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Abstract. In this paper, we introduce the notion of α–contractive mapping of Meir–Keeler type
in complete metric spaces and prove new theorems which assure the existence, uniqueness and
iterative approximation of the fixed point for this type of contraction. The presented theorems
extend, generalize and improve several existing results in literature. To validate our results, we
establish the existence and uniqueness of solution to a class of third order two point boundary value
problems.
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1 Introduction

In [1], Meir and Keeler introduced a new contraction condition for self-maps in metric
spaces and generalized the well known Banach contraction principle as follows.

Theorem 1. (See [1].) Let (X, d) be a complete metric space and T : X → X . Assume
that, for every ε > 0, there exists δ(ε) > 0 such that

x, y ∈ X: ε 6 d(x, y) < ε+ δ(ε) ⇒ d(Tx, Ty) < ε.

Then T has a unique fixed point x∗ ∈ X and Tnx → x∗ (as n → ∞) for every x ∈ X ,
where Tn denotes the nth order iterate of T .
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In another direction, Ran and Reurings [2] extended Banach’s contraction principle to
the setting of ordered metric spaces and obtained some interesting applications to matrix
equations. Later on, the results of Ran and Reurings were extended and generalized by
many authors (e.g., [3–12] and the references therein). In particular, Harjani et al. [13]
unified these two directions by studying the fixed points of Meir–Keeler type contractions
in ordered metric spaces.

Very recently, Samet et al. [14] took a new approach to the generalization of Banach’s
contraction principle and introduced the concept of α-ψ-contractive type mappings, while
establishing various fixed point theorems for such mappings in the setting of complete
metric spaces. In particular, this new approach contains many of the generalizations
considered in [2–13] as special cases. We refer the reader to [15] for other generalization
of the α-ψ-contractive type mapping.

In this context, the aim of this paper is to unify the concepts of Meir–Keeler con-
traction [1] and α-ψ-contractive type mapping [14] and establish some new fixed point
theorems in complete metric spaces for such mappings. Several consequences of our
results are presented in Section 3. We validate our results with an application to the study
of the existence and uniqueness of solutions for a class of third order two point boundary
value problems.

2 Main results

2.1 Preliminaries

Throughout this paper, let N denote the set of all non-negative integers, Z the set of
all integers and R the set of all real numbers. We start by introducing the concept of
α-contractive mapping of Meir–Keeler type. Subsequently, we prove some lemmas useful
later.

In what follows, let (X, d) be a metric space, T : X → X and α : X×X → [0,+∞),
if not stated otherwise.

Definition 1. We say that T is an α-contractive mapping of Meir–Keeler type (with
respect to d) if, for all ε > 0, there exists δ(ε) > 0 such that

x, y ∈ X: ε 6 d(x, y) < ε+ δ(ε) =⇒ α(x, y)d(Tx, Ty) < ε. (1)

Lemma 1. If T is an α-contractive mapping of Meir–Keeler type, then

α(x, y)d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y.

Proof. Fix x, y ∈ X with x 6= y and let ε := d(x, y) > 0. Then, by (1), α(x, y) ×
d(Tx, Ty) < ε = d(x, y), which concludes the proof.

Definition 2. (See [14].) We say that T is α-admissible if

x, y ∈ X: α(x, y) > 1 =⇒ α(Tx, Ty) > 1.
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Example 1. Let X = R. Define α : X ×X → [0,+∞) by

α(x, y) =

{
ex−y if x > y,

0 if x < y.
(2)

Then
α(x, y) > 1 ⇐⇒ x > y (x, y ∈ X),

hence, a mapping T : X → X is α-admissible iff it is nondecreasing.

Lemma 2. Assume that T is α-admissible and α-contractive of Meir–Keeler type. Let
x, y ∈ X such that α(x, y) > 1. Then

α
(
Tnx, Tny

)
> 1 for all n ∈ N, (3)

the sequence {d(Tnx, Tny)} is nonincreasing, and

d(Tnx, Tny)→ 0 (as n→∞).

Proof. Since T is α-admissible and α(x, y) > 1, then (3) follows simply by induction
on n.

Next, let n ∈ N. If Tnx 6= Tny, then, by (3) and Lemma 1, it follows that

d
(
Tn+1x, Tn+1y

)
6 α

(
Tnx, Tny

)
d
(
Tn+1x, Tn+1y

)
= α

(
Tnx, Tny

)
d
(
T
(
Tnx

)
, T
(
Tny

))
< d
(
Tnx, Tny

)
.

Else, if Tnx = Tny, then d(Tn+1x, Tn+1y) = d(Tnx, Tny). Concluding, the sequence
{d(Tnx, Tny)} is nonincreasing, hence, convergent to some ε > 0.

Assume that ε > 0, and let p ∈ N such that ε 6 d(T px, T py) < ε + δ(ε). Then
α(T px, T py)d(T (T px), T (T py)) < ε, and further, by (3), we get d(T p+1x, T p+1y) < ε,
which is clearly not possible, hence, our assumption on ε is wrong. Concluding, we have
necessarily ε = 0.

Definition 3. We say that:
1. A sequence {xn} in X is (T, α)-orbital if xn = Tnx0 and α(xn, xn+1) > 1 for all
n ∈ N.

2. T is α-orbitally continuous if, for every (T, α)-orbital sequence {xn} in X such
that xn → x ∈ X as n → +∞, there exists a subsequence {xn(k)} of {xn} such
that Txn(k) → Tx as k → +∞.

3. (X, d) is (T, α)-regular if, for every (T, α)-orbital sequence {xn} in X such that
xn → x ∈ X as n → +∞, there exists a subsequence {xn(k)} of {xn} such that
α(xn(k), x) > 1 for all k.

4. (X, d) is α-regular if, for every sequence {xn} in X such that xn → x ∈ X as
n → +∞ and α(xn, xn+1) > 1 for all n, there exists a subsequence {xn(k)} of
{xn} such that α(xn(k), x) > 1 for all k.
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Example 2. Let d be the usual (Euclidian) distance on R, and α : R × R → [0,+∞)
given by (2). Then (R, d) is α-regular.

Definition 4. Let N ∈ N. We say that α is N -transitive (on X) if

x0, x1, . . . , xN+1 ∈ X: α(xi, xi+1) > 1 for all i ∈ {0, 1, . . . , N}
=⇒ α(x0, xN+1) > 1.

In particular, we say that α is transitive if it is 1-transitive, i.e.,

x, y, z ∈ X: α(x, y) > 1, α(y, z) > 1 =⇒ α(x, z) > 1.

The following remarks are immediate consequences of the previous definition.

Remark 1. If T is continuous, then T is α-orbitally continuous (for any α).

Remark 2. If (X, d) is α-regular, then it is also (T, α)-regular (for any T ).

Remark 3. Any function α : X ×X → [0,+∞) is 0-transitive.

Remark 4. If α is N transitive, then it is kN -transitive for all k ∈ N.

Remark 5. If α is transitive, then it is N -transitive for all N ∈ N.

Example 3. Let X = R. Then α defined by (2) is transitive.
Example 4. Let N ∈ N \ {0} and {A1, . . . , AN} a family of nonempty sets. Let X =⋃N

i=1Ai and R =
⋃N

i=1(Ai×Ai+1) (with AN+1 := A1). Define α : X×X → [0,+∞)
by

α(x, y) =

{
1 if (x, y) ∈ R
0 otherwise.

Then α is N -transitive, but not necessarily transitive (see, also, Corollary 7).

Definition 5. Let x, y ∈ X . A vector ζ = (z0, z1, . . . , zn) ∈ Xn+1 is called an α-chain
(of order n) from x to y if z0 = x, zn = y and, for every i ∈ {1, 2, . . . , n},

α(zi−1, zi) > 1 or α(zi, zi−1) > 1.

Definition 6. We say that X is α-connected if, for every x, y ∈ X with x 6= y, there
exists an α-chain from x to y.

2.2 Existence and uniqueness of fixed points

Now, we are ready to present and prove the first main result of the paper.

Theorem 2. Let (X, d) be a complete metric space, α : X×X → [0,+∞) aN -transitive
mapping (for some N ∈ N \ {0}) and T : X → X an α-contractive mapping of Meir–
Keeler type satisfying the following conditions:
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(A1) T is α-admissible;

(A2) there exists x0 ∈ X such that α(x0, Tx0) > 1;

(A3) T is α-orbitally continuous.

Then T has a fixed point, that is, there exists x∗ ∈ X such that Tx∗ = x∗.

Proof. Define the sequence {xn} in X by xn+1 = Txn for all n ∈ N; equivalently,
xn = Tnx0. Since α(x0, Tx0) > 1, then by Lemma 2 we get

α(xn, xn+1) > 1 for all n ∈ N (4)

and
d(xn, xn+1)→ 0 as n→ +∞. (5)

Fix ε > 0. Without any loss of generality, we may assume that δ(ε) 6 ε. Using (5),
there exists k such that

d(xn, xn+1) <
δ(ε)

N
for all n > k. (6)

We introduce the set Y ⊂ X defined by

Y :=
{
x ∈ X: there exists q(x) ∈ {0, 1, . . . , N − 1} such that

d(xk+q(x), x) < ε+ δ(ε) and α(xk+q(x), x) > 1
}
.

Fix x ∈ Y . Our first claim is that

TNx ∈ Y and q
(
TNx

)
= q(x). (7)

For short, let q := q(x).
First, we prove that

d
(
xk+q, T

Nx
)
< ε+ δ(ε). (8)

Using the triangle inequality and (6), we obtain

d
(
xk+q, T

Nx
)
6

N−1∑
i=0

d(xk+q+i, xk+q+i+1) + d
(
xk+q+N , T

Nx
)

< δ(ε) + d
(
TNxk+q, T

Nx
)
,

while α(xk+q, x) > 1 leads to

d
(
TNxk+q, T

Nx
)
6 d(Txk+q, Tx) 6 d(xk+q, x)

by Lemma 2. Hence, we conclude that

d
(
xk+q, T

Nx
)
< d(Txk+q, Tx) + δ(ε) 6 d(xk+q, x) + δ(ε). (9)
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Clearly, if d(xk+q, x) < ε, then (9) leads to (8), so it is enough to consider the case
when ε 6 d(xk+q, x). Then x ∈ Y leads to ε 6 d(xk+q, x) < ε + δ(ε). Using next
that T is an α-contractive mapping of Meir–Keeler type, we obtain that α(xk+q, x) ×
d(Txk+q, Tx) < ε, and since α(xk+q, x) > 1, we arrive to

d(Txk+q, Tx) < ε. (10)

Hence, (8) follows again by (9) and (10).
Next, we prove that

α
(
xk+q, T

Nx
)
> 1. (11)

Indeed,
α(xk+q+i, xk+q+i+1) > 1 for all i ∈ {0, 1, . . . , N − 1} (12)

by (4). Also, α(xk+q, x) > 1 leads by Lemma 2 to

α
(
xk+q+N , T

Nx
)
> 1. (13)

Now, using (12), (13) and the N -transitivity of α, we finally get (11).
Concluding, our first claim (7) is proven.
Our second claim is

xk+i+1 ∈ Y and q(xk+i+1) = i for all i ∈ {0, 1, . . . , N − 1}. (14)

Indeed, d(xk+i, xk+i+1) < δ(ε)/N < ε+δ(ε) by (6), while α(xk+i, xk+i+1) > 1 by (4),
which proves (14).

Now, by (7) and (14), we can easily conclude that

xn ∈ Y and q(xn) = (n− k − 1) modN for all n > k + 1. (15)

Finally, let m,n > k + 1 and assume that q(xn) 6 q(xm) without any loss of
generality. Then, by the triangle inequality, (6) and (15), it follows that

d(xn, xm) 6 d(xn, xk+q(xn)) +

q(xm)−1∑
i=q(xn)

d
(
xk+i, xk+i+1

)
+ d(xk+q(xm), xm)

< 2
(
ε+ δ(ε)

)
+
(
q(xm)− q(xn)

)δ(ε)
N

6 2
(
ε+ δ(ε)

)
+ δ(ε) 6 5ε.

Concluding, {xn} is a Cauchy sequence in the complete metric space (X, d), hence,
convergent to some x∗ ∈ X . Moreover, {xn} is a (T, α)-orbital sequence by (4), hence,
by (A3), there exists a subsequence {xn(k)} of {xn} such that Txn(k) → Tx∗ as k →
+∞. But Txn(k) = xn(k)+1 → x∗ as k → +∞, hence, Tx∗ = x∗ by the uniqueness of
the limit, which concludes the proof.

In the next theorem, we replace the α-orbital continuity of the mapping T by a regu-
larity condition over the metric space (X, d).

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 2, 178–198



184 M. Berzig, M.-D. Rus

Theorem 3. In the conditions of Theorem 2, if (A3) is replaced with

(A4) (X, d) is (T, α)-regular,

then the conclusion of Theorem 2 holds.

Proof. Following the proof of Theorem 2, we only have to prove that x∗ is a fixed point
of T . Since {xn} is a (T, α)-orbital sequence, then, by (A4), there exists a subsequence
{xn(k)} of {xn} such that

α(xn(k), x
∗) > 1 for all k ∈ N.

Next, using Lemma 1, we get

d(Txn(k), Tx
∗) 6 α(xn(k), x

∗)d(Txn(k), Tx
∗) 6 d(xn(k), x

∗) for all k ∈ N

(with equality when xn(k) = x∗). As xn(k) → x∗, we obtain that xn(k)+1 = Txn(k) →
Tx∗. As {xn(k)+1} is a subsequence of {xn} and xn → x∗, we have xn(k)+1 → x∗.
Now, the uniqueness of the limit gives us Tx∗ = x∗ and the proof is complete.

To assure the uniqueness of the fixed point, we will consider the following additional
assumption.

(A5) X is α-connected.

This is the purpose of the next theorem.

Theorem 4. If adding (A5) to the hypotheses of Theorem 2 (or Theorem 3), then x∗ is the
unique fixed point of T and Tn(x)→ x∗ (as n→∞) for every x ∈ X .

Proof. Let x ∈ X \ {x∗}. By (A5), there exists (x∗ = z0, z1, . . . , zn = x) an α-chain
from x∗ to x. Since

α(zi−1, zi) > 1 or α(zi, zi−1) > 1 for all i ∈ {1, 2, . . . , n},

it follows by Lemma 2 and the symmetry of d that

d
(
Tn(zi−1), T

n(zi)
)
→ 0 (as n→ +∞) for all i ∈ {1, 2, . . . , n}. (16)

Now, since z0 = x∗ is a fixed point of T , it follows that Tn(z0) = x∗ for all n, which
finally leads to

Tnzi → x∗ (as n→ +∞) for all i ∈ {1, 2, . . . , n},

using (16). Hence, Tnx → x∗ (as n → +∞). In particular, if x is another fixed point
of T , it follows that x = x∗, which is a contradiction, and the proof is concluded.

3 Some corollaries

In this section, we will derive some corollaries from our previous theorems.
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3.1 Coupled fixed point theorems for bivariate α-contractive mappings of Meir–
Keeler type on complete metric spaces

The theorems obtained in the previous section allow us to derive some coupled fixed point
results in complete metric spaces. First, let us recall the following definitions.

Definition 7. (See [16].) Let X be a nonempty set, and F : X × X → X be a given
mapping. A pair (x, y) ∈ X ×X is called a coupled fixed point of F if F (x, y) = x and
F (y, x) = y.

Also, x ∈ X is called a fixed point of F if (x, x) is a coupled fixed point, i.e.,
F (x, x) = x.

Definition 8. (See [10].) Let X be a nonempty set, and F,G : X × X → X . The
symmetric composition (or the s-composition for short) of A and B is defined by

G ∗ F : X ×X → X, (G ∗ F )(x, y) = G
(
F (x, y), F (y, x)

)
(x, y ∈ X).

Remark 6. (See [10].) The s-composition is an associative law. Also, the projection
mapping

PX : X ×X → X, P (x, y) = x (x, y ∈ X)

is the identity element with respect to the s-composition (i.e., F ∗ PX = PX ∗ F = F
for all F : X ×X → X). Consequently, for any F : X ×X → X , one can define the
functional powers (i.e., the iterates) of F with respect to the s-composition by

Fn+1 = F ∗ Fn = Fn ∗ F (n ∈ N), F 0 = PX .

We have the following result.

Corollary 1. Let (X, d) be a complete metric space, α : (X×X)×(X×X)→ [0,+∞)
a N -transitive mapping on X ×X for some N ∈ N \ {0}, and F : X ×X → X such
that, for every ε > 0, there exists δ(ε) > 0 for which

(x, y), (u, v) ∈ X ×X: ε 6
d(x, u) + d(y, v)

2
< ε+ δ(ε)

=⇒ α
(
(x, y), (u, v)

)
d
(
F (x, y), F (u, v)

)
< ε. (17)

Suppose that:

(B1) for all (x, y), (u, v) ∈ X ×X ,

α
(
(x, y), (u, v)

)
> 1 =⇒ α

((
F (x, y), F (y, x)

)
,
(
F (u, v), F (v, u)

))
> 1;

(B2) there exists (x0, y0) ∈ X ×X such that

α
(
(x0, y0),

(
F (x0, y0), F (y0, x0)

))
> 1,

α
((
F (y0, x0), F

(
x0, y0)

)
,
(
y0, x0)

)
> 1;

(B3) F is continuous.
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Then F has a coupled fixed point, that is, there exists (x∗, y∗) ∈ X × X such that
x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗).

Proof. Consider

D
(
(x, y), (u, v)

)
:=

1

2

(
d(x, u) + d(y, v)

)
for all (x, y), (u, v) ∈ X ×X.

Then, clearly, (X ×X,D) is a complete metric space. Also, let T : X ×X → X ×X
be defined by

T (x, y) =
(
F (x, y), F (y, x)

)
for all (x, y) ∈ X ×X

and β : (X ×X)× (X ×X)→ [0,+∞) be given by

β
(
(x, y), (u, v)

)
= min

{
α
(
(x, y), (u, v)

)
, α
(
(v, u), (y, x)

)}
for all (x, y), (u, v) ∈ X ×X. (18)

First, we prove that β is N -transitive. Let (xi, yi) ∈ X ×X (i ∈ {0, 1, . . . , N + 1})
such that β((xi, yi), (xi+1, yi+1)) > 1 for all i ∈ {0, 1, . . . , N}. By the definition of β,
it follows that

α
(
(xi, yi), (xi+1, yi+1)

)
> 1 and α

(
(yi+1, xi+1), (yi, xi)

)
> 1

for all i ∈ {0, 1, . . . , N},

hence, by the N -transitivity of α, we have that

α
(
(x0, y0), (xN+1, yN+1)

)
> 1 and α

(
(yN+1, xN+1), (y0, x0)

)
> 1,

which concludes our argument.
We claim next that T is a β-contractive mapping of Meir–Keeler type (with respect

to D). Indeed, let ε > 0 and let δ(ε) > 0 for which (17) is satisfied. If (x, y), (u, v) ∈
X ×X are such that ε 6 D((x, y), (u, v)) < ε+ δ(ε), then also ε 6 D((v, u), (y, x)) <
ε+ δ(ε) by the definition of D, hence,

α
(
(x, y), (u, v)

)
d
(
F (x, y), F (u, v)

)
< ε,

α
(
(v, u), (y, x)

)
d
(
F (v, u), F (y, x)

)
< ε

by (17). These two inequalities lead straight to

β
(
(x, y), (u, v)

)
D
(
T (x, y), T (u, v)

)
< ε,

which proves our claim.
Next, it is easy to check that T is β-admissible by (B1). Moreover, (B2) ensures that

β((x0, y0), T (x0, y0)) > 1, while (B3) ensures that T is continuous, hence, β-orbitally
continuous.

Concluding, all the hypotheses of Theorem 2 applied to the metric space (X×X,D),
the mapping T and the function β are satisfied, hence, T has a fixed point (x∗, y∗)∈ X×X,
meaning that (x∗, y∗) is a coupled fixed point of F . The proof is now complete.
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Corollary 2. In the conditions of Corollary 1, if (B3) is replaced with:
(B4) for every sequence {(xn, yn)} in X ×X such that xn → x ∈ X , yn → y ∈ X as

n→ +∞, and

α
(
(xn, yn), (xn+1, yn+1)

)
> 1, α

(
(yn+1, xn+1), (yn, xn)

)
> 1 for all n ∈ N,

there exists a subsequence {(xn(k), yn(k))} such that

α
(
(xn(k), yn(k)), (x, y)

)
> 1, α

(
(y, x), (yn(k), xn(k))

)
> 1 for all k ∈ N;

then the conclusion of Corollary 1 holds.

Proof. Using the notations in the proof of Corollary 1, it easily follows by (B4) that
(X×X,D) is β-regular, hence, (T, β)-regular. By following the proof of Corollary 1, the
conclusion follows by Theorem 3 applied to the metric space (X×X,D), the mapping T
and the function β.

For the uniqueness of the coupled fixed point, we consider the following assumption.

(B5) X ×X is β-connected, where β is defined by (18).

Corollary 3. If adding condition (B5) to the hypotheses of Corollary 1 (or Corollary 2),
then x∗ = y∗, (x∗, x∗) is the unique coupled fixed point of F and x∗ is the unique fixed
point of F . Moreover, Fn(x, y)→ x∗ as n→∞ for all x, y ∈ X .

Proof. We use the notations in the proof of Corollary 1. Then, by Theorem 4, it follows
that (x∗, y∗) is the unique fixed point of T , hence, the unique coupled fixed point of F .
Since (y∗, x∗) is also a coupled fixed point of F , then (x∗, y∗) = (y∗, x∗), hence,
x∗ = y∗, meaning also that x∗ is the unique fixed point ofF . Since Tn(x, y) = (Fn(x, y),
Fn(y, x)) for all n ∈ N and x, y ∈ X , the proof is complete.

We conclude this subsection with a particular form of the above corollaries, when α is
represented as

α
(
(x, y), (u, v)

)
= min

{
α0(x, u), α0(v, y)

} (
(x, y), (u, v) ∈ X ×X

)
, (19)

where α0 : X × X → [0,+∞). Note that, in this case, β = α. We subsume the con-
clusions of Corollaries 1, 2 and 3 in one single result, as follows.

Corollary 4. Let (X, d) be a complete metric space, α0 : X ×X → [0,+∞) a N -tran-
sitive mapping on X × X for some N ∈ N \ {0}, and F : X × X → X such that, for
every ε > 0, there exists δ(ε) > 0 for which

(x, y), (u, v) ∈ X ×X: ε 6
d(x, u) + d(y, v)

2
< ε+ δ(ε)

=⇒ min
{
α0(x, u), α0(v, y)

}
d
(
F (x, y), F (u, v)

)
< ε.

Suppose that:
(C1) for all (x, y), (u, v) ∈ X ×X ,

α0(x, u) > 1, α0(v, y) > 1 =⇒ α0

(
F (x, y), F (u, v)

)
> 1;
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(C2) there exists (x0, y0) ∈ X ×X such that

α0

(
x0, F (x0, y0)

)
> 1, α0

(
F (y0, x0), y0

)
> 1.

If either
(C3) F is continuous,

or
(C4) for every sequence {(xn, yn)} in X ×X such that xn → x ∈ X , yn → y ∈ X as

n→ +∞, and

α0(xn, xn+1) > 1, α0(yn+1, yn) > 1 for all n ∈ N,

there exists a subsequence {(xn(k), yn(k))} such that

α0

(
xn(k), x

)
> 1, α0(y, yn(k)) > 1 for all k ∈ N;

then F has a coupled fixed point, that is, there exists (x∗, y∗) ∈ X ×X such that x∗ =
F (x∗, y∗) and y∗ = F (y∗, x∗).

Additionally, if

(C5) X is α0-connected,

then x∗ = y∗, (x∗, x∗) is the unique coupled fixed point of F , x∗ is the unique fixed point
of F and Fn(x, y)→ x∗ as n→∞ for all x, y ∈ X .

Proof. It checks easily that the hypotheses of Corollaries 1, 2 and 3 are satisfied with
α defined by (19).

3.2 Fixed point theorems for R-contractive mappings of Meir–Keeler type
on a metric space endowed with aN -transitive binary relation

Existence of fixed point in a metric space endowed with an arbitrary binary relation has
been introduced recently in [12] by Samet and Turinici. Very recently, Berzig in [17]
presented some new results for contractions in a metric space endowed with an arbitrary
binary relation.

In this section, we translate easily the notions and results in Section 2 to the setting of
metric spaces endowed with a N -transitive binary relation.

In what follows, let (X, d) be a metric space, R be a binary relation over X and
T : X → X . We first start with some terminology that is symmetrical to that in Section 2.

Definition 9. We say that T is aR-contractive mapping of Meir–Keeler type (with respect
to d) if, for all ε > 0, there exists δ(ε) > 0 such that

x, y ∈ X: xRy, ε 6 d(x, y) < ε+ δ(ε) =⇒ d(Tx, Ty) < ε.

Definition 10. We say that T isR-preserving if

x, y ∈ X: xRy =⇒ TxRTy.
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Definition 11. We say that a sequence {xn} in X is (T,R)-orbital if xn = Tnx0 and
xnRxn+1 for all n ∈ N.

Definition 12. We say that T is R-orbitally continuous if, for every (T,R)-orbital se-
quence {xn} in X such that xn → x ∈ X as n → +∞, there exists a subsequence
{xn(k)} of {xn} such that Txn(k) → Tx as k → +∞.

Remark 7. Clearly, if T is continuous, then T isR-orbitally continuous (for anyR).

Definition 13. We say that (X, d) is (T,R)-regular if, for every (T,R)-orbital sequence
{xn} in X such that xn → x ∈ X as n → +∞, there exists a subsequence {xn(k)} of
{xn} such that xn(k)Rx for all k.

Definition 14. We say that (X, d) isR-regular if, for every sequence {xn} inX such that
xn → x ∈ X as n→ +∞ and xnRxn+1 for all n, there exists a subsequence {xn(k)} of
{xn} such that xn(k)Rx for all k.

Remark 8. Clearly, if (X, d) isR-regular, then it is also (T,R)-regular (for any T ).

Definition 15. Let N ∈ N. We say thatR is N -transitive (on X) if

x0, x1, x2, . . . , xN , xN+1 ∈ X: xiRxi+1 for all i ∈ {0, 1, . . . , N} =⇒ x0RxN+1.

In particular, for N = 1 we recover the usual transitivity property.

Definition 16. Let x, y ∈ X . A vector ζ = (z0, z1, . . . , zn) ∈ Xn+1 is called a R-chain
(of order n) from x to y if z0 = x, zn = y and

zi−1Rzi or ziRzi−1 for every i ∈ {1, 2, . . . , n}.

Definition 17. We say that X is R-connected if, for every x, y ∈ X with x 6= y, there
exists aR-chain from x to y.

The main results in Section 2 translate to the setting of metric spaces endowed with
an arbitrary binary relation as follows.

Corollary 5. Let (X, d) be a complete metric space, R a N -transitive binary relation
over X (for some N ∈ N \ {0}) and T : X → X a R-contractive mapping of Meir–
Keeler type. Assume that:

(D1) T isR-preserving;
(D2) there exists x0 ∈ X such that x0RTx0.

If either

(D3) T is continuous,
or
(D4) (X, d) is (T,R)-regular,

then T has a fixed point x∗ ∈ X .
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Additionally, if

(D5) X isR-connected,

then x∗ is the unique fixed point of T and Tn(x)→ x∗ (as n→∞) for every x ∈ X .

Proof. Define the mapping α : X ×X → [0,+∞) by

α(x, y) =

{
1 if xRy,
0 otherwise.

The conclusions then follows directly from Theorems 2, 3 and 4.

The following result is a consequence of Corollary 4 for bivariateR-contractive map-
pings of Meir–Keeler type.

Corollary 6. Let (X, d) be a complete metric space, R a N -transitive binary relation
over X (for some N ∈ N \ {0}), and F : X ×X → X such that for, every ε > 0, there
exists δ(ε) > 0 for which;

x, y, u, v ∈ X: xRy, vRu, ε 6
d(x, u) + d(y, v)

2
< ε+ δ(ε)

=⇒ d
(
F (x, y), F (u, v)

)
< ε.

Suppose that:

(E1) for all x, y, u, v ∈ X ,

xRy, vRu =⇒ F (x, y)RF (u, v);

(E2) there exists (x0, y0) ∈ X ×X such that

x0RF (x0, y0), F (y0, x0)Ry0.
If either

(E3) F is continuous,

or

(E4) for every sequence {(xn, yn)} in X × X such that xn → x ∈ X , yn → y ∈ X
as n → +∞, and xnRxn+1, yn+1Ryn for all n ∈ N, there exists a subsequence
{(xn(k), yn(k))} such that xn(k)Rx, yRyn(k) for all k ∈ N,

then F has a coupled fixed point (x∗, y∗) ∈ X ×X .
Additionally, if

(E5) X isR-connected,

then x∗ = y∗, (x∗, x∗) is the unique coupled fixed point of F , x∗ is the unique fixed point
of F and Fn(x, y)→ x∗ as n→∞ for all x, y ∈ X .
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Proof. Define the mapping α0 : X ×X → [0,+∞) by

α0(x, y) =

{
1 if xRy,
0 otherwise.

The conclusions then follows directly from Corollary 4.

3.3 Fixed point results for cyclic contractive mappings of Meir–Keeler type

In this section, we obtain some fixed point results for cyclic α-contractions of Meir–
Keeler type. We start by recalling the result obtained by Kirk, Srinivasan and Veeramani
in [7] for cyclic contractive mappings.

Theorem 5. (See [7].) Let (X, d) be a complete metric space, {A1, A2, . . . , AN} a family
of nonempty and closed subsets of X and T : X → X . Suppose that the following
conditions hold:
(F1) T (Ai) ⊆ Ai+1 for all i ∈ {1, 2 . . . , N} (where AN+1 = A1);

(F2) there exists k ∈ (0, 1) such that

d(Tx, Ty) 6 kd(x, y) for all x ∈ Ai, y ∈ Ai+1, i ∈ {1, 2 . . . , N}.

Then
⋂N

i=1Ai is non-empty and T has a unique fixed point in
⋂N

i=1Ai.

The aim of our next result is to weaken the contraction condition (F2) by considering
the following condition of Meir–Keeler type:
(F3) for every ε > 0, there exists δ(ε) > 0 such that

x ∈ Ai, y ∈ Ai+1, i ∈ {1, 2, . . . , N}: ε 6 d(x, y) < ε+ δ(ε)

=⇒ d(Tx, Ty) < ε.

Corollary 7. Let (X, d) be a complete metric space, {A1, A2, . . . , AN} a family of
nonempty and closed subsets of X and T : X → X . Suppose that (F1) and (F3) hold.

Then
⋂N

i=1Ai is non-empty and T has a fixed point x∗ ∈
⋂N

i=1Ai. Moreover, x∗ is
the unique fixed point of T in

⋃N
i=1Ai and Tn(x)→ x∗ for all x ∈

⋃N
i=1Ai.

Proof. Let Y :=
⋃N

i=1Ai. Then Y is a closed part of X . Hence, (Y, d) is a complete
metric space. Moreover, the restriction T |Y of T to Y is a self-map of Y by (F1); for
convenience, we write T instead of T |Y .

Define the mapping α : Y × Y → [0,+∞) by

α(x, y) =

{
1 if (x, y) ∈ R :=

⋃N
i=1(Ai ×Ai+1),

0 otherwise.

We check that the conditions in Theorem 3 are satisfied for the complete metric space
(Y, d), the mappings α and T .
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First, define Ai+kN := Ai for all i ∈ {1, 2, . . . , N} and k ∈ Z. Then (F1) extends to

T (Ai) ⊆ Ai+1 for all i ∈ Z.

We check that α is N -transitive (see also Example 4). Indeed, let x0, x1, . . . ,
xN+1 ∈ Y such that α(xk, xk+1) > 1 (i.e., (xk, xk+1) ∈ R) for all k ∈ {0, 1, . . . , N}.
This means that there exists i ∈ {1, . . . , N} such that

x0 ∈ Ai, x1 ∈ Ai+1, . . . , xk ∈ Ai+k, . . . , xN+1 ∈ Ai+N+1 = Ai+1,

hence, (x0, xN+1) ∈ Ai ×Ai+1 ⊆ R, which finally leads to α(x0, xN+1) > 1.
Clearly, T is α-contractive of Meir–Keeler type by (F3).
We claim next that T is α-admissible, i.e., (A1) is satisfied. Indeed, let x, y ∈ Y such

that α(x, y) > 1. Hence, there exists i ∈ {1, 2 . . . , N} such that x ∈ Ai, y ∈ Ai+1.
Then, by (F1), (Tx, Ty) ∈ (Ai+1, Ai+2) ⊆ R, hence, α(Tx, Ty) > 1.

Now, let x0 ∈ A1 arbitrary. Then Tx0 ∈ A2, hence, α(x0, Tx0) > 1 which con-
cludes (A2).

Next, we prove (A4), by showing that (Y, d) is α-regular, so let {xn} be a sequence
in Y such that

xn → x ∈ Y as n→∞ and α(xn, xn+1) > 1 for all n ∈ N.

It follows that there exist i, j ∈ {1, . . . , N} such that

xn ∈ Ai+n for all n ∈ N and x ∈ Aj ,

hence,
x(j−i−1+N)+kN ∈ Aj−1+(k+1)N = Aj−1 for all k ∈ N.

By letting
n(k) := (j − i− 1 +N) + kN for all k ∈ N,

note that j − i− 1 +N > 0, and we conclude that the subsequence {xn(k)} satisfies

(xn(k), x) ∈ Aj−1 ×Aj ⊆ R for all k ∈ N,

hence, α(xn(k), x) > 1 for all k, which proves our claim.
Now, all the conditions in Theorem 3 (for (Y, d), α and T ) are satisfied, hence, there

exists a fixed point x∗ ∈ Y of T . Clearly, x∗ ∈
⋂N

i=1Ai, since

x∗ ∈ Ak for some k ∈ {1, 2, . . . , N}

and
x∗ ∈ Ai =⇒ x∗ = Tx∗ ∈ Ai+1 for all i.

Moreover, it is straightforward to check that Y is α-connected, i.e., (A5) is satisfied.
Indeed, if x, y ∈ Y (x 6= y) with x ∈ Ai, y ∈ Aj (i, j ∈ {1, 2, . . . , N}), then let
z0 := x, zk ∈ Ak+i arbitrary for every k ∈ {1, 2, . . . , N + j − i− 1} and zN+j−i := y.
Note that N + j − i > 1. Then (zk−1, zk) ∈ R (i.e., α(zk−1, zk) > 1) for every
k ∈ {1, 2, . . . , N + j − i}, hence, (z0, z1, . . . , zN+j−i) is a α-chain from x to y.

Now, the rest of the conclusion follows by Theorem 4.
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4 Some consequences in ordered metric spaces

Clearly, the initial result of Meir and Keeler (Theorem 1) follows as a particular case of
our Theorems 3 and 4, by simply choosing α(x, y) = 1 for all x, y ∈ X . In what follows,
we will also show that several fixed point and coupled fixed point results in ordered metric
spaces can be easily deduced (and improved) from our theorems.

4.1 Fixed point results in ordered metric spaces

LetX be a nonempty set. Recall that a binary relation 4 overX is called a partial order if
it is reflexive, transitive and anti-symmetric. If 4 is a partial order over X , then x, y ∈ X
are called comparable (subject to 4) if x 4 y or y 4 x. Also, X is called 4-connected if,
for every x, y ∈ X , there exist z0, z1, . . . , zn ∈ X such that z0 = x, zn = y and zi−1, zi
are comparable for every i ∈ {1, 2, . . . , n}.

In [13], Harjani et al. obtained several fixed point results in partially ordered sets for
mappings satisfying some contraction condition of Meir–Keeler type. The main results
in [13] for the case of nondecreasing mappings can be summarized as follows.

Theorem 6. (See [13].) Let (X, d) be a complete metric space, 4 a partial order over X
and T : X → X such that, for all ε > 0, there exists δ(ε) > 0 for which

x, y ∈ X: x 4 y, ε 6 d(x, y) < ε+ δ(ε) =⇒ d(Tx, Ty) < ε.

Assume that:

(G1) T is nondecreasing (subject to 4);

(G2) there exists x0 ∈ X such that x0 4 Tx0.

If either

(G3) T is continuous,
or
(G4) for every nondecreasing sequence {xn} in X such that xn → x ∈ X , there exists

a subsequence {xn(k)} of {xn} such that xn(k) 4 x for all k ∈ N,

then T has a fixed point.
In addition, if

(G5) for every x, y ∈ X , there exists z ∈ X which is comparable to x and y,

then the fixed point of T is unique.

As it can be easily seen, this result follows straight from Corollary 5, with R being
the partial order 4. Moreover, (G5) can be replaced by the weaker assumption

(G5a) X is 4-connected.

Also, if x∗ is the unique fixed point of T , then Tn(x) → x∗ (as n → ∞) for every
x ∈ X . This follows by Corollary 5 and its an extension of the conclusion in Theorem 6.
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4.2 Coupled fixed point results in ordered metric spaces

In [11], Samet studied the coupled fixed points of mixed strict monotone mappings that
satisfied a contraction condition of Meir–Keeler type, thereby extending the previous
work of Bhaskar and Lakshmikantham [6]. In what follows we present an extension of
the results of Samet [11]; in this direction, we do not require that the mixed monotone
property be strict and we also weaken other assumptions. We also improve the conclusion.

First, recall the following definition.

Definition 18. (See [16].) Let (X,4) be a partially ordered set. A mapping F : X×X →
X is said to have the mixed monotone property if

x1, x2, y1, y2 ∈ X: x1 4 x2, y1 < y2 =⇒ F (x1, y1) 4 F (x2, y2).

Our extension of the main results in [11] follows straight from Corollary 6, with R
being the partial order 4, and can be stated as follows.

Theorem 7. Let (X, d) be a complete metric space, 4 a partial order over X and F :
X ×X → X such that, for every ε > 0, there exists δ(ε) > 0 for which:

x, y, u, v ∈ X: x 4 u, y < v, ε 6
1

2

[
d(x, u) + d(y, v)

]
< ε+ δ(ε)

=⇒ d
(
F (x, y), F (u, v)

)
< ε.

Suppose that:
(H1) F has the mixed monotone property;
(H2) there exist x0, y0 ∈ X such that x0 4 F (x0, y0) and y0 < F (y0, x0).

If either
(H3) F is continuous,

or
(H4) (X, d,4) has the following property: if {xn} is a nondecreasing (respectively,

nonincreasing) sequence in X such that xn → x, then xn 4 x (respectively,
xn < x) for all n,

then F has a coupled fixed point (x∗, y∗) ∈ X ×X .
In addition, if

(H5) X is 4-connected,
then x∗ = y∗, (x∗, x∗) is the unique coupled fixed point of F , x∗ is the unique fixed point
of F and Fn(x, y)→ x∗ as n→∞ for all x, y ∈ X .

5 Application to a third order two point boundary value problem

We study the existence and uniqueness of solution to the third order differential equation

x′′′(t) + f
(
t, x(t)

)
= 0, t ∈ (0, 1), (20)
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where f ∈ C([0, 1]× R,R), with the boundary value conditions

x(0) = x(1) = x′′(0) = 0. (21)

This problem is equivalent to finding a solution x ∈ C([0, 1],R) to the integral equation

x(t) =

1∫
0

G(t, s)f
(
s, x(s)

)
ds,

where

G(t, s) =

{
1
2 (1− t)(t− s

2), 0 6 s 6 t 6 1,

1
2 t(1− s)

2, 0 6 t 6 s 6 1.

Clearly, G(t, s) > 0 for all t, s ∈ [0, 1]. Also, we can verify easily that

1∫
0

G(t, s) ds =
t− t3

6
6

√
3

27
for all t ∈ [0, 1]. (22)

Let Φ be the set of all nondecreasing functions ϕ : [0,+∞)→ [0,+∞) such that, for
all ε > 0, there exists δ(ε) > 0 with

ε 6 t < ε+ δ(ε) =⇒ ϕ(t) < ε.

Let ξ : R2 → R and ϕ ∈ Φ. We consider the following assumptions:
(J1) There exists N ∈ N \ {0} such that

a0, a1, . . . , aN+1 ∈ [0, 1]: ξ(ai, ai+1) > 0 for all i ∈ {0, 1, . . . , N}
=⇒ ξ(a0, aN+1) > 0.

(J2) For every a, b ∈ R,

ξ(a, b) > 0 =⇒
∣∣f(t, a)− f(t, b)∣∣ 6 9

√
3ϕ
(
|a− b|

)
for all t ∈ [0, 1].

(J3) For every x, y ∈ C([0, 1]),

inf
t∈[0,1]

ξ
(
x(t), y(t)

)
> 0

=⇒ inf
t∈[0,1]

ξ

( 1∫
0

G(t, s)f
(
s, x(s)

)
ds,

1∫
0

G(t, s)f
(
s, y(s)

)
ds

)
> 0.

(J4) There exists x0 ∈ C([0, 1]) such that

inf
t∈[0,1]

ξ

(
x0(t),

1∫
0

G(t, s)f
(
s, x0(s)

)
ds

)
> 0.
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(J5) For every x, y ∈ C([0, 1]), there exist z0, z1, . . . , zn ∈ C([0, 1]) such that z0 = x,
zn = y and, for every i ∈ {1, 2, . . . , n},

inf
t∈[0,1]

ξ
(
zi−1(t), zi(t)

)
> 0 or inf

t∈[0,1]
ξ
(
zi(t), zi−1(t)

)
> 0.

Theorem 8. Let f : [0, 1]×R→ R be continuous and assume that there exist ξ : R2 → R
and ϕ ∈ Φ such that (J1)–(J4) are satisfied. Then equation (20) with the boundary
conditions (21) has solution. In addition, if (J5) is satisfied, then the solution is unique.

Proof. Let X := C([0, 1]) be endowed with the metric

d(u, v) = max
t∈[0,1]

∣∣u(t)− v(t)∣∣, u, v ∈ X.

It is well known that (X, d) is a complete metric space. Define the mapping T : X → X
by

(Tx)(t) =

1∫
0

G(t, s)f
(
s, x(s)

)
ds (x ∈ X, t ∈ [0, 1]).

The problem reduces to the fixed point problem for T .
Let α : X ×X → [0,∞) be defined by

α(x, y) =

{
1 if ξ(x(t), y(t)) > 0 for all t ∈ [0, 1],

0 otherwise.

It is easy to observe that α is N -transitive by (J1), T is α-admissible by (J3) and
α(x0, Tx0) > 1 by (J4). Also, it follows in a standard fashion that T is continuous,
hence, we omit this proof.

Now, using (J2), (22) and the fact that ϕ is nondecreasing, it follows that, for all
x, y ∈ X with α(x, y) > 1,∣∣(Tx)(t)− (Ty)(t)

∣∣ 6 1∫
0

G(t, s)
∣∣f(s, x(s))− f(s, y(s))∣∣ ds

6 9
√
3

( 1∫
0

G(t, s) ds

)
ϕ
(
d(x, y)

)
6 ϕ

(
d(x, y)

)
,

hence,
d
(
Tx, Ty

)
6 ϕ

(
d(x, y)

)
for all x, y ∈ X with α(x, y) > 1.

This clearly leads to

α(x, y)d
(
Tx, Ty

)
6 ϕ

(
d(x, y)

)
for all x, y ∈ X. (23)

Now, let ε > 0. Since ϕ ∈ Φ, there exists δ(ε) > 0 such that

ε 6 a < ε+ δ(ε) =⇒ ϕ(a) < ε. (24)
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Let x, y ∈ X with ε 6 d(x, y) < ε+ δ(ε). Then, by (23) and (24), it follows that

α(x, y)d
(
Tx, Ty

)
6 ϕ(d(x, y)) < ε.

Hence, we conclude that T is α-contractive mapping of Meir–Keeler type.
Now, we can apply Theorem 2 and obtain the existence of a fixed point of T , hence,

the existence of a solution to (20)–(21). In addition, (J5) ensures that X is α-connected
and the uniqueness of the solution follows by Theorem 4. The proof is now complete.

Corollary 8. Let f : [0, 1] × R → R be continuous and assume there exists ϕ ∈ Φ such
that the following conditions are satisfied:

(K1) 0 6 f(t, b)− f(t, a) 6 9
√
3ϕ(b− a) for all t ∈ [0, 1] and a, b ∈ R with a 6 b;

(K2) there exists x0 ∈ C([0, 1]) such that, for all t ∈ [0, 1], we have

x0(t) 6

1∫
0

G(t, s)f
(
s, x0(s)

)
ds.

Then (20)–(21) has a unique solution.

Proof. Consider the mapping ξ : R2 → R be defined by ξ(a, b) = b− a (a, b ∈ R). Then
the result follows straight from Theorem 8. Indeed, ξ clearly satisfies (J1), while (J2) and
(J3) follow by (K1). Condition (K2) ensures (J4), while (J5) follows easily, by noting
that, for every x, y ∈ C([0, 1]), the function

z : [0, 1]→ R, z(t) = max
{
x(t), y(t)

}
(t ∈ [0, 1])

satisfies
z ∈ C

(
[0, 1]

)
, inf

t∈[0,1]
ξ
(
x(t), z(t)

)
> 0, inf

t∈[0,1]
ξ
(
y(t), z(t)

)
> 0.

Remark 9. Condition (K2) can be replaced by

(K2a) there exists x0 ∈ C([0, 1]) such that, for all t ∈ [0, 1], we have

x0(t) >

1∫
0

G(t, s)f
(
s, x0(s)

)
ds,

while all the other conditions and conclusions remain unchanged. In this case,
the proof follows similarly, by letting ξ : R2 → R be defined by ξ(a, b) = a − b
(a, b ∈ R).

References

1. A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28:326–329,
1969.

2. A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some
applications to matrix equations, Proc. Am. Math. Soc., 132:1435–1443, 2004.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 2, 178–198



198 M. Berzig, M.-D. Rus

3. R.P. Agarwal, M.A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered
metric spaces, Appl. Anal., 87:1–8, 2008.

4. M. Berzig, B. Samet, An extension of coupled fixed point’s concept in higher dimension and
applications, Comput. Appl. Math., 63:1319–1334, 2012.

5. M. Berzig, B. Samet, Positive solutions to periodic boundary value problems involving
nonlinear operators of Meir–Keeler-type, Rend. Circ. Mat. Palermo, 61(2):279–296, 2012.

6. T.G. Bhaskar, V. Lakshmikantham, Fixed point theory in partially ordered metric spaces and
applications, Nonlinear Anal., Theory Methods Appl.,65(7):1379–1393, 2006.

7. W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical
contractive conditions, Fixed Point Theory, 4(1):79–89, 2003.

8. J.J. Nieto, R.R. López, Contractive mapping theorems in partially ordered sets and applications
to ordinary differential equations, Order, 22:223–239, 2005.

9. J.J. Nieto, R.R. López, Existence and uniqueness of fixed point in partially ordered sets and
applications to ordinary differential equations, Acta Math. Sin., Engl. Ser., 23(12):2205–2212,
2007.

10. M.D. Rus, Fixed point theorems for generalized contractions in partially ordered metric spaces
with semi-monotone metric, Nonlinear Anal., Theory Methods Appl.,74(5):1804–1813, 2011.

11. B. Samet, Coupled fixed point theorems for a generalized Meir–Keeler contraction in partially
ordered metric spaces, Nonlinear Anal., Theory Methods Appl.,72(12):4508–4517, 2010.

12. B. Samet, M. Turinici, Fixed point theorems for on a metric space endowed with an arbitrary
binary relation and applications, Commun. Math. Anal., 13(2):82–97, 2012.

13. J. Harjani, B. López, K. Sadarangani, A fixed point theorem for Meir–Keeler contractions in
ordered metric spaces, Fixed Point Theory Appl., 1:1–8, 2011.

14. B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings,
Nonlinear Anal., Theory Methods Appl.,75(4):2154–2165, 2012.

15. K. Erdal, B. Samet, Generalized α-ψ contractive type mappings and related fixed point
theorems with applications, Abstr. Appl. Anal., 2012, 793486, 17 pp., 2012.

16. D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications,
Nonlinear Anal., Theory Methods Appl.,11(5):623–632, 1987.

17. M. Berzig, Coincidence and common fixed point results on metric spaces endowed with an
arbitrary binary relation and applications, J. Fixed Point Theory Appl., 12:221–228, 2013.

www.mii.lt/NA


