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Abstract. In this paper, we introduce a time-to-build technology in a Solow model with pollution.
We show that Hopf bifurcations occur as the delay passes through critical values. The direction and
the stability criteria of the bifurcating periodic solutions are obtained by the normal form theory
and the center manifold theorem. Numerical experiments confirm the analytical results with regard
to the emergence of nonlinear dynamics.
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1 Introduction

The issue of relationship between human economic activity and the environmental qual-
ity has long captured the interest of the scientific community. Focusing on economic
literature, John and Pecchenino [1], in an overlapping generations context, introduce
a model in which multiple equilibria may exist; Antoci [2] highlights the undesired effects
of environmental deterioration on individuals’ choices (the so called defensive expendi-
tures); Antoci and Borghesi [3] investigate the possible consequences on environment
due to interaction between rich and poor countries. In addition, several studies argue that
interplays between economic growth and environment also lead to nonlinear dynamics in
both variables (see [4]). In a seminal paper, Day [5] studies the chaotic dynamics arising
from the negative effects of pollution on productivity; Zhang [6], Naimzada and Sodini [7]
study specifications of the John and Pecchenino’s model generating nonlinear dynamics;
Antoci and Sodini [8], Antoci et al. [9] show the existence of different bifurcation scenar-
ios in overlapping generations models with environment; Zhao and Zhang [10] describe
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a price competition model in which impacts of carbon emission trading may be engine
of nonlinear dynamics, while Antoci et al. [9] analyse a continuous time model with
optimizing agents able to show indeterminacy and persistent oscillations in environmental
and economic variables.

On the other hand, there also exists a burgeoning literature aiming at studying nonlin-
ear dynamics in ecological models (see [11] and the literature cited within) and economic
models where delays in variables are introduced. Among others, Szydlowski and Krawiec
[12] and Szydlowski et al. [13] use several modern mathematical methods of detect-
ing cyclic behaviour in Kalecki’s classical model; Maddalena and Fanelli [14] propose
a mathematical model with time delay to describe the process of diffusion of a new
technology; Zak [15] examines the effect of Kaleckian lags in the Solow and Cass–
Koopmans growth models; Matsumoto and Szidarovszky [16,17] develop growth models
with unimodal production functions (with respect to the stock of capital) and time-to-build
technology; Bianca et al. [18] investigate an endogenous labor shift model under a dual
economy with time delay.

The objective of our paper is to highlight the relevance of temporal lags in a con-
text in which economic activity depletes a free-access natural resource. Different from
Matsumoto and Szidarovszky [16, 17], we consider a technology that does not introduce
environmental quality as an input of the production function. In particular, the marginal
productivity of capital is always positive and decreasing, there exists only one transmis-
sion channel (pollution) through which output affects the environment, and pollution
does not produce any negative external effects on production. At this aim we consider
the model proposed by Xepapadeas in the Handbook of Environmental economics [19,
p. 1227, Eqs. (8), (9)]. Specifically, the author generalizes the neoclassical Solow growth
model with a fixed savings ratio, considering that economic growth is accompanied by
pollution accumulation. The mathematical structure and the results of the model are quite
simple: a two dimensional dynamical system displays a unique non trivial steady state
that captures the whole set of positive initial conditions. Furthermore, the time evolution
of capital accumulation and pollution is monotone.

Despite the neoclassical regularity assumptions on production function and absence
of optimizing behaviour of agents, when temporal lags in the production of capital goods
are introduced, the results drastically change and (temporal or persistent) oscillations
may characterize the dynamics of the model although the production function is always
increasing in the capital stock. In particular we show that, regardless of parameter speci-
fication, there exists a threshold value in time lag below which the dynamics of the state
variables are monotone or characterized by dumping oscillations. When the threshold
value is reached, the dynamical system undergoes a supercritical or subcritical Hopf
bifurcation. If the bifurcation is supercritical, an attracting invariant curve exists and
persistent oscillations characterize the dynamics of the model. The paper is organised
as follows. Section 2 builds on the model; Section 3 studies the emergence of the Hopf
bifurcation; Section 4 uses the center manifold theory to investigate the direction of Hopf
bifurcation and the stability of periodic solutions; Section 5 presents some simulations
and economic interpretations; Section 6 concludes.
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2 The model

We consider the Xepapadeas’ model [19] with population normalized to one:

k̇ = skα − δk,
ṗ = φkα −mp.

(1)

The first equation describes the classical Solow model when Cobb–Douglas technology
is assumed: k is the individual’s capital stock, δ > 0 denotes capital depreciation rate,
s is the saving ratio and α ∈ (0, 1) is capital’s share. Here p represents the stock of
pollution, φ emissions per unit of output and m > 0 reflects exponential pollution decay.
Xepapadeas proved this model to have a unique non-trivial steady state which is globally
asymptotically stable for non negative initial conditions.

In this paper, building on a contribution by Zak [15], we modify system (1) with a time
lag introduced in the Kaleckian spirit by assuming the same lag with regard to the role
played by the capital stock in both the dynamics of capital and dynamics of pollution.
This assumption leads to the following dynamical system:

k̇ = skαd − δkd,
ṗ = φkαd −mp,

(2)

where kd := kt−τ and τ > 0 represents time delay.

3 Local stability and Hopf bifurcation analysis

In this section, we will study stability of the stationary solutions and existence of local
Hopf bifurcation of system (2). The first step is to find stationary solutions. Since time
delay does not change the equilibria, system (2) has exactly the same equilibrium points
of the corresponding steady states for zero delay. Hence, there exists a unique non-
trivial steady state equilibrium (k∗, p∗) defined by skα−1

∗ = δ, φkα∗ = mp∗. Using the
transformation x = k − k∗, y = p − p∗, and then linearizing the resulting system at the
origin yields

ẋ = (α− 1)δxd,

ẏ = −my + αφkα−1
∗ xd,

(3)

where xd = kt−τ − k∗. Writing system (3) in the form[
ẋ
ẏ

]
=

[
0 0
0 −m

] [
x
y

]
+

[
(α− 1)δ 0
αφkα−1

∗ 0

] [
xd
yd

]
, (4)

we see that the characteristic equation resulting from (4) is given by∣∣∣∣−λ+ (α− 1)δe−λτ 0

αφkα−1
∗ e−λτ −m− λ

∣∣∣∣ = (λ+m)
[
λ− (α− 1)δe−λτ

]
= 0. (5)
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It is well known that the equilibrium is locally asymptotically stable if all roots of (5)
have negative real part. When τ = 0, the characteristic equation (5) reduces to (λ+m)×
[λ − (α − 1)] = 0, whose solutions are λ = −m < 0 and λ = α − 1 < 0. In this
case, the equilibrium is locally asymptotically stable. Therefore, if instability occurs for
a particular value of τ > 0, then a characteristic root of

λ− (α− 1)δe−λτ = 0 (6)

must intersect the imaginary axis (Rouche’s theorem, see, e.g., [20]).

Lemma 1. Eq. (6) has a unique pair of simple purely imaginary roots ±iω0 at the
sequence of critical values τj , where

ω0 = (1− α)δ, τj =
π

2(1− α)δ
+ 2πj (j = 0, 1, 2, . . . ).

Moreover, if λj(τ) = νj(τ) + iωj(τ) denote a root of Eq. (6) near τ = τj such that
νj(τj) = 0, ωj(τj) = ω0 (j = 0, 1, 2, . . . ), then the following transversality condition is
satisfied:

Re
[
λ′(τj)

]
≡ d[Reλj(τ)]

dτ

∣∣∣∣∣
τ=τj

> 0 (j = 0, 1, 2, . . . ).

Proof. Let λ = iω (ω > 0) be a root of Eq. (6). Then

iω − (α− 1)δ(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts gives

ω = (1− α)δ sinωτ, 0 = cosωτ.

So, the first part of the statement holds. Let λj(τ) = νj(τ) + iωj(τ) denote a root of
Eq. (6) near τ = τj such that νj(τj) = 0, ωj(τj) = ω0 (j = 0, 1, 2, . . . ). Differentiating
Eq. (6) with respect to τ , we get

dλ

dτ
+ (α− 1)δe−λτ

(
τ

dλ

dτ
+ λ

)
= 0.

Hence, using (6), we arrive at (
dλ

dτ

)−1

= − 1

λ2
− τ

λ
.

On the other hand,

sign

{
d[Reλj(τ)]

dτ

∣∣∣∣
τ=τj

}
= sign

{
Re

(
dλ

dτ

)−1∣∣∣∣
τ=τj

}
= sign

{
Re

(
− 1

λ2
− τ

λ

)∣∣∣∣
τ=τj

}
= sign

{
1

ω2
0

}
= 1.

This completes the proof.
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Based on the above analysis, the root λj(τ) of Eq. (6) near τj crosses the imaginary
axis from the left to the right as τ continuously varies from a number less than τj to one
greater than τj by Rouche’s theorem.

Lemma 2. If τ ∈ [0, τ0), all roots of the characteristic equation (5) have negative real
parts. If τ = τ0, all roots of Eq. (5), except ±iω0, have negative real parts. If τ ∈
(τj , τj+1) for j = 0, 1, 2, . . . , Eq. (5) has 2(j + 1) roots with positive real parts.

Summing up all works above lead us to state the following theorem.

Theorem 1. (i) The equilibrium (k∗, p∗) is asymptotically stable for τ ∈ [0, τ0) and
unstable for τ > τ0.

(ii) System (2) undergoes a Hopf bifurcation occurs at the equilibrium (k∗, p∗) when
τ = τj for j = 0, 1, 2, . . . .

4 Stability and direction of the Hopf bifurcation

In the previous section, we obtain the conditions for Hopf bifurcations to occur at the
critical value τj (j = 0, 1, 2, . . . ). In this section, based on the normal form method and
the center manifold theorem introduced by Hassard et al. [21], we will study the direction
of Hopf bifurcation and the stability of bifurcating periodic solutions from the positive
equilibrium (k∗, p∗). These techniques allow us to have analytical results with respect to
the type of the emerging bifurcation. For convenience, let τ = τj+µ, where µ ∈ R. Then
µ = 0 is the Hopf bifurcation value for system (2). Set u = (u1, u2)T = (x, y)T ∈ R2.
Normalizing the delay τ by the time scaling t → t/τ , system (2) can be written as
a functional differential equation in C = C([−1, 0],R2) as

u̇ = Lµ(ut) + f(µ, ut), (7)

where Lµ : C → R2 is a linear continuous operator and f : R× C → R2 are defined as
follows. For ϕ = (ϕ1, ϕ2) ∈ C,

Lµ(ϕ) = (τj + µ)

[
0 0
0 −m

]
ϕ(0) + (τj + µ)

[
a 0
b 0

]
ϕ(−1) (8)

with
a = (α− 1)δ, b = αφkα−1

∗ =
αφδ

s
,

and

f(µ, ϕ) = (τj + µ)

[
f (1)

f (2)

]
with

f (1) =
1

2
P ∗xdxd

ϕ1(−1)2 +
1

3!
P ∗xdxdxd

ϕ1(−1)3 + · · · ,

f (2) =
1

2
Q∗xdxd

ϕ1(−1)2 +
1

3!
Q∗xdxdxd

ϕ1(−1)3 + · · · .
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We have

P ∗xdxd
≡ Pxdxd

(k∗, p∗) = sα(α− 1)kα−2
∗ < 0,

Q∗xdxd
= φα(α− 1)kα−2

∗ < 0,

P ∗xdxdxd
≡ Pxdxdxd

(k∗, p∗) = sα(α− 1)(α− 2)kα−3
∗ > 0,

Q∗xdxdxd
≡ Qxdxdxd

(k∗, p∗) = φα(α− 1)(α− 2)kα−3
∗ > 0.

By the Riesz representation theorem, there exists a bounded variation function η(θ, µ)
for θ ∈ [−1, 0] such that

Lµϕ =

0∫
−1

dη(θ, µ)ϕ(θ) dθ for ϕ ∈ C,

where

η(θ, µ) =

{
Lµ(ϕ(−1), µ), θ = −1,

0, θ ∈ (−1, 0],

which can be satisfied by

dη(θ, µ) =

{
(τj + µ)

[
0 0
0 −m

]
Λ(θ) + (τj + µ)

[
a 0
b 0

]
Λ(θ + 1)

}
dθ

with Λ denoting the Dirac delta function, namely, Λ(θ) = 0 if θ 6= 0, Λ(θ) = 1 if θ = 0.
For ϕ ∈ C1([−1, 0],R2), we define

A(µ)(ϕ) =

{dϕ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1
dη(θ, µ)ϕ(θ) dθ = Lµ(ϕ), θ = 0,

and

R(µ)(ϕ) =

{
0, θ ∈ [−1, 0),

f(µ, ϕ), θ = 0.

Then we can write (7) as the following ordinary differential equation:

u̇t = A(µ)ut +R(µ)ut, (9)

where ut = u(t+ θ) for θ ∈ [−1, 0]. For ψ ∈ C̃ = C([0, 1], (R2)∗), we define

L∗µψ =

0∫
−1

dηT(−r, µ)ψ(−r) d(−r).

The adjoint operator A∗ of A is expressed as

A∗(µ)ψ =

{
−dψ(r)

dr , r ∈ (0, 1],∫ 0

−1
dηT(r, µ)ψ(−r), r = 0.
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We define the following bilinear inner product in C̃ × C for ψ ∈ C̃ and ϕ ∈ C:

〈ψ,ϕ〉 = ψ̄(0)ϕ(0)−
0∫

θ=−1

θ∫
ξ=0

ψ̄(ξ − θ) dη(θ)ϕ(ξ) dξ, (10)

where η(θ) = η(θ, 0). Since A and A∗ are adjoint operators, then±iω0τj are eigenvalues
of A and A∗. Let q(θ) and q∗(r) be the eigenvectors of A and A∗ associated with eigen-
values iω0τj and −iω0τj , respectively. These eigenvectors satisfy A(0)q(θ) = iω0τjq(θ)
and A(0)q∗(r) = −iω0τjq

∗(r). Let q(θ) = q(0)eiω0τjθ = (1, ρ)Teiω0τjθ, where ρ is
a complex value. From (8), we derive{

τj

[
0 0
0 −m

]
− iω0τjI + τj

[
a 0
b 0

]
e−iω0τj

}
q(0)

= τj

[
−iω0 + ae−iω0τj 0

be−iω0τj −iω0 −m

]
q(0) =

[
0
0

]
.

From which we have

q(0) = (1, ρ)T =

(
1,
be−iω0τj

iω0 +m

)T

.

On the other hand, suppose that q∗(r) = q∗(0)eiω0τjr = D(1, σ)eiω0τjr is the eigenvector
ofA∗ corresponding to−iω0τj , where σ andD are complex values. In this case, we obtain{

τj

[
0 0
0 −m

]T

+ iω0τjI + τj

[
a 0
b 0

]T

e−iω0τj

}
q∗(0)

= τj

[
iω0 + ae−iω0τj be−iω0τj

0 iω0 −m

]
q∗(0) =

[
0
0

]
.

Therefore, we can choose

σ = − be−iω0τj

iω0 + ae−iω0τj
.

In order to assure 〈q∗, q〉 = 1, we need to determine the value of D. From (10), we have

〈
q∗, q

〉
= D̄(1, σ̄)(1, ρ)T −

0∫
θ=−1

θ∫
ξ=0

(1, σ̄)e−i(ξ−θ)ω0τj dη(θ)(1, ρ)Teiξω0τj dξ

= D̄

[
1 + ρσ̄ −

0∫
θ=−1

(1, σ̄)θeiω0τjθ dη (θ)(1, ρ)T

]

= D̄

[
1 + ρσ̄ − e−iω0τjθ(1, σ̄)τj

[
a 0
b 0

]
(1, ρ)T

]
= D̄

[
1 + ρσ̄ + τj(bσ̄ + a)e−iω0τj

]
.
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Consequently, using

D =
1

1 + ρ̄σ + τj(bσ + a)eiω0τj
,

we get 〈q∗, q〉 = 1. Furthermore, since 〈ψ,Aϕ〉 = 〈A∗ψ,ϕ〉, we obtain −iω0〈q∗, q̄〉 =
〈q∗, Aq̄〉 = 〈A∗q∗, q̄〉 = 〈−iω0q

∗, q̄〉 = iω0〈q∗, q̄〉. Hence, 〈q∗, q̄〉 = 0. Now, we apply
the idea of Hassard et al. [21] to compute the coordinates to describe the center manifold
at the critical point. For ut, a solution of (9) at µ = 0, we define

z =
〈
q∗, ut

〉
and W (t, θ) = ut(θ)− 2 Re

[
zq(θ)

]
, (11)

where z and z̄ are the local coordinates for the center manifold in the direction of q∗ and
q̄∗. On the center manifold, we get

W (t, θ) = W (z, z̄, θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · .

Note thatW is real if ut is real. We consider only real solutions. For the solution ut, since
µ = 0, we have

ż =
〈
q∗, u̇t

〉
= iω0τjz +

〈
q̄∗(θ), f

(
0,W (z, z̄, θ)2 Re

[
zq(θ)

])〉
= iω0τjz + q̄∗(0)f

(
0,W (z, z̄, 0)2 Re

[
zq(0)

])
.

We rewrite this as
ż = iω0τjz + g(z, z̄),

where

g(z, z̄) = q̄∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · . (12)

Noticing from (11) that ut(θ) = (u1t(θ), u2t(θ)) = W (t, θ)+zq(θ)+z̄q̄(θ) and recalling
q(θ) = (1, ρ)Teiω0τjθ, we obtain

u1t(0) = z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ · · · ,

u2t(0) = ρz + ρz +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ · · · ,

u1t(−1) = e−iω0τjz + eiω0τj z̄

+W
(1)
20 (−1)

z2

2
+W

(1)
11 (−1)zz̄ +W

(1)
02 (−1)

z̄2

2
+ · · · ,

u2t(−1) = e−iω0τjρz + eiω0τjρz

+W
(2)
20 (−1)

z2

2
+W

(2)
11 (−1)zz̄ +W

(2)
02 (−1)

z̄2

2
+ · · · .

From the definition of f(µ, ut), we see

g(z, z̄) = q̄∗(0)f0(z, z̄) = τjD̄
(
f

(1)
0 + σ̄f

(2)
0

)
. (13)
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Expanding and comparing the coefficients with those in (12), we obtain

g20 = τjD̄
[
P ∗xdxd

e−2iω0τj + σ̄Q∗xdxd
e−2iω0τj

]
,

g02 = τjD̄
[
P ∗xdxd

e2iω0τj + σ̄Q∗xdxd
e2iω0τj

]
,

g11 = τjD̄P
∗
xdxd

+ σ̄Q∗xdxd

and

g21 = W
(1)
20 (−1)

[
eiω0τj

(
P ∗xdxd

+ σ̄Q∗xdxd

)
+
ρ̄(1 + σ̄)

2

]
+W

(1)
11 (−1)

[
2e−iω0τj

(
P ∗xdxd

+ σ̄Q∗xdxd

)
+ 2ρ(1 + σ̄)

]
+W

(2)
11 (0)

[
2e−iω0τj (1 + σ̄)

]
+W

(2)
20 (0)

[
eiω0τj (1 + σ̄)

]
.

In order to determine g21, we still need to compute W20(θ) and W11(θ). From (9) and
(11), we get

Ẇ = u̇t − żq − ˙̄zq̄ =

{
AW − 2 Re{q̄∗(0)f0q(θ)}, θ ∈ [−1, 0),

AW − 2 Re{q̄∗(0)f0q(0)}+ f0, θ = 0,

≡ AW +H(z, z̄, θ), (14)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · . (15)

By calculating the derivative of W , we find

Ẇ = Ẇz ż +Wz̄ ˙̄z. (16)

Comparing the coefficients of z2, zz̄ and z̄ of (16) with those of (14) gives

(A− 2iω0τjI)W20(θ) = −H20(θ), AW11(θ) = −H11(θ), (17)

By (13) and (14), we know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ) = −gq(θ)− ḡq̄(θ). (18)

Hence, comparing the coefficients of (18) with (15) yields

H20(θ) = −g20q(θ)− ḡ02q̄(θ), H11(θ) = −g11q(θ)− ḡ11q̄(θ).

By substituting these relations into (17), we can derive the following equations:

Ẇ20(θ) = 2iω0τjIW20(θ) + g20q(θ) + ḡ02q̄(θ)

= 2iω0τjIW20(θ) + g20q(0)eiω0τjθ + ḡ02q̄(0)e−iω0τjθ,

Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ) = g11q(0)eiω0τjθ + ḡ11q̄(0)e−iω0τjθ.
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Solving for W20(θ) and W11(θ), we obtain

W20(θ) =
ig20

ω0τj
q(0)eiω0τjθ +

iḡ02

3ω0τj
q̄(0)e−iω0τjθ + E1e2iω0τjθ,

W11(θ) = − ig11

ω0τj
q(0)eiω0τjθ +

iḡ11

ω0τj
q̄(0)e−iω0τjθ + E2,

where E1 = (E
(1)
1 , E(2)

1 ) ∈ R2 and E2 = (E
(1)
2 , E(2)

2 ) ∈ R2 are constant vectors.
E1 and E2 can be determined as follows. From (14), we know that

H(z, z̄, 0) = −2 Re
{
q̄∗(0)f0q(0)

}
+ f0,

so that we find

H20(0) = −g20q(0)− ḡ02q̄(θ) +B1,

H11(0) = −g11q(0)− ḡ11q̄(0) +B2.

Here B1, B2 are known vectors. Then, from (17) and the definition of A, we have[
2iω0τjI −

0∫
−1

e2iω0τjθ dη(θ)

]
E1 = B1,

[
−

0∫
−1

e2iω0τjθ dη(θ)

]
E2 = B2.

(19)

Solving (19), we can obtain E1 and E2. Based on the above analysis, the values of gij are
computed. Hence, we can calculate all of the following quantities which are required for
the stability analysis of Hopf bifurcation:

c1(0) =
i

2ω0τj

[
g11g20 − 2|g11|2 −

|g02|2

3

]
+
g21

2
,

µ2 = − Re[c1(0)]

Re[τjλ′(τj)]
, β2 = 2 Re

[
c1(0)

]
,

T2 = − Im[c1(0)] + µ2 Im[λ′(τj)]

ω0τj
.

It is well known (see [21]) that µ2 determines the direction of the Hopf bifurcation: if
µ2 > 0 (resp. µ2 < 0), then the Hopf bifurcation is supercritical (resp. subcritical) and
the bifurcating periodic solutions exist for τ > τj (resp. τ < τj). β2 determines the
stability of the bifurcating periodic solutions. The bifurcating periodic solutions are or-
bitally asymptotically stable (resp. unstable) if β2 < 0 (resp. β2 > 0), and T2 determines
the period of the bifurcating periodic solutions: the period increases (resp. decreases)
if T2 > 0 (resp. T2 < 0). From the discussion in the previous section we know that
Re[λ′(τj)] > 0. We, therefore, have the following result.

www.mii.lt/NA



Stability and nonlinear dynamics in a Solow model with pollution 575

Theorem 2. The direction of the Hopf bifurcation of system (1) at the equilibrium (k∗, p∗)
when τ = τj is supercritical (resp. subcritical) and the bifurcating periodic solutions are
orbitally asymptotically stable (resp. unstable) if Re[c1(0)] < 0 (resp. Re[c1(0)] > 0).

Remark 1. The expression of Re[c1(0)] is quite cumbersome to be dealt with in a neat
analytical form due to several nonlinearities. Nonetheless, by using software for algebraic
manipulation it is possible to check its sign (given a certain parameter set) and thus to
have analytical findings with regard to the type of the emerging bifurcation (see [11] for a
similar approach). After having produced several numerical experiments, we conjecture
that the Hopf bifurcation is always supercritical.

5 Numerical examples

In order to clarify the analytical results shown in the previous section, we now present
some numerical simulations at different values of τ and we assume that parameters are
set on a yearly basis. We fix α = 0.34, δ = 0.12, φ = 0.6, m = 0.1, s = 0.7, and let τ
vary. The steady state of the model is (k∗, p∗) ' (14.47, 14.88) and, for τ < τ0 ' 19.83,
it is stable. In addition, since Re[c1(0)] < 0, the Hopf bifurcation is supercritical. For
a relative low value of τ , the dynamics of k and p are monotone and converging to (k∗, p∗)
(see Fig. 1a).

If we let τ increase, the dynamics become oscillating but converging to the stationary
solution of the model (see Fig. 1b).

When τ crosses τ0, a limit cycle surrounds the steady state and the model shows
persistent oscillations (see Figs. 2a and 2b).

(a) (b)

Fig. 1. (a) Starting from initial conditions below (k∗, p∗) trajectories converge monotonically to steady state
(τ = 1, k0 = 13, p0 = 11); (b) Damped oscillations towards the corresponding equilibrium value of steady
state (τ = 18.5, k0 = 13, p0 = 15). Line (1) depicts the time evolution of the capital accumulation, line (2)
depicts the evolution of pollution level.
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(a) (b)

Fig. 2. (a) Limit cycle around (k∗, p∗) (τ = 22); (b) Corresponding trajectories (k0 = 10, p0 = 10). Line (1)
depicts the time evolution of the capital accumulation, line (2) depicts the evolution of pollution level.

6 Conclusions

The aim of this paper is to introduce a time-to-build technology in an economic model
with pollution, where the production function is strictly increasing in the capital stock.
Even if we have not considered a negative feedback of pollution in the production func-
tion, we have shown that the existence of temporal lags in a context in which economic
activity depletes a free-access natural resource can be a source of cyclical dynamics both
in economic and environmental variables.
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