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Abstract. Lithuanian language has great inflexion, free word order and other features which
distinguish it from other languages. This raises a problem of testing for the Lithuanian language
validity of findings established for other languages. In the paper, an empirical study of a collection
of Lithuanian texts is performed. It is supposed that authors of texts are basic elements of the
population under study and its heterogeneity stems out of the heterogeneity of preferences and
choices of the authors. An attempt to estimate structural distributions of words in a collection of
texts of different authors is made by making use of a simple statistical model and empirical Bayes
approach.

Keywords: structural distribution, Zipf–Mandelbrot law, empirical Bayes, Poisson mixture, sparse
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1 Introduction

Statistical methods are often used in quantitative linguistic analysis and natural language
(NL) processing [1–3], so are probabilistic and statistical models. In corpus linguistics,
a principal assumption is randomness of a corpus (see [4–6]; here randomness is under-
stood as being equiprobable). A large corpus, however, contains very heterogeneous data,
a mixture of texts of various genres and types (see [7] for empirical evidence), devoted
to different purposes and various audiences saying nothing of vocabularies of authors’
preferable words (their “mental lexicon” [8]), available and preferable NL structures.
How can one in this case to distinguish features of the language itself from preferences
of the authors? Thus, an explicit definition of the (finite) population under study is cru-
cial, to a great extent it determines results of statistical analysis. It enables one to get
a (representative) sample with appropriate statistical properties and to identify different
(ideally independent) sources of (statistical) variation. However it is a problem in (corpus)
linguistics. It seems that an implicit definition of the population commonly adopted in
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linguistics studies treats running words in a corpus as basic elements which satisfy the
randomness condition. Baroni and Evert [5] is an example of another approach which
deals with statistical samples (populations) of random text documents. Nevertheless, lin-
guistic features and preferences of authors of large text documents are over-represented
in the samples (populations) as compared to authors of small text documents in this case
as well.

In our work, authors of text documents are basic elements of population we are inter-
ested in. It is supposed that the heterogeneity of a collection of text documents (corpus)
stems out of the heterogeneity of preferences and choices of the authors. An attempt
to estimate structural distributions of words in a collection of texts of different authors
is made by making use of a simple statistical model and empirical Bayes approach.
Carlin and Luis [9] provide an overview with extensive reference list on empirical Bayes
methods. Structural distribution is one of the main objects of study in statistical linguistics
closely related to probabilistic approach, in particular to Zipf–Mandelbrot law [10, 11],
Yule–Simon law [12, 13] etc., see [2, 14–16] and references therein. The main body of
empirical studies of structural distribution and Zipf–Mandelbrot law considers English
language corpora, as exceptions we refer to [17, 18].

Utka [18] presents a structural distribution of word frequency counts for a Lithuanian
corpus of about 1 million word tokens. Lithuanian language has great inflexion, free word
order and other features which distinguish it from other languages, especially English. We
refer to [19] for thorough discussion of this topic. This raises a problem of testing for the
Lithuanian language validity of findings established for other languages.

In our empirical study, the collection of texts are taken from the digital library col-
lection [20]1 and consists of recommended school imaginative pieces of Lithuanian and
foreign authors (novels, stories, poems, poetry, plays), overall 80 text documents of
63 authors with overall 206453 word types (different words in text) and 2567290 word
tokens (running words in text).

The results of the empirical study show that the structural distribution estimator ob-
tained as (weighted) average of structural distribution estimators calculated separately for
each author in the collection has better performance than the direct structural distribution
estimator obtained from the whole collection treated as a corpus.

The next section contains the background material. The definition of structural dis-
tribution of words is given and linked up with Herdan–Heaps and Zipf–Mandelbrot law.
Section 3 is devoted to empirical Bayes method and its application for estimating a struc-
tural distribution. In Section 4, we briefly discuss the results of empirical study of the
collection of Lithuanian texts.

2 Latent and structural distributions

Let S be a fixed population of subjects or sources of textual information which are
assumed to be statistically independent. We are not interested in content and semantics

1The authors are grateful to Education Development Centre, the Ministry of Education and Science of the
Republic of Lithuania and EU Structural Support of project “Development of the Key Competencies in Basic
School (grades 5–8)”.
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of the texts but merely in their word types and tokens. Let Ws denote a set of word
types in (vocabulary of) a source s ∈ S and let Vs := |Ws| be its total number of types
(the vocabulary size). It is supposed that all vocabularies Ws are subsets of a general
vocabularyW . Thus the data we deal with is {(yw(s), xw(s)), w ∈ W, s ∈ S}, where
yw(s) is frequency of a word type w ∈ W in a source s ∈ S, xw(s) is a vector of
corresponding explanatory variables and represents some auxiliary information about
both the word type w ∈ W and its source s ∈ S.

A fundamental assertion in quantitative linguistics states that in principle the vocabu-
laryW is unbounded (see, e.g., [2, 21]). To put it formally let us introduce an asymptotic
parameter M →∞ which represents overall size of text documents under consideration.
For instance, if W =

⋃
s∈SWs, the parameter M can be taken as |S|, the number of

sources in S (another alternative is considered below). Then (in theoretical considerations)
we require that

V = V (M) := V (WM )→∞, M →∞. (1)

The sets Ws are treated as samples of size Vs from some (infinite) superpopulation of
words generated by some stochastic mechanism (cf. [5, 6]). Various models of the word
superpopulation Ω (without reference to this term) are proposed and discussed in linguis-
tic literature. Actually, any probabilistic model (e.g., Zipf–Mandelbrot, Yule-Simon, etc.;
see [2, 16, 22] and references therein) can be taken as a superpopulation model.

Numerous empirical observations starting from Estoup (1916) (the reference bor-
rowed from [16]) show that up to a half of words in a corpus are hapaxes (hapax legom-
ena), i.e. occur in a corpus only once. According to the classical rule of thumb the majority
of frequency counts of categories in a frequency table of categorical data are required to
be at least 5 [23, p. 396]. If this requirement is violated the accuracy of χ2 approximation
of distributions of test statistics may be insufficient for standard statistical inference and
the categorical data (or the contingency table) is said to be sparse. Thus, word count
data of a corpus is sparse. Assumption (1) is referred to as sparse asymptotics [24] or
large number of rare events (LNRE) [15]. Below we describe two basic models of sparse
categorical data.

2.1 Latent distribution model

Let us suppose for a while that there is only one source s of textual information so we can
drop it from notation. Let word types in a general vocabularyW of the size V = V (M)

be arranged in a certain order r to get w = wV (r) := (w1, . . . , wV ). The observed
and expected word type frequencies, y and µ := Ey, and the explanatory variables x
(as well as other related objects) are accordingly arranged giving y := (y1, . . . , yV ),
µ := (µ1, . . . , µV ) and x := (x1, . . . , xV ), respectively.

One of the simplest way to deal with the sparsity is to suppose that µ is determined by
a latent distribution function F on [0, 1] via representation

µi = µ+

(
F (ti)− F (ti−1)

)
, µ+ :=

V∑
i=1

µi,
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where ti := i/V , i = 0, 1, . . . , V (cf. [15, 24]). This setting is often used in econometric
studies of rankings (ordered data) [25]. It is usually assumed that there exists a bounded
(and rather smooth) latent distribution density f , f(u) = dF (u)/du. The latter assump-
tion implies that the expected frequencies µi = O(µ+/V ), V →∞. Let

V̂m = V̂m(s) =

V∑
i=1

I{yi = m}, m = 0, 1, . . . ,

V̂+ = V̂+(s) :=

V∑
i=1

I{yi > 0} =

∞∑
m=1

V̂m

be the number of word types w ∈ W observed exactly m times and a total number of
actually observed word types (in the sampled source s), respectively. Here and below
I(E) is an indictor of an event (set, relation) E. Hence the source s contains V̂+ word
types and y+ word tokens, y+ :=

∑V
i=1 yi, typically denoted byN in linguistic literature.

Thus it is convenient to take the asymptotic parameter M := µ+ = Ey+ since it applies
also in case where the number of sources is fixed but the sources themselves are growing.
Then V = V (M) →∞ ⇔ M = M (V ) →∞.

The sparsity of data can be characterized via various quantities, for instance,

ρA = ρA(M) :=
M

V (M)
, ρ1 = ρ1(M) :=

EV̂1

EV̂+
(2)

are the average expected frequency (the relative expected size) and the relative expected
number of hapaxes in textual data, respectively. The quantity ρ1 is introduced by Khmal-
adze [15] in order to define models (schemes) of large number of rare events (LNRE).

Definition 1. (See [15].) It is said that the observed frequencies y satisfy the LNRE
model iff

lim inf
M→∞

ρ1(M) > 0, EV̂+ →∞. (3)

The LNRE model as well as the condition ρA(N) = O(1) can viewed as a formal
definition of sparse categorical data.

Remark 1. Latent distribution model assumes existence of an underlying ordered random
variable r (variable measured at least in the order scale). Thus, it is not directly applicable
to nominal data, in particular to word types in text documents. To overcome this difficulty
one can introduce a certain dummy ordered variable somehow related to the nominal data
under consideration. For a data of word counts, common dummy ordered variables are
word occurring frequencies in a certain corpus or rankings of words arranged in increasing
(decreasing) order of their frequencies in the corpus. Unfortunately, the uniqueness of
word types is lost. The corresponding latent distribution of r (appropriately scaled) is
called structural distribution. A formal definition of the structural distribution is given
and discussed in the next subsection.
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2.2 Structural distribution

Sometimes it is natural to suppose statistical inference to possess certain symmetry prop-
erties, in other words, to be invariant with respect to certain transformations. When
dealing with word count data it is reasonable to assume that the order of word occurrence
in a text is irrelevant, it is not interesting for a researcher. Thus, in this case, the statistical
procedures to be applied should be invariant with respect to word order permutations in
a text. It means that any quantitative characteristic of the “population” W can be com-
pletely represented by its empirical distribution. In particular, the expected frequencies of
word types w in W are represented by their empirical distribution function (e.d.f.)

F̂ (u) =
1

V

V∑
i=1

I{µi 6 u}, u > 0.

The e.d.f. F̂ is referred to as empirical structural distribution. One can expect that e.d.f. F̂
converges (as V = V (M) →∞), possibly after some scaling, to a distribution function F ,
say.

Definition 2. (See [26].) Suppose e.d.f. F̂ (ρt) with a scaling factor ρ = ρ(M) converges
weakly to a distribution function F asM →∞. Then F is called a structural distribution
of the expected frequencies µ (or simply of the vocabulary W ) with the scaling factor ρ.

Under the Poisson sampling model, a value of y chosen at random with the equal
probabilities from the observed frequencies {y1, . . . , yV } satisfies

[y | λ]
L
= Poisson(λ), λ

L
= F̂ (

L
= defines a distributions law), (4)

where Poisson(λ) denotes the Poisson distribution law with a intensity (or mean) param-
eter λ > 0, i.e. P(yi = k | λ = µi) = Πk(µi) := µki e−µi/(k!), k = 0, 1, . . . . If the
sequence ρ−1µ

V
:= (ρ−1µ1, . . . , ρ

−1µV ) is a sequence of i.i.d. random variables with
a common distribution F , then F obviously is the structural distribution of W with the
scaling factor ρ. Thus the word counts distribution determined by (4) can be approximated
by the Poisson mixture model

[y | λ]
L
= Poisson(ρλ), λ

L
= F.

Church and Gale [7] discuss applications of Poisson mixtures in linguistics.
Empirical studies (see, e.g., [2, 14]) show that better fit to real data is obtained with

improper structural distributions. Evert [14] considers following the Zipf’s law in the
LNRE model with parameters (τ, b) ∈ (0, 1)× (0,∞). The improper structural density f
of this distribution law is

f(z) = z−τ−1, 0 < z 6 b <∞, τ ∈ (0, 1).

The parameter τ determines the Zipf’s exponent α = 1/τ .

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 4, 611–625
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In order to avoid dealing with improper distributions, we can approximate empirical
structural distribution by finite Zipf–Mandelbrot [14] or truncated Pareto distributions
F%(· | τ, δ) with the density

f%(z | τ, δ) := %−1f1
(
%−1z

∣∣ τ, δ), 0 < δ < 1, τ ∈ (0,∞), (5)

f1(z) := c1z
−τ−1I{δ < z < 1}, (6)

where the scale parameter %, the lower bound δ of the support of f1 and hence the
normalizing constant c1 = c1(τ, δ) := τ(δ−τ − 1)−1 may depend on the asymptotic
parameter M . Here we suppose that τ > 0 is fixed,

lim
M→∞

%(M) = b0 ∈ (0,∞], lim
M→∞

δ(M)%(M) = a0 ∈ [0, b0). (7)

Assuming the positive lower bound for the support of an approximate structural distri-
bution actually is not a restriction in applications since we never be able to estimate the
likelihood of very rare word types whose occurrence probability is below some positive
threshold (which depends on M ).

In the rest of this subsection, we follow arguments by Evert [14] (see also [21]) to
link the structural distribution approximation (5), (6) with Herdan’s–Heap’s and Zipf’s
laws. Let Eρ (Pρ) denote the expectation (respectively, probability) with respect to the
density f%. Then the expected number of word types having m counts

E%V̂m = VP%{y = m} = V

∞∫
0

Πm(u) dF%(u) = V
c1%

τ

m!

%∫
δ%

um−τ−1e−u du. (8)

Let us denote by Γ(u;β) the incomplete gamma function and suppose m > 1 and τ ∈
(0, 1). Then (7) and (8) imply

E%V̂m
V

∼ c1ρ
τ (Γ(b0;m− τ)− Γ(a0;m− τ))

Γ(m+ 1)
. (9)

Analogously, for the expected vocabulary size, i.e. the expected number of word types
observed at least once, we have

E%V̂+
V

= P%{y > 0} =

∞∫
0

(
1− e−u

)
dF%(u) ∼ c1c0ρτ

c0τ(δρ)τ

1− δτ
(10)

with

c0 = c0(a0, b0, τ) :=

b0∫
a0

u−(τ+1)
(
1− e−u

)
du ∼

%∫
δ%

1− e−u

uτ+1
du.

Note that a0 = 0, b0 =∞ yields c0 = Γ(1−τ)/τ . The average expected frequency (2) of
the vocabularyW generated by the approximate structural distribution F%(· |τ, δ) defined
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in (5), (6) is

ρA =
E%y+
V

= E%y = %

∞∫
0

udF1(u) = c1%

1∫
δ

du

uτ
=
c1%
(
1− δ1−τ

)
1− τ

. (11)

From (2), (10) and (11) it follows that

E%V̂+ ∼ c0
1− τ

1− δ1−τ
M%τ−1. (12)

Take % ∼ c%Mβ , c% > 0, β ∈ [0, 1]. Then (12) leads to a power law

log(E%V̂+) = log
c0(1− τ)cτ−1%

1− δ1−τ
+ (1− β + βτ) logM + o(1). (13)

As M →∞, the law of large numbers imply V̂+ ∼ E%V̂+ and N = y+ ∼ E%y+ = M in
probability. Thus expression (13) can be interpreted as approximate relation between the
observed number of word types V̂+ and the observed number of word tokens N in a large
corpus

log(V̂+) ≈ const + (1− β + βτ) logN (14)

known as the Herdan’s law [27] in quantitative linguistics and as the Heaps’ law [28] in
information retrieval.

In view of (9) and (10), a relative frequency spectrum of the vocabulary W generated
by (5), (6)

E%V̂m

E%V̂+
∼ Γ(b0;m− τ)− Γ(a0;m− τ)

c0(a0, b0, τ)Γ(m+ 1)
(15)

is (asymptotically as M → ∞) independent of the vocabulary size M . Thus the sparsity
condition (3) is satisfied. Suppose a0 = 0, b0 = ∞. Due to well-known approximation
log(Γ(t+ h)/Γ(t)) = h log(t+ h) +O(t−1), t→∞, (15) implies (for very large M )

log(E%V̂m) = log(E%V̂+)− log
Γ(1− τ)

τ
− (1 + τ) log(m) +O

(
m−1

)
, m→∞.

This expression can be treated as a theoretical variant of Zipf’s second law:

log(V̂m) ≈ log(V̂+)− log
Γ(1− τ)

τ
− (1 + τ) log(m). (16)

Here word type counts m are substituted for their ranks r used in Zipf’s first law, see [21,
p. 63].

Other parametric models of structural distributions are discussed in [2, 22], see also
[5, 14, 16] and references therein. The (finite) Zipf–Maldebrot model is one of the best-
fitting models in real applications.

Khmaladze [15] pointed out that the structural distribution can be treated as a latent
mixing distribution in the empirical Bayes approach. In the next section, we present
a simple and convenient for computations yet rather informative Bayes statistical model
and adopted parametric empirical Bayes approach for estimating expected frequencies of
word tokens and their structural distributions.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 4, 611–625
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3 Empirical Bayes approach

Latent and structural distribution models introduced in the previous subsections ignore the
available auxiliary information {xw(s), w ∈ W, s ∈ S}. The Bayesian model presented
here incorporates the auxiliary information by supposing that the conditional distribution
of frequency of yw(s) of a word type w in a source s given a value x of xw(s) depends
on x through scalar functions p = p(x), µ = µ(x) and κ = κ(x). To be precise,[

yw(s)
∣∣ zw(s) = 0

]
= 0, (17)[

zw(s)
∣∣ xw(s) = x

] L
= Binomial

(
1, 1− p(x)

)
, (18)[

yw(s)
∣∣ zw(s) = 1, λw(s) = λ

] L
= Poisson(λ), (19)[

λw(s)
∣∣ xw(s) = x

] L
= Gamma

(
κ(x), µ(x)

)
. (20)

Here {zw(s), w ∈ W, s ∈ S} are latent binary random variables (mutually) condition-
ally independent when values of the explanatory variables {xw(s), w ∈ W, s ∈ S}
are given, {yw(s), w ∈ W, s ∈ S} are random variables (mutually) conditionally in-
dependent when values of latent positive random variables {λsw, w ∈ W, s ∈ S} and
values of the explanatory variables are kept fixed, Gamma(κ, µ) denotes the Gamma
distribution law with the mean µ > 0, the variance κµ2 and the distribution density

g(u | κ, µ) :=
u1/κ−1 exp{−u/(µκ)}

Γ(1/κ)(µκ)1/κ
, u > 0.

The value 0 of the binary latent variable zw(s) indicates that a word type w is irrele-
vant (not expected) for a source s, p(x) is the irrelevance probability among cases with
xw(s) = x. The latent variable λw(s) is the expected frequency of a relevant word type
w in a source s.

The assumption of mutual conditional independence of y’s is not realistic. However,
from the viewpoint of asymptotic statistics, it is equivalent to the condition of weak
(conditional) dependence of y’s which seems to be a rather reasonable assumption when
considering word count distributions in sufficiently large text documents.

The marginal (and conditional for given x’s) distribution of y’s is obtained by inte-
grating out the unobservable random variables z’s and λ’s

Qk(x) := P
(
yw(s) = k

∣∣ xw(s) = x
)

= p(x)I{k = 0}+
(
1− p(x)

) ∞∫
0

Πk(u)g
(
u
∣∣ κ(x), µ(x)

)
du, (21)

which actually is a mixture, respectively with the prior probabilities p(x) and 1 − p(x),
of the degenerate at 0 distribution and the negative binomial distribution q with the mean
parameter µ = µ(x) and the dispersion parameter κ = κ(x):

q(k | µ, κ) :=
Γ(1/κ+ k)

Γ(1/κ)k!

(
µ

1 + µ

)k(
1

1 + µ

)1/κ
, k = 0, 1, . . . .
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Equations (17)–(20) define a conjugate Bayesian two-component Gamma-Poisson mix-
ture model with mutually independent pairs of unknown parameters (zw(s), λw(s)),
w ∈ W , s ∈ S, which have the prior distribution[

zw(s)
∣∣ pw(s) = p

] L
= Binomial(1, 1− p),[

λw(s)
∣∣ zw(s) = 1, µws = µ, κws = κ

] L
= Gamma(κ, µ),[

λw(s)
∣∣ zw(s) = 0, µws = µ, κws = κ

]
= 0

dependent on the hyperparameters pws := p(xw(s)), µsw := µ(xw(s)), κsw := κ(xw(s)),
w ∈ W , s ∈ S. Hence the posterior distribution of the unknown parameters based on
a sample y{D} := {yw(s), w ∈ W, s ∈ D}, D ⊂ S, is again the two-component
Gamma-Poisson mixture with the updated hyperparameters

p̂sw = p̂sw
(
y{D}

)
:=

pswI{yw(s) = 0}
pswI{yw(s) = 0}+ (1− psw)q(yw(s) | µsw, κsw)

, (22)

µ̂sw = µ̂sw(y{D}) :=
µsw(1 + κswyw(s))

1 + κswµsw
, (23)

κ̂sw = κ̂sw(y{D}) :=
κsw

1 + κswyw(s)
, s ∈ D. (24)

The main problem in Bayesian statistics is the prior distribution specification. In our
setting, it means a specification of the hyperparameters psw, µsw, κsw, w ∈ W , s ∈ S,
(parametric approach) or the functions p(·), µ(·) and κ(·) (nonparametric approach).
According to empirical Bayes approach, the hyperparameters are estimated by fitting the
marginal distributions (21) of y’s to the available data y{D}. Assuming special parametric
form of the functions p(·), κ(·) and µ(·) allows one to solve this task efficiently. For
instance, if p(·) and µ(·) depend on linear predictors with the logit and logarithmic link
functions, respectively, and κ(·) is a constant then equations (17)–(20) yield a regression
model for K-mixture distributions (see [7, p. 3], also known in econometrics as zero
inflated negative binomial (ZINB) regression model. Standard statistical software (R,
SAS, STATA) can be applied to fit the model. Estimators of the unknown parameters are
obtained by the maximum likelihood method and calculated by making use of iteratively
re-weighted least squares or/and the EM algorithm.

Given the updated hyperparameters (22)–(24) the structural distribution of word types
for a source s ∈ S can be estimated directly as

F̂s(u) =
1

V

∑
w∈W

(
I
{
µ̂ws 6 u, yw(s) > 0

}
+(1−p̂sw)I

{
µ̂ws 6 u, yw(s) = 0

})
. (25)

The second summand in this expression estimates the contribution of unseen word types
for a source s ∈ S. In order to obtain an estimator of the structural distribution of
word types of the general vocabulary W , one can take weighted average of structural
distribution estimators (25)

F̂∗(u) :=
1

ω+

∑
s∈S

ωsF̂s

(
uN∗

µ̂∗s

)
(26)

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 4, 611–625



620 K. Piaseckienė, M. Radavičius

appropriately scaled with

µ̂∗s := ÊNs =

∞∫
0

uF̂s (du)

to have the same estimated expected text sizes N∗. In empirical study (see the next
section), the equal weights and the weights proportional to the source text (vocabulary)
size are considered. The structural distribution of the general vocabularyW can be also
estimated directly without intermediate estimation of the structural distributions of text
sources:

F̂W (u) =
1

V

∑
w∈W

I
{
µ̂w+ 6 u

}
, (27)

µ̂w+ :=
∑
s∈S

(
µ̂wsI

{
yw(s) > 0

}
+ (1− p̂sw)µ̂wsI

{
yw(s) = 0

})
. (28)

4 Results of empirical study

In the study, the general vocabulary W is taken as
⋃
s∈SWs. The vector of explanatory

variables xw(s) consists of two categorical variables, s and `w, and their interactions.
The categorical variable s ∈ S has |S| = 63 categories, the categorical variable `w ∈
{2, . . . , 10} is the length group of a word type w. The group with `w = 2 consists of
word types of length 1 or 2, word types in group with `w = 10 have 10 or more letters,
in the rest groups word type length and group number coincides. We also use a derivative
feature native indicating whether an author is native Lithuanian or he/she is foreign.

Figure 1 gives an illustration of the Herdan–Heaps law (14), also shows the distri-
bution of text and vocabulary sizes among the authors. The data in log-log scale fits the

Fig. 1. The Herdan-Heaps law for the words of different length and in total.
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Fig. 2. The Zipf’s second law for the words of different length and in total.

Fig. 3. Scatter plot of slope estimates in the Zipf’s second law (16).

straight line very well even for short text documents. However this does not hold for
shorter word types (when `w < 6). Graphical illustrations of the Zipf’s second law (16)
are presented in Fig. 2. Again one can notice significant dependence of the slopes in the
Zipf’s law on the length of word types (more vivid for longer ones with `w > 7). Fig. 3
contains scatter plot of estimated slopes in approximate linear equations (16) by formal
fitting a linear regression model to each source data (we do not check the model fit and
validity). A tendency of slopes for foreign authors as compared with native ones to have
smaller absolute values of the slope is apparent. These observations show that choosing
xw(s) = (s, `w) (as an initial step in this direction) is quite reasonable.
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Fig. 4. Histograms of estimates related to the estimator F̂∗, see (26).

Fig. 5. Histograms of estimates related to the estimator F̂W , see (27), (28).

The empirical Bayes approach applied to the available data enables us to estimate the
number of unseen word types in each source and hence respectively adjust estimators
of the structural distributions. The effect of the adjustment is apparent in Fig. 4 and
Fig. 5, where histograms of structural distribution estimators obtained by making use
of different methods are drawn. The structural distribution estimators are respectively
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Fig. 6. The structural distribution estimates for native and foreign authors

scaled to match the total N∗ = 106 of word tokens and their histograms are standardized
for a text document with vocabulary size of 106 word types. The histogram graphs are
truncated at a certain value of the expected frequency, either 103 or 102. Source_Equal
and Source_Totals label the estimates obtained by (26) with the equal weights {ωs} and
the weights proportional to the text size Ns of sources s ∈ S, respectively. The estimates
with the weights proportional to the source vocabulary size are very close to that with
equal weights and therefore are not presented here. The estimate calculated by (27), (28)
is labelled Corpus_Unseen, while label Corpus_Seen stands for the estimate derived from
(27) by deleting the estimated contribution of unseen word types. In addition, histograms
of analogous structural distribution estimates but now based on a random subsample
S9 ⊂ S of size 9 are drawn. This is indicated by adding the word Sample to the labels. For
comparison, we include the histogram of estimate Source_Equal and also the histogram
of respectively scaled observed frequencies (labelled Corpus_Frequences) in the both
figures.

The weighted structural distribution estimates Source_Equal_Sample and Source_
Totals_Sample yield reasonable predictions of the respective estimates Source_Equal and
Source_Totals based on the whole sample S and probably of the true structural distribu-
tion F . The estimates Corpus_Unseen and Corpus_Unseen_Sample seems to be biased
in this case. To illustrate the textual data heterogeneity, histograms of Source_Equal type
estimates of structural distributions for two groups of authors (native vs. foreign) are
presented in Fig. 6. Note a more subtle word frequency pattern of foreign authors as
compared to scatter plot of slopes in the Zipf’s second law in Fig. 3. On the one hand
translated texts tend to use more standard vocabulary (reduction of expected frequencies
in the interval (0, 0.8) in the log10 scale), on the other hand they contain words related to
culture and specific being of other nations and hence rare in original Lithuanian texts (the
pike at −0.6).
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