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Abstract. In this paper, a new spectral collocation method is applied to solve Lane–Emden
equations on a semi-infinite domain. The method allows us to overcome difficulty in both
the nonlinearity and the singularity inherent in such problems. This Jacobi rational–Gauss
method, based on Jacobi rational functions and Gauss quadrature integration, is implemented
for the nonlinear Lane–Emden equation. Once we have developed the method, numerical results
are provided to demonstrate the method. Physically interesting examples include Lane–Emden
equations of both first and second kind. In the examples given, by selecting relatively few Jacobi
rational–Gauss collocation points, we are able to get very accurate approximations, and we are thus
able to demonstrate the utility of our approach over other analytical or numerical methods. In this
way, the numerical examples provided demonstrate the accuracy, efficiency, and versatility of the
method.
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1 Introduction

The fundamental goal of this paper is to develop a suitable way to approximate the
singular nonlinear Lane–Emden equation on the interval x ∈ (0,∞) using the Jacobi
rational polynomials. To this end, consider

u′′(x) +
a

x
u′ = g

(
x, u(x)

)
, 0 < x <∞, (1)

subject to u(0) = b0 and u′(0) = b1, where the prime denotes differentiation with respect
to x, and a > 0, b0 and b1 are constants. Lane–Emden equations model many phenomena
in mathematical physics and astrophysics. This equation is a generalization of some of
the basic equations in the theory of stellar structure, and has been the focus of many
studies [1–7]. When a = 2 and g = um, we recover the Lane–Emden equation of the first
kind, while when g = exp(u), we recover the Lane–Emden equation of the second kind.

Many mathematical problems arising in science and engineering are defined over
unbounded domains. To make matters more complicated, many such problems are non-
linear. Several spectral methods have been successfully applied in the approximation of
problems on unbounded domains. The common methods for dealing with such problems
are the Hermite spectral method [8, 9], the Laguerre spectral method [10–12], mapping
the original problem in an unbounded domain to a problem in a bounded domain [13, 14]
and rational approximations [15–17].

The solution of nonlinear singular initial value problems of Lane–Emden type is
numerically challenging because of the singularity at the origin, in addition to the strong
nonlinearity. Approximate solutions to the Lane–Emden equation were given by implicit
series solution [18] and the homotopy perturbation method [19,20]. In [21], the Boubaker
polynomials expansion scheme is applied successfully in order to obtain analytical-nu-
merical solutions for two kind of Lane–Emden problems. The enhanced Lagrangian for-
mulation method and the Boubaker polynomials expansion scheme have been confirmed
in [22] to solve the related generalized Lane–Emden equation for polytropic star structure
analysis under Bonnor–Ebert gas sphere astrophysical configuration. Moreover, Danish
et al. [23] introduced an optimal homotopy analysis method to overcome the presence of
singularity of some related boundary value problems arising in engineering and applied
sciences.

Polynomial approximations can be quite useful for expressing the solution of a dif-
ferential equation [24]. One such approach would be the spectral methods. A well-known
advantage of a spectral method is that it achieves high accuracy with relatively fewer
spatial grid points when compared with other numerical or analytical methods. Recently,
Bhrawy et al. [25] proposed the shifted Jacobi collocation spectral method for solving
the nonlinear Lane–Emden type equation, while the spatial approximation is based on
shifted Jacobi polynomials with their parameters α and β and used the collocation nodes
of shifted Jacobi–Gauss points. Adibi and Rismani [26] proposed an approximation al-
gorithm for the solution of (1) using modified Legendre-spectral method. Recently, the
sinc-collocation method and Hermite function collocation method is introduced in [27]
and [28] for the solution of Lane–Emden type equations. A modified generalized Laguerre
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functions Lagrangian method and the rational Legendre pseudospectral approach are also
introduced in [29, 30]. More recently, Pandey et al. [31], and Pandey and Kumar [32] de-
veloped two numerical methods for solving Lane–Emden type equations using Legendre
and Bernstein operational matrices of differentiation, respectively.

The use of Jacobi polynomials for solving differential equations has gained increasing
popularity in recent years (see [33–37]). The main concern of this paper is to develop
a spectral Jacobi rational–Gauss collocation (JRC) method to find an approximate solution
uN (x) of singular Lane–Emden type initial value problems on the semi-infinite domain
(0,∞). We first derive an algorithm for the general Lane–Emden model so that we may
apply the Jacobi rational–Gauss collocation method to determine solutions. Then we
apply the algorithm to some physically reasonable examples, namely, the Lane–Emden
equations of first and second kind, in order to demonstrate the method. We show that the
proposed method is both accurate and efficient compared with alternative methods.

This paper is organized as follows. In Section 2, we construct collocation algorithm
for Lane–Emden equation using the Jacobi rational polynomials. Then, in Section 3, the
proposed method is applied to various types of Lane–Emden equations, and the results are
compared with existing analytic or exact solutions that were reported in other published
works in the literature.

2 Jacobi rational–Gauss collocation method

In this section, we use the Jacobi rational–Gauss collocation method to solve numerically
the following model problem:

u′′(x) = f
(
x, u(x), u′(x)

)
, 0 < x <∞, (2)

subject to
u(0) = d0, u′(0) = d1, (3)

where the values of d0 and d1 describe the initial state of u(x) and f(x, u, u′) is a non-
linear function of x, u and u′ which may be singular at x = 0. It is well known that the
Lane–Emden equations of first and second kind are special cases of (2)–(3).

It should be noted that for a second-order differential equation with the singularity
at x = 0 in the interval [0,∞), one is unable to apply the collocation method with
Jacobi rational–Gauss–Radau points because the fixed node x = 0 is necessary to use as
a collocation node. Therefore, the collocation method with Jacobi rational–Gauss nodes
are used to overcome the difficulty of such a singular point at x = 0; i.e., we collocate
the singular nonlinear ODE only at the N − 1 Jacobi Rational–Gauss points that are the
N − 1 zeros of the Jacobi rational polynomial on (0,∞). These equations together with
two initial conditions generate N + 1 nonlinear algebraic equations which can be solved.

Let us first introduce some basic notation that will be used. To begin with, some
mathematical preliminaries are laid out in the Appendix. We use the results presented
there to construct our algorithm. To begin with, we set

SN (0,∞) = span
{
R

(α,β)
0 (x), R

(α,β)
1 (x), . . . , R

(α,β)
N (x)

}
, (4)
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while we define the discrete inner product and norm as

(u, v)
χ
(α,β)
R ,N

=

N∑
j=0

u
(
x
(α,β)
R,N,j

)
v
(
x
(α,β)
R,N,j

)
$

(α,β)
R,N,j ,

‖u‖
χ
(α,β)
R ,N

=
√

(u, u)
χ
(α,β)
R ,N

.

(5)

Here x(α,β)R,N,j and $
(α,β)
R,N,j are the nodes and the corresponding weights of the Jacobi

rational–Gauss quadrature formula on the interval (0,∞), respectively. Obviously,

(u, v)
χ
(α,β)
R ,N

= (u, v)
χ
(α,β)
R

∀u, v ∈ S2N−1. (6)

Thus, for any u ∈ SN (0,∞), the norms ‖u‖
χ
(α,β)
R ,N

and ‖u‖
χ
(α,β)
R

coincide.

Associating with this quadrature rule, we denote by IR
(α,β)
T

N the Jacobi rational–Gauss
interpolation

I
R

(α,β)
T

N u
(
x
(α,β)
R,N,j

)
= u

(
x
(α,β)
R,N,j

)
, 0 6 k 6 N.

The Jacobi rational–Gauss collocation method for solving (2) and (3) is to seek
uN (x) ∈ SN (0,∞) such that

u′′
(
x
(α,β)
R,N,k

)
= f

(
x
(α,β)
R,N,k, u

(
x
(α,β)
R,N,k), u′

(
x
(α,β)
R,N,k

))
, k = 0, 1, . . . , N − 2,

u
(i)
N (0) = di, i = 0, 1.

(7)

Now, we derive the algorithm for solving the singular second-order differential equa-
tion (2) and (3). Let

uN (x) =

N∑
j=0

ajR
(α,β)
j (x), a = (a0, a1, . . . , aN )T. (8)

We first approximate u(x), u′(x) and u′′(x), as Eq. (8). By substituting these approxi-
mations in Eq. (2), we get

N∑
j=0

ajD
2R

(α,β)
j (x) = f

(
x,

N∑
j=0

ajR
(α,β)
j (x),

N∑
j=0

ajDR
(α,β)
j (x)

)
. (9)

Therefore, we deduce from (A.11) and (A.12) that

N∑
j=0

aj
[
(j + α+ β + 1)2(x+ 1)−4R

(α+2,β+2)
j−2 (x)

− 2(j + α+ β + 1)(x+ 1)−3R
(α+1,β+1)
j−1 (x)

]
= f

(
x,

N∑
j=0

ajR
(α,β)
j (x),

N∑
j=0

aj(j + α+ β + 1)(x+ 1)−2R
(α+1,β+1)
j−1 (x)

)
. (10)
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Substitution of (8) into (3) yields

N∑
j=0

ajD
iR

(α,β)
j (0) = di, i = 0, 1. (11)

To find the solution uN (x), we first collocate Eq. (10) at the N − 1 Jacobi rational
roots, yields

N∑
j=0

aj
[
(j + α+ β + 1)2

(
x
(α,β)
R,N,k + 1

)−4
R

(α+2,β+2)
j−2

(
x
(α,β)
R,N,k

)
− 2(j + α+ β + 1)

(
x
(α,β)
R,N,k + 1)−3R

(α+1,β+1)
j−1

(
x
(α,β)
R,N,k

)]
= f

(
x
(α,β)
R,N,k,

N∑
j=0

ajR
(α,β)
j

(
x
(α,β)
R,N,k

)
,

N∑
j=0

aj(j + α+ β + 1)
(
x
(α,β)
R,N,k + 1

)−2
R

(α+1,β+1)
j−1

(
x
(α,β)
R,N,k

))
. (12)

Next, Eq. (11), after using (A.9) and (A.10), can be written as

N∑
j=0

(−1)j
Γ(j + β + 1)

Γ(β + 1)j!
aj = d0, (13)

N∑
j=1

(−1)j−1
(j + α+ β + 1)Γ(j + β + 1)

(j − 1)! Γ(β + 2)
aj = d1. (14)

Finally, from (12), (13) and (14), we get N + 1 nonlinear algebraic equations which can
be solved for the unknown coefficients aj by using any standard iteration technique, like
Newton’s iteration method. Consequently, uN (x) given in Eq. (8) can be evaluated.

3 Numerical results

We report in this section some numerical results obtained with the algorithms presented
in the previous section. Comparisons of the results obtained by the present method with
those obtained by other methods reveal that the present method is very accurate and
efficient. We consider the two examples, both of which are physically relevant.

3.1 Lane–Emden equation of the first kind

The nonlinear problem we shall consider is the Lane–Emden equation of the first kind, of
index m. The equation is given by

u′′(x) +
2

x
u′(x) + um(x) = 0, x > 0, (15)
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subject to the conditions
u(0) = 1, u′(0) = 0, (16)

where u is a function of x and for physical interest the polytropic index m lies between
0 and 5 [5, 38, 39]. Exact solutions corresponding to taking m = 0, 1 and 5 are given by

u(x) = 1− 1

3!
x2, u(x) =

sinx

x
and u(x) =

(
1 +

x2

3

)−1/2
,

respectively.
The Lane–Emden equation of index m is a basic equation in the theory of stellar

structure [5]. The thermal behavior of a spherical cloud of gas acting under the mutual
attraction of its molecules and subject to the classical laws of thermodynamics is mod-
elled by this equation. Unfortunately, analytical solutions to (15)–(16) in closed form are
possible only for values of the polytropic index m = 0, 1 and 5. For other values of m,
only numerical solutions or approximate analytical solutions are available in the literature.
It is worthy noting here that Eq. (15) is linear for m = 0 and 1, and nonlinear otherwise.
So, them = 5 case is the only case in which there exists an exact solution to the nonlinear
problem.

For the sake of comparison with others methods, we consider the following two cases:

(i) In the case of m = 4, we introduce Table 1, where the maximum absolute errors
using the present JRC method, those obtained by the Hermite functions collocation
method (HFC, see [28]), and the values obtained by Horedt [40] are compared.

(ii) In the case of m = 5, Tables 2, 3 show the maximum absolute errors using JRC
method at N = 20 and N = 20, 36 respectively with two choices of α and β.
Table 2, shows the maximum absolute errors of our method are compared with
homotopy-perturbation method (HPM [19]).

Moreover, the curves of the approximate and exact solutions for m = 0, 1, 5 for the
special value of Jacobi parameters α = β = −0.5 and x ∈ [0, 8], N = 20 are shown
in Fig. 1a. From this figure, we see the agreement between the exact and approximate
solutions. In the case of α = β = 1 and x ∈ [0, 320], N = 40 the approximate
solution by the presented method is shown in Fig. 1b, to make it easier to compare with

Table 1. Absolute errors using the JRC method (present method) and the HFC method [28] compared with
references values of Horedt [40] for (15)–(16).

x α β JRC method HFC [28] x α β JRC method HFC [28]
0.0 0.5 0.5 0 0 5.0 0.5 0.5 1.46 · 10−8 8.59 · 10−5

1 1 0 1 1 1.07 · 10−8

0.1 0.5 0.5 4.02 · 10−8 2.51 · 10−4 10.0 0.5 0.5 4.11 · 10−7 6.22 · 10−5

1 1 4.06 · 10−8 1 1 1.33 · 10−6

0.2 0.5 0.5 1.35 · 10−8 2.48 · 10−4 14.0 0.5 0.5 1.77 · 10−6 2.47 · 10−5

1 1 1.36 · 10−8 1 1 4.04 · 10−6

0.5 0.5 0.5 3.09 · 10−9 2.05 · 10−4 14.9 0.5 0.5 1.33 · 10−6 4.59 · 10−7

1 1 1.82 · 10−8 1 1 1.77 · 10−6

1.0 0.5 0.5 1.15 · 10−8 1.93 · 10−4

1 1 1.29 · 10−8
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Table 2. Absolute errors using the JRC method (present method) with N = 20 and the HPM [19] compared
with reference values from the exact solution when in the case m = 5 for (15)–(16).

x α β JRC method HPM [19] x α β JRC method HPM [19]
0.0 0.5 0.5 0 0 0.6 0.5 0.5 2.759 · 10−10 5.118 · 10−5

0 0 0 0 0 4.704 · 10−10

0.2 0.5 0.5 3.763 · 10−11 8.540 · 10−9 0.8 0.5 0.5 5.977 · 10−10 4.754 · 10−4

0 0 1.269 · 10−11 0 0 9.625 · 10−10

0.4 0.5 0.5 4.084 · 10−11 2.111 · 10−6 1.0 0.5 0.5 5.795 · 10−10 2.599 · 10−3

0 0 9.122 · 10−11 0 0 8.573 · 10−10

Table 3. Absolute errors using the JRC method (present method) with N = 20, 36 in the case m = 5
for (15)–(16).

x α β JRC method x α β JRC method
N = 20 N = 36 N = 20 N = 36

0.0 0.5 −0.5 0 0 40.0 0.5 −0.5 2.594 · 10−7 5.068 · 10−14

0 0 0 0 0 0 6.625 · 10−8 2.292 · 10−13

5.0 0.5 −0.5 1.072 · 10−9 3.830 · 10−14 80.0 0.5 −0.5 1.136 · 10−6 1.739 · 10−13

0 0 1.013 · 10−8 2.237 · 10−14 0 0 3.257 · 10−6 1.038 · 10−12

10.0 0.5 −0.5 6.531 · 10−8 6.841 · 10−14 160.0 0.5 −0.5 3.898 · 10−6 1.357 · 10−13

0 0 5.040 · 10−8 7.790 · 10−14 0 0 8.410 · 10−6 3.762 · 10−12

20.0 0.5 −0.5 9.730 · 10−8 1.424 · 10−13 320.0 0.5 −0.5 6.333 · 10−6 7.613 · 10−12

0 0 1.847 · 10−8 1.645 · 10−13 0 0 1.265 · 10−5 2.578 · 10−11

(a) m = 0, 1, 5 (b) m = 5

Fig. 1. Comparison of the approximate and exact solutions to (15)-(16) for the Lane–Emden equation of the
first kind.

the analytic solution. Therefore, this example indicates that the obtained numerical results
are accurate and that the spectral Jacobi rational–Gauss collocation method is compared
favorably with the analytical solution.

3.2 Lane–Emden equation of the second kind

Consider the second-order nonlinear ordinary differential equation (see [41])

u′′(x) +
2

x
u′(x)− e−u = 0,

subject to the conditions u(0) = 0, u′(0) = 0.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 4, 537–550
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Table 4. Approximate solutions for the Lane–Emden equation of the second kind with N = 22.

x α = β = −0.5 α = β = 0 α = β = 0.5 x α = β = −0.5 α = β = 0 α = β = 0.5

0.0 0.000000 0.000000 0.000000 2.5 0.806373 0.806357 0.806349
0.5 0.041156 0.041155 0.041154 3.0 1.063340 1.063330 1.063330
1.0 0.158825 0.158827 0.158827 3.5 1.320710 1.320740 1.320760
1.5 0.338034 0.338025 0.338022 4.0 1.52722 1.527223 1.527224
2.0 0.559801 0.559814 0.559819

Fig. 2. Graph of the approximation uN (x) (dotted line) and u′N (x) (dashed line) for α = β = −0.5 at
N = 22 for the Lane–Emden equation of the second kind.

(a) N = 20 (b) N = 40

Fig. 3. Graph of residual error functions for α = β = 0.

Table 4 lists the results obtained by the Jacobi rational collocation method in terms
of approximate solutions at N = 22 with α = β = −0.5 (which reduces to the first
kind Chebyshev rational collocation method), and α = β = 0 (which reduces to the
Legendre rational collocation method) and α = β = 0.5 (which reduces to the sec-
ond kind Chebyshev rational collocation method). The resulting graphs of the approx-
imate solution and its first derivative for α = β = −0.5 at N = 22 are shown in
Fig. 2. Moreover, Figs. 3a and 3b show the residual error functions in the interval [0, 20]
for α = β = 0 at N = 20 and N = 40, respectively. As expected, the number
of nodes is larger for this example than it was for the first, owing to the fact that the
exponential nonlinearity exp(−u) is harder to work with than polynomial nonlinearity
of the form um.
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4 Conclusions

We have applied a Jacobi rational–Gauss collocation method to solve Lane–Emden equa-
tions on a semi-infinite domain. We then provided numerical results to demonstrate the
utility of the method. Physically interesting examples include Lane–Emden equations
of both first and second kind. In the examples given, by selecting relatively few Jacobi
rational–Gauss collocation points, we are able to get very accurate approximations, and
we are thus able to demonstrate the utility of our approach over other analytical or numer-
ical methods such as other collocation methods or perturbation methods. The solutions
also agree strongly with exact solutions from the literature, in cases where such exact
solutions exist. As many problems arising in theoretical physics and astrophysics are
singular and nonlinear, it stands to reason that the present method can be used to solve
a number of related problems efficiently and accurately. Indeed, with the freedom to select
the parameters α and β, the method can be calibrated for a wide variety of problems.

Appendix: Jacobi rational interpolation

In this appendix, we detail the mathematical properties of Jacobi polynomials and Jacobi
rational functions that are used to construct the JRC method.

The Jacobi polynomials P (α,β)
k (y), k = 0, 1, 2, . . . , are the eigenfunctions of the

Sturm–Liouville problem

∂y
(
(1− y)α+1(1 + y)β+1∂yυ(y)

)
+ λ(1− y)α(1 + y)βυ(y) = 0,

y ∈ I = [−1, 1]. (A.1)

Their corresponding eigenvalues are λ(α,β)k = k(k + α+ β + 1), k = 0, 1, 2, . . . .
Let Γ(x) be the Gamma function, then it is to be noted that

P
(α,β)
k (−y) = (−1)kP

(β,α)
k (y), P

(α,β)
k (1) =

Γ(k + α+ 1)

k! Γ(α+ 1)
,

P
(α,β)
k (−1) =

(−1)kΓ(k + β + 1)

k! Γ(β + 1)
.

(A.2)

The Jacobi polynomials fulfill the recurrence relations (see [42])

P
(α,β−1)
k (y)− P (α−1,β)

k (y) = P
(α,β)
k−1 (y), (A.3)

(k + α+ β)P
(α,β)
k (y) = (k + β)P

(α,β−1)
k (y) + (k + α)P

(α−1,β)
k (y), (A.4)

∂yP
(α,β)
k (y) =

1

2
(k + α+ β + 1)P

(α+1,β+1)
k−1 (y), (A.5)

and

∂2yP
(α,β)
k (y) =

1

4
(k + α+ β + 1)(k + α+ β + 2)P

(α+2,β+2)
k−2 (y). (A.6)
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Let w(α,β)(y) = (1− y)α(1 + y)β . Then for α, β > −1, the set of Jacobi polynomials is
a complete L2

w(α,β)(I)-orthogonal system, i.e.,∫
I

P
(α,β)
k (y)P

(α,β)
l (y)w(α,β)(y) dy = h

(α,β)
k δk,l, (A.7)

where δk,l is the Kronecker function and

h
(α,β)
k =

2α+β+1Γ(k + α+ 1)Γ(k + β + 1)

(2k + α+ β + 1)Γ(k + 1)Γ(k + α+ β + 1)
. (A.8)

We denote the norm and semi-norm of the weighted Sobolev space Hr
w(α,β)(I) by

‖υ‖r,w(α,β),I and |υ|r,w(α,β),I , respectively. In particular, L2
w(α,β)(I) = H0

w(α,β)(I) and
‖υ‖w(α,β),I = ‖υ‖0,w(α,β),I .

The Jacobi rational functions, denoted by R(α,β)
k (x), are defined as follows:

R
(α,β)
k (x) = P

(α,β)
k

(
x− 1

x+ 1

)
, k = 0, 1, 2, . . . .

According to (A.1), R(α,β)
k (x) are the eigenfunctions of the singular Sturm–Liouville

problem

∂x
(
xβ+1(x+ 1)−α−β∂xυ(x)

)
+ λxβ(x+ 1)−α−β−2υ(x) = 0, x ∈ Λ = (0,∞).

Their corresponding eigenvalues are λ(α,β)k = k(k+α+β+1), k = 0, 1, 2, . . . . Moreover,
the recurrence relations (A.2)–(A.6) imply that

R
(α,β)
k (x) = (−1)kR

(β,α)
k

(
1

x

)
, R

(α,β)
k (∞) =

Γ(k + α+ 1)

k!Γ(α+ 1)
,

(A.9)
R

(α,β)
k (0) = (−1)k

Γ(k + β + 1)

k!Γ(β + 1)
,

DR
(α,β)
k (0) =

(−1)k−1Γ(k + β + 1)(k + α+ β + 1)

(k − 1)!Γ(β + 2)
, (A.10)

(k + α+ 1)R
(α,β)
k (x)− (k + 1)R

(α,β)
k+1 (x)

= (2k + α+ β + 2)(x+ 1)−1R
(α+1,β)
k (x),

R
(α,β−1)
k (x)−R(α−1,β)

k (x) = R
(α,β)
k−1 (x),

(k + α+ β)R
(α,β)
k (x) = (k + β)R

(α,β−1)
k (x) + (k + α)R

(α−1,β)
k (x),

∂xR
(α,β)
k (x) = (k + α+ β + 1)(x+ 1)−2R

(α+1,β+1)
k−1 (x), k > 1, (A.11)
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and

∂2xR
(α,β)
k (x) = (k + α+ β + 1)(k + α+ β + 2)(x+ 1)−4R

(α+2,β+2)
k−2 (x)

− 2(k + α+ β + 1)(x+ 1)−3R
(α+1,β+1)
k−1 (x), k > 2. (A.12)

Let χ(α,β)
R (x) = xβ(x + 1)−α−β−2, α, β > −1. Thanks to (A.7) and (A.8), the Jacobi

rational functions form a complete L2

χ
(α,β)
R

(Λ)-orthogonal system, i.e.,∫
Λ

R
(α,β)
k (x)R

(α,β)
l (x)χ

(α,β)
R (x) dx = γ

(α,β)
k δk,l,

where

γ
(α,β)
k =

Γ(k + α+ 1)Γ(k + β + 1)

(2k + α+ β + 1)Γ(k + 1)Γ(k + α+ β + 1)
.

For any υ ∈ L2

χ
(α,β)
R

(Λ),

υ(x) =

∞∑
j=0

a
(α,β)
j R

(α,β)
j (x), a

(α,β)
j =

(
γ
(α,β)
k

)−1 ∫
Λ

υ(x)R
(α,β)
j (x)χ

(α,β)
R (x) dx.

We turn to the Jacobi–Gauss interpolation. We denote by x
(α,β)
N,j , 0 6 j 6 N ,

the nodes of the standard Jacobi–Gauss interpolation on the interval (−1, 1). Their cor-
responding Christoffel numbers are $

(α,β)
N,j , 0 6 j 6 N . The nodes of the Jacobi

rational–Gauss interpolation on the interval (0,∞) are the zeros of R(α,β)
N+1 (x), which we

denote by x(α,β)R,N,j , 0 6 j 6 N . Clearly, x(α,β)R,N,j = (1 + x
(α,β)
N,j )/(1− x(α,β)N,j ), and their

corresponding Christoffel numbers are $(α,β)
R,N,j = 1/(2α+β+1)$

(α,β)
N,j , 0 6 j 6 N . Let

SN (0,∞) be the set of polynomials of degree at most N . Thanks to the property of the
standard Jacobi–Gauss quadrature, it follows that for any φ ∈ S2N+1(0,∞),

∞∫
0

xβ(x+ 1)−α−β−2φ(x) dx

=
1

2α+β+1

1∫
−1

(1− x)α(1 + x)βφ

(
1 + x

1− x

)
dx

=
1

2α+β+1

N∑
j=0

$
(α,β)
N,j φ

(
1 + x

(α,β)
N,j

1− x(α,β)N,j

)
=

N∑
j=0

$
(α,β)
R,N,jφ(x

(α,β)
R,N,j),

where

$
(α,β)
R,N,j =

(2N + α+ β + 2)Γ(N + α+ 1)Γ(N + β + 1)

2P
(α,β)
N (x

(α,β)
N,j )∂xP

(α,β)
N+1 (x

(α,β)
N,j )

,

consider the orthogonal projection PN,α,β : L
χ
(α,β)
R

(Λ)→ RN . It is defined by

(PN,α,βυ − υ, φ)
χ
(α,β)
R

= 0 ∀φ ∈ RN .
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In order to present the approximation results precisely, we introduce the space
Hr

χ
(α,β)
R ,Λ

(Λ), r ∈ N, with the following semi-norm and norm:

|υ|
r,χ

(α,β)
R ,Λ

=

( ∞∑
k=r

(
λ
(α,β)
k

)r|ak|2γ(α,β)k

)1/2

,

‖υ‖
r,χ

(α,β)
R ,Λ

=

(
r∑
l=0

|υ|2
l,χ

(α,β)
R ,Λ

)1/2

.

For any r > 0, we define the space Hr

χ
(α,β)
R ,Λ

(Λ) and its norm by space interpolation as

in [43].

Theorem. For any υ ∈ Hr

χ
(α,β)
R ,Λ

(Λ), r ∈ N, and 0 6 µ 6 r,

‖PN,α,βυ − υ‖µ,χ(α,β)
R ,Λ

6 CNµ−r|υ|
r,χ

(α,β)
R ,Λ

.

A complete proof of the theorem and discussion on convergence are given in [44].
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