice that equation (9) is elliptic in Ω+
n and hyperbolic in Ω−n . Let I be

the interval {(x, y): 0 < x < a, y = 0}. Then Ωn = Ω+ ∪ I ∪ Ω−n . Besides, let us
introduce the characteristic triangle

∆ =
{

(x, y): 0 < x < a, −x < y < x− a
}

and the subdomain Ω = Ω+ ∪ I ∪ ∆. Notice to the purpose that both isosceles sides
of the triangle ∆ emerging from the vertex (a/2,−a/2) and lie on the corresponding
characteristics l1: x+ y = 0 and l2: x− y = a of equation (9).

Besides, let us introduce the square subdomains

Ω̃k =
{

(x, y): 0 < x < a, −ka < y < (1− k)a
}
⊂ Ω−n , k = 1, . . . , n.

If n = 1, then Ω−1 = Ω̃1, obviously. It is easily seen that Ω−n =
⋃n−1
k=1(Ω̃k ∪ Ik) ∪ Ω̃n,

where Ik = {(x, y): 0 < x < a, y = −ka}.

Definition 1. We say that a function u is regular solution of equation (9) in some domain
D ⊂ Ωn if it satisfies this equation everywhere in D and u ∈ C(D).

Definition 2. We say, similarly as in [4], that a function u is generalized solution of
equation (9) in some domain D ⊂ Ω−n if it can be expressed by the continuous in D
wave-functions of the shape

u(x, y) = f(x− y) + g(x+ y).

The latter definition is needful to be introduced because the solution of the problem,
which shall be discussed below can be not twice differentiable in a hyperbolic part of
domain Ωn. Such situation emerges due to the insufficient smoothness of the initial data
in the hyperbolic type problems for equation (9). Then there is purposeful to define the
generalized solution, e.g. by the way given above.

Let us consider the following problem.
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Problem S. Find the solution u ∈ C2(Ω+∪∆)∩C1(Ω)∩C(Ωn) of equation (9), which
is regular in the both domains Ω+ and ∆, represents the generalized solution in Ωn \ Ω
and satisfies the following conditions:

a∫
0

uy(x, y) dx = µ(y), 0 < y < b, (11)

u(x,−na) = ϕn(x), u(x, b) = ϕ(x), 0 6 x 6 a, (12)
u(a, y) = ψa(y), −na 6 y 6 b, (13)
u(0, y) = ψ0(y), −na 6 y 6 0, (14)

where µ, ϕn, ϕ, ψa, ψ0 are given continuous functions.

Here condition (14) means in a physical sense that the law of the groundwater dynam-
ics is observed at the point x = 0 on the all time interval [−na, 0], i.e., it is known till the
critical time y = 0. Thus, there appears in Problem S the local conditions (12)–(13) and
nonlocal in Samarskii sense condition (11) of type (10). This problem can be included to
the class of problems for so-called loaded differential equations [9].

3 Uniqueness of the solution of Problem S

Let us introduce the square subdomains

Ω̃−k =
{

(x, y): 0 < x < a, −ka < y < (1− k)a
}
⊂ Ω−n , k = 1, . . . , n.

If n = 1, then Ω−1 = Ω̃−1 , obviously. It is easily seen that Ω−n =
⋃n−1
k=1(Ω̃−k ∪ Ik) ∪ Ω̃−n ,

where Ik = {(x, y): 0 < x < a, y = −ka}. We shall prove the following lemma.

Lemma 1. Let u(x, y) be a solution of Problem S. Then there holds the relation

u(x, 0) =
n∑
k=1

{
αk[ψa(x− ka) + ψ0

(
−x− (k − 1)a

)]
− αk+1

[
ψa
(
−x− (k − 1)a

)
+ ψ0(x− ka)

]}
+ Φn(x), 0 6 x 6 a, (15)

where

αk =

{
1, k = 1 (mod 2),

0, k = 0 (mod 2),
Φn(x) =

{
−ϕn(a− x), n = 1 (mod 2),

ϕn(x), n = 0 (mod 2).

Proof. We shall prove this lemma by the mathematical induction using the well-known
theorem on an intermediate value of the solutions of the one-dimentional wave equation.

Let us check the validity of equality (15) for n = 1. Evidently, in this case, any
collection of the four points (x, 0), (a, x − a), (a − x,−a) and (0,−x), x ∈ (0, a),
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represents the angular points of characteristic rectangular1 belonging to closed rectangular
Ω̃−1 ∪ ∂Ω̃

−
1 . According to the theorem on the intermediate value of the solutions of wave

equation (9) (y < 0), the relation

u(x, 0) + u(a− x,−a) = u(a, x− a) + u(0,−x), 0 6 x 6 a,

holds. Then we get from conditions (12)–(14) that

u(x, 0) = ψa(x− a) + ψ0(−x)− ϕ1(a− x), 0 6 x 6 a,

i.e., formula (15) is true.
Assume that n > 1 and assume that formula (15) is true in the case of domain Ω−n

with n = m− 1, m > 2, when m is an even:

u(x, 0) =

m−1∑
k=1

{
αk
[
ψa(x− ka) + ψ0

(
−x− (k − 1)a

)]
− αk+1

[
ψa
(
−x− (k − 1)a

)
+ ψ0(x− ka)

]}
− ϕm−1(x), 0 6 x 6 a. (16)

We shall show that that formula (15) is true for n = m. Let us consider the characteristic
rectangular with the corners (x,−(m − 1)a), (a, x −ma), (a − x,−am) and (0,−x −
(m− 1)a), x ∈ (0, a). Then the equality

u
(
x,−(m− 1)a

)
+ u(a− x,−am)

= u(a, x−ma) + u
(
0,−x− (m− 1)a

)
, 0 6 x 6 a,

holds because of the analogous factor as in the case n = 1. Taking into account the
conditions (12)–(14) again, we obtain from this equality that

ϕm−1(a− x) = ψa
(
−x− (m− 1)r

)
+ ψ0(x− na)− ϕm(x), 0 6 x 6 a.

Putting obtained expression of ϕm−1 into (16), we get relation (15)

u(x, 0) =

m∑
k=1

{
αk
[
ψa(x− ka) + ψ0

(
−x− (k − 1)a

)]
− αk+1

[
ψa
(
−x− (k − 1)a

)
+ ψ0(x− ka)

]}
+ ϕm(x), 0 6 x 6 a,

if m = 0 (mod 2).
In the case when n is odd, the proof is analogous.

1Since the sides of this rectangular lie on he characteristics, it is named as characteristic one. Notice, if x = 0
or x = a, then last-mentioned rectangular degenerates into corresponding segments lying on the characterictics.
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Let a function u be harmonic in a plane domain D ⊂ Oxy. Then it satisfies in D the
obvious equality

∂

∂x

(
u2x − u2y

)
+ 2

∂

∂y
(uxuy) = 0. (17)

If the boundary ∂D of domain D is piecewise smooth, then using the Green’s formula,
we get from (17) that

0 =

∫∫
D

[
∂

∂x

(
u2x − u2y

)
+ 2

∂

∂y
(uxuy)

]
dx dy

=

∫
∂D

(
u2x − u2y

)
dy − 2uxuy dx. (18)

Certainly, this relation is valid only in the case when there exists the curvilinear integral
on right-hand side.

Let us propose one important property of the solution u(x, y) of Problem S. Assuming
that uxx(x, y) ∈ L(0, a) for all y ∈ (0, b) and according to condition (11), we get that

a∫
0

uxx(x, y) dx = −
a∫

0

uyy(x, y) dx = −µ′(y), 0 < y < b.

On the other,
a∫

0

uxx(x, y) dx = ux(a, y)− ux(0, y), 0 < y < b.

Thus, if u(x, y) is differentiable with respect to x at the points (0, y) and (a, y) for 0 <
y < b, then relation

ux(a, y)− ux(0, y) = −µ′(y), 0 < y < b, (19)

holds.

Theorem 1. Let u(x, y) be the solution of the homogeneous problem corresponding to
Problem S, which is continuously differentiable everywhere in the domainΩ

+
except, may

be, its angular points, and is such that the following conditions are fulfilled: (i) uy(0, y) ∈
L2(0, b), (ii) uy(x, 0) and uy(x, b) ∈ L(0, a). Then u(x, y) ≡ 0 in Ωn.

Proof. Firstly, we shall prove that u(x, y) ≡ 0 in Ω+. It follows from the homogeneity
of local conditions (12)–(13) that

u(x, b) = 0 ∀x ∈ [0, a], u(a, y) = 0 ∀y ∈ [0, b], (20)

immediately, and
u(x, 0) = 0 ∀x ∈ [0, a] (21)
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due to Lemma 1. Therefore, the following equalities

ux(x, 0) = ux(x, b) = 0 ∀x ∈ (0, a), uy(a, y) = 0 ∀y ∈ (0, b) (22)

are valid.
Further, the homogeneity of nonlocal condition (11) and condition (ii) yield the

equality
ux(0, y) = ux(a, y) ∀y ∈ (0, b) (23)

because of relation (19). Applying relation (18) with respect to domain Ω+ and taking in
account equalities (22) and (23), we obtain due to condition (i) that

0 =

∫
∂Ω+

(
u2x − u2y

)
dy − 2uxuy dx

=

b∫
0

[
u2x(0, y)− u2y(0, y)− u2x(a, y) + u2y(a, y)

]
dy

+ 2

a∫
0

[
ux(x, b)uy(x, b)− ux(x, 0)uy(x, 0)

]
dx

= −
b∫

0

u2y(0, y) dy ∀y ∈ (0, y).

Hence, uy(0, y) = 0, i.e., u(0, y) = const on the interval (0, b). Since u(0, 0) = 0, u ∈
C(Ω

+
), we get that u(0, y) = 0 for all y ∈ [0, b] due to the continuity of solution u(x, y)

in Ω
+

. That jointly with (20), (21) yield the condition u|∂Ω+ = 0. Then u(x, y) ≡ 0
in Ω+ according to the maximum principle for harmonic functions.

There is important to observe that uy(x, 0) = 0 on the interval I . Indeed, if
uy(x0, 0) 6= 0, x0 ∈ (0, a), then it follows from the Zarembo–Giraud principle [4, 10]
that u(x, 0) 6= 0 in some ε-neighborhood {(x, y): (x − x0)2 + y2 < ε2} ∩ Ω+ of the
point (x0, 0), but that is in a contradiction with the condition u(x, y) ≡ 0 in Ω+.

Thus, it remains to show that u(x, y) ≡ 0 in the domain Ω−n .
Let us introduce in addition to the triangle ∆ the following nonintersecting isosceles

triangles:

∆1 =

{
(x, y): 0 < x <

a

2
, x− a < y < −x

}
,

∆2 =

{
(x, y):

a

2
< x < a, −x < y < x− a

}
,

∆3 =

{
(x, y): y + a < x < −y, −a < y < −a

2

}
.

Notice to a purpose that namely the characteristics x+ y = 0 and x− y = a divides the
square Ω̃1 into these four characteristic triangles.
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Firstly, let us consider the solution u(x, y) in ∆. Since u(x, 0) = 0 on the closure I
of interval I and uy(x, 0) = 0 on I , and condition (ii) holds, we get due to principle
of continuos extension of the solution of Cauchy problem from I into ∆ the identity
u(x, y) ≡ 0 in ∆.

Let us get into the triangle ∆1. Notice that we have the following situation: u(0, y)=0
for all y ∈ [−a, 0] according to the assumption of the theorem, and, as we obtain thereto-
fore, u(x, y) = 0 on the segment 0 6 x 6 a/2 of the characteristics x+ y = 0. Thus, it
follows from the uniqueness of the solution of Darboux problem [11] that u(x, y) ≡ 0 in
the ∆1. Further, we get by the analogous reasoning that u(x, y) ≡ 0 in the closed triangle
∆2 due to the homogeneous data on the its basis and on the its lateral side lying on the
characteristics l2.

So, we get that u(x, y) = 0 on the lateral sides of the characteristic triangle ∆3.
Therefore, u(x, y) ≡ 0 in ∆3 because of the uniqueness of the solution of Goursat’s
problem [11, 12] to the wave equation.

One can prove by the coherent continuation of this process that u(x, y) ≡ 0 in all Ω̃−k
(k = 2, . . . , n). The theorem is proved.

4 Existence of the solution of Problem S

Primarily, we shall consider the following auxiliary problem.

Problem S+. Find the harmonic function u(x, y) ∈ C2(Ω+) ∩ C(Ω
+

) satisfying the
boundary value conditions

u(x, 0) = τ(x), u(x, b) = ϕ(x), 0 6 x 6 a, (24)
u(a, y) = ψa(y), 0 6 y 6 b, (25)

and the non-local condition

ux(a, y)− ux(0, y) = ν(y), 0 < y < b. (26)

Here τ , ϕ, ψa and ν are given continuous functions.

Theorem 2. Let τ and ϕ ∈ C1[0, a], ψa ∈ C1[0, b] and ν ∈ C[0, b] ∪ C1(0, b), and let
the following compatibility conditions are fulfilled:

τ(a) = ψa(0), ϕ(a) = ψa(b), (27)
τ ′(a)− τ ′(0) = ν(0), ϕ′(a)− ϕ′(0) = ν(b). (28)

Then there exists an unique solution of Problem S+ from the class of functions, which are
differentiable everywhere in the domain Ω+ except, may be, its angular points.

Proof. Let u(x, y) be the solution of Problem S+. Introduce the following functions:

u+(x, y) =
1

2

[
u(x, y) + u(a− x, y)

]
, (29)

u−(x, y) =
1

2

[
u(x, y)− u(a− x, y)

]
. (30)
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Obviously, both of them are harmonic in Ω+ and the equalities

u+(x, y) = u+(a− x, y), u−(x, y) = −u−(a− x, y)

hold for all x ∈ [0, a] and for all y ∈ [0, b]. Taking in account the conditions (24)–(26),
we obtain after straightforward calculation that

u+(x, 0) = τ1(x), u+(x, b) = ϕ1(x), 0 6 x 6 a, (31)

u+x (0, y) = −1

2
ν(y), u+x (a, y) =

1

2
ν(y), 0 < y < b; (32)

u−(x, 0) = τ2(x), u−(x, b) = ϕ2(x), 0 6 x 6 a, (33)

u−(0, y) = u+(0, y)− ψa(y), u−(a, y) = ψa(y)− u+(0, y), 0 6 y 6 b, (34)

where

2τ1(x) = τ(x) + τ(a− x), 2τ2(x) = τ(x)− τ(a− x),

2ϕ1(x) = ϕ(x) + ϕ(a− x), 2ϕ2(x) = ϕ(x)− ϕ(a− x).

Notice, the functions u+ and u− are related only by conditions (34). That yields the
possibility to reduce the Problem S+ into two problems, which can be solved one-by-one.
So, firstly we shall look for harmonic in Ω+ function u+ satisfying the local initial and
boundary value conditions (31), (32), and thereafter we shall solve problem (33), (34)
with respect to harmonic in Ω+ function u−, assuming that u+ and u− ∈ C(Ω

+
).

In the first step, let us consider for harmonic inΩ+ function v ∈ C(Ω
+

) the following
Dirichlet type problem:

v(x, 0) = τ ′1(x), v(x, b) = ϕ′1(x), 0 6 x 6 a,

v(0, y) = −1

2
ν(y), v(a, y) =

1

2
ν(y), 0 6 y 6 b.

Observe that, according to compatibility conditions (28), this problem is well-possed
in Hadamard’s sense, i.e., it has the solution v ∈ C2(Ω+) ∩ C(Ω

+
), which is stable

with respect to the norm ‖v‖
C(Ω

+
)

= max
Ω

+ |v|. Moreover, because of the maximum
principle, the estimate

‖v‖
C(Ω

+
)
6M = max

{
‖τ ′1‖C[0,a], ‖ϕ′1‖C[0,a],

1

2
‖ν‖C[0,b]

}
hold. That yields the uniqueness of the solution v, obviously.

We shall show that solution u+ of problem (31), (32) can be obtained from the
differential equation

v = u+x . (35)

It is easily seen that the general solution of equation (35) is of the shape

u+(x, y) =

x∫
0

v(ξ, y) dx+ ω(y).

Here we assume that ω ∈ C2(0, b) ∩ C1[0, b].
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Putting the obtained expression of u+ into Laplace’s equation u+xx + u+yy = 0 and
taking in account the relation vx = u+xx, we get for the function ω the equation

ω′′(y) = −vx(0, y),

the general solution of which can be presented by the formula

ω(y) = c1y + c2 −
y∫

0

vx(0, η) dη.

Hence,

u+(x, y) =

x∫
0

v(ξ, y) dξ −
y∫

0

vx(0, η) dη + c1y + c2.

Then taking in account conditions (31), we get by straightforward calculation the follow-
ing expression of the solution of problem (31), (32):

u+(x, y) =

x∫
0

v(ξ, y) dξ −
y∫

0

vx(0, η) dη +
y

b

b∫
0

vx(0, η) dη

+
y

b

[
ϕ1(0)− τ1(0)

]
y + τ1(0). (36)

The uniqueness of the solution u+(x, y) follows from the following standard reason-
ing. Ifw ∈ C2(Ω+)∩C(Ω

+
) is any nonconstant function harmonic inΩ+ and satisfying

the homogenous conditions of the type (31), (32)

w(x, 0) = w(x, b) = 0, 0 6 x 6 a,

wx(0, y) = wx(a, y) = 0, 0 < y < b,

then this function can’t attain any nontrivial extremum in the rectangleΩ+ and on the both
lower and upper bases of it. By the Zaremba–Giraud principle it can’t attain any positive
maximum or an negative minimum on the lateral sides x = 0 and x = a (0 < y < b)
ofΩ+. Further, an nontrivial extremum can be not attained at the corners of this rectangle
because it is equal to zero at them. Thus, w(x, y) ≡ 0 in Ω+.

Next, we are ready to undertake the Dirichlet problem (33), (34) for the harmonic
function u−, whereas the function u+(0, y) is known already, i.e., it can be determined
by (36). The existence of the solution u− ∈ C2(Ω+) ∩ C(Ω

+
) of this problem follows

by virtue of the continuity and of the compatibility of the boundary value conditions
(33), (34). The uniqueness of this solution follows in accordance with the maximum
principle for the harmonic functions.

Finally, we get the solution u ∈ C2(Ω+) ∩ C1(Ω+
0 ) ∩ C(Ω

+
) of Problem S+ from

(29) and (30) by the formula

u(x, y) = u+(x, y) + u−(x, y), (37)

where by Ω+
0 is denoted the domain Ω

+
without its all angular points.
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The inclusion u ∈ C1(Ω+
0 ) follows from the smoothness of boundary functions in

(31)–(34).
So, the proof of the theorem is complete.

Theorem 2 yields the following.

Corollary. Determine the functions τ and ν in (24)) and (26) as follows:

τ(x) is right-hand side of (15), ν(y) = −µ′(y).

Assume that the conditions of Theorem 2 are fulfilled. Then, according to this theorem,
under conditions (i)–(iii) of Theorem 1, there exists the unique function u+ ∈ C2(Ω+) ∩
C1(Ω+

0 ) ∩ C(Ω
+

) harmonic in Ω+ and satisfying the nonlocal condition

a∫
0

u+y (x, y) dx = µ(y), 0 < y < b,

and the following local conditions:

u+(x, 0) = τ(x), u+(x, b) = ϕ(x), 0 6 x 6 a.

Let us take note that u+(x, 0) ∈ C1[0, b] and uy(0, x) ∈ C1(0, b), but we have any
guarantee that uy(x, 0) is continuous at the points x = a and x = b.

Let the functions τ and ν be the same as in Corollary. Now we shall prove the final
theorem.

Theorem 3. Let µ ∈ C1[0, b] ∪ C2(0, b) and

ϕ,ϕn ∈ C1[0, a], ψ0 ∈ C1[−na, 0], ψa ∈ C1[−na, b], (38)

and let the following compatibility conditions (27), (28) be fulfilled. Then there exists the
unique solution u of Problem S in the class of the functions u ∈ C1(Ω+

0 ), which satisfy
conditions (i)–(iii) of Theorem 1.

Proof. Note that τ ∈ C1[0, a] under conditions (38). Let u+ be the harmonic in Ω+

function from Corollary. Notice that u+y (x, 0) ∈ C1(0, a) ∩ C[0, a] and u+y (x, 0) ∈
L(0, a) due to assumption (ii), and remember that ∆ is characteristic triangle defined
above. Then the wave-function

u−(x, y) =
τ(x− y) + τ(x+ y)

2
+

1

2

x+y∫
x−y

u+y (s, 0) ds (39)

is the regular in ∆ solution of equation (9) from the class C2(∆1) ∩ C(∆1). It satisfies
the initial conditions

u−(x, 0) = τ(x), 0 6 x 6 a,

∂u−y (x, 0) = u+y (x, 0), 0 < x < a,
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obviously. Hence, the function

u(x, y) =

{
u+(x, y), (x, y) ∈ Ω+,

u−(x, y), (x, y) ∈ ∆,

is the regular inΩ+∪∆ solution of the classC2(Ω+∪∆)∩C1(Ω)∩C(Ω) of equation (9)
satisfying nonlocal condition (11) and the local boundary value conditions

u(x, b) = ϕ(x), 0 6 x 6 a,

u(a, y) = ψa(y), 0 6 y 6 b.

Let us consider the traces

γ1(x) := u1(x, x) =
τ(2x) + τ(0)

2
+

1

2

2x∫
0

u+y (s, 0) ds, 0 6 x 6
a

2
,

and

γ2(x) := u1(x, x− a) =
τ(2x− a) + τ(a)

2
+

1

2

a∫
2x−a

u+y (s, 0) ds,
a

2
6 x 6 a.

of function (39) on the corresponding segments 0 6 x 6 a/2 and a/2 6 x 6 a of
the characteristics l1 and l2. Both functions γ1 and γ2 are continuous on the mentioned
intervals, but both of them can be not differentiable because of the possible discontinuity
of the function u+y (x, 0) at the points x = 0 and x = a. Then the wave-functions

u−1 (x, y) = γ1

(
x− y

2

)
− γ1

(
−x− y

2

)
+ ψ0(x+ y), 0 6 x 6

a

2
,

and

u−2 (x, y) = γ2

(
x+ y + a

2

)
− γ2

(
y − x+ 3a

2

)
+ ψa(y − x+ a),

a

2
6 x 6 a,

represent the generalized solutions in ∆1 and ∆2 of the corresponding Darboux problems

u−1 (0, y) = ψ0(y), −a 6 y 6 0,

u−1 (x,−x) = γ1(x), 0 6 x 6
a

2
,

and
u−2 (a, y) = ψa(y), −a 6 y 6 0,

u−2 (x, x− a) = γ2(x),
a

2
6 x 6 a,

to equation (9).
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Notice, the functions u−1 (x, y) and u−2 (x, y) are continuous in ∆2 and ∆3, conse-
quently. Therefore, one can define the functions

ϑ1(x) := u−2 (x, x− a), 0 6 x 6
a

2
,

ϑ2(x) := u−2 (x,−x),
a

2
6 x 6 a,

which are continuous on the isosceles sides of the triangle ∆3 lying on the characteristics
l1 and l2. That enable to get the generalized solution

u−3 (x, y) = ϑ1

(
x− y

2

)
+ ϑ2

(
x+ y + a

2

)
− ϑ1

(
a

2

)
(40)

of the Goursat’s problem

u−3 (x, x− a) = ϑ1(x), 0 6 x 6
a

2
,

u−3 (x,−x) = ϑ2(x),
a

2
6 x 6 a.

So, we obtain the generalized solution

ũ−1 (x, y) =


u−1 (x, y), (x, y) ∈ ∆1,

u−2 (x, y), (x, y) ∈ ∆2,

u−3 (x, y), (x, y) ∈ ∆3,

to equation (9) in the domain Ω̃−1 \∆, which is continuous in the closure of this domain
and such that

ũ−1 (0, y) = ψ0(y), ũ−1 (a, y) = ψa(y), −a 6 y 6 0.

If n = 1, then taking in account the denotation τ(x) = ψa(x − a) + ψ0(−x) −
ϕ1(a− x), we obtain from (40) that

ũ−1 (x,−a) = ϑ1

(
x+ a

2

)
+ ϑ2

(
x

2

)
− ϑ1

(
a

2

)
= ψa(−x) + ψ0(x− a)− τ(a− x) = ϕ1(x), 0 6 x 6 a. (41)

Thus, in this case, the prove of the theorem is complete.
If n > 1, then we get by formula (40) the continuous extension of generalized solution

into closure ∆
(1)

of the the upper characteristic triangle

∆(1) =
{

(x, y): 0 < x < a, −x− a < y < x− 2a
}
⊂ Ω̃−1 .

Thereafter we compose coherently in the rest domains Ω̃−k , k = 2, . . . , n, the correspond-
ing generalized solutions ũ−k (x, y) satisfying the boundary value conditions

ũ−k (0, y) = ψ0(y), ũ−k (a, y) = ψa(y), −(k − 1)a 6 y 6 −ka,
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by the continuous extension in the same way as above. The validity of the boundary value
condition ũ−n (x,−a) = ϕn(x), 0 6 x 6 a, is implicated by the composition of the
generalized solutions ũ−k (x, y), k = 1, . . . , n− 1, given before.

The theorem is proved.
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