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Abstract. In this paper, the set of trajectories of the control system described by a nonlinear Volterra
integral equation is studied. It is assumed that the set of admissible control functions is the closed
ball of the space Lp, p > 1, with radius µ and centered at the origin. It is shown that the sections of
the set of trajectories can be approximated by the sections of trajectories, generated by the mixed
constrained and Lipschitz continuous control functions, the Lipschitz constant of which is bounded.
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1 Introduction

The global behaviors of many processes, which arise in various fields of science and
numerous applications, are described by nonlinear integral equations (see [1–4]). Some of
these processes have an exterior influences, which can be characterized as control effort or
an uncertainty of the system. Therefore, mathematical models of such processes include
additional functions, which are called control functions or the functions of uncertainty.
In this article, such exterior influences will be accepted as control efforts. Control func-
tions can be classified, depending on their characters, as geometric constrained control
functions and integral constrained control functions. Integral constraint on controls are
generally needed in modelling systems having limited energy resources, which are ex-
hausted by consumption such as fuel or finance (see, e.g., [5–7]).

In this paper, the control systems described by a nonlinear Volterra integral equation
are considered. It is assumed that the equation is nonlinear with respect to both state
and control vector. The admissible control functions are chosen from the closed ball of
the space Lp, p > 1, with radius µ and centered at the origin. The set of trajectories
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generated by all admissible control functions is studied. Predetermining of the proper-
ties of the set of trajectories and its numerical construction allows to predict different
properties of the control system and to design required control effort. Note that the pre-
compactness of the set of trajectories is studied in [8]. The various topological proper-
ties and numerical method for the construction of the set of trajectories are investigated
in [9–11], where it is assumed that the behavior of the system is described by a non-
linear ordinary differential equation and the control functions have the same integral
constraint.

The paper is organized as follows. In Section 2, the basic conditions are formulated
which satisfy the system (conditions (A)–(C)). In Section 3, the set of admissible control
functions is narrowed down. It is required that new control functions satisfy a geometric
constraint along with an integral constraint. The evaluation of Hausdorff distance between
the set of trajectories and the set of trajectories generated by mixed constrained control
functions is obtained (Theorem 1). In Section 4, it is proved that the Hausdorff distance
between the set of trajectories generated by the mixed constrained control functions and
the set of trajectories generated by mixed constrained and Lipschitz continuous control
functions is zero (Theorem 2). In Section 5, a new compact set of admissible control
functions is defined. This set consists of mixed constrained and Lipschitz continuous
functions, the Lipschitz constant of which is bounded. It is proved that the sections of
the set of trajectories can be approximated by the sections of the set of trajectories, gener-
ated by the mixed constrained and Lipschitz continuous control functions, the Lipschitz
constant of which is bounded (Theorem 4).

The Hausdorff distance between the sets D ⊂ Rn and E ⊂ Rn is denoted by
hn(D,E), where Rn is n-dimensional Euclidean space. The Hausdorff distance between
the sets U ⊂ C([a, b];Rn) and V ⊂ C([a, b];Rn) is denoted by hC(U, V ), where
C([a, b];Rn) is the space of continuous functions x(·) : [a, b]→ Rn with norm ‖x(·)‖C =
max{‖x(ξ)‖: ξ ∈ [a, b]} and ‖x‖ is the Euclidean norm of x ∈ Rn.

For given r > 0, we set

Bn(r) =
{
x ∈ Rn: ‖x‖ 6 r

}
, Bn =

{
x ∈ Rn: ‖x‖ 6 1

}
,

BC(1) =
{
x(·) ∈ C

(
[a, b];Rn

)
:
∥∥x(·)∥∥

C
6 1
}
. (1)

2 Preliminaries

Consider the control system the behavior of which is described by a nonlinear Volterra-
type integral equation

x(ξ) = f
(
ξ, x(ξ)

)
+ λ

ξ∫
a

K
(
ξ, s, x(s), u(s)

)
ds, (2)

where x(s) ∈ Rn is the state vector of the system, u(s) ∈ Rm is the control vector,
ξ ∈ [a, b], λ > 0 is a real number.
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For given p > 1 and µ > 0, we set

Up =
{
u(·) ∈ Lp

(
[a, b];Rm

)
:
∥∥u(·)∥∥

p
6 µ

}
,

where ‖u(·)‖p = (
∫ b
a
‖u(s)‖p ds)1/p,Lp([a, b];Rm) is the space of Lebesgue-measurable

functions u(·) : [a, b] → Rm such that ‖u(·)‖p < ∞. The set Up ⊂ Lp([a, b];Rm) is
called the set of admissible control functions and every function u(·) ∈ Up is called
admissible control function.

It is assumed that the functions f(·) : [a, b]×Rn → Rn, K(·) : [a, b]× [a, b]×Rn ×
Rm → Rn and number λ ∈ [0,∞) given in equation (2) satisfy the following conditions:
(A) The functions f(·) : [a, b]× Rn → Rn and K(·) : [a, b]× [a, b]× Rn × Rm → Rn

are continuous;
(B) There exist L0 ∈ [0, 1), L1 > 0, H1 > 0, L2 > 0, H2 > 0, L3 > 0 and H3 > 0

such that∥∥f(ξ, x1)− f(ξ, x2)∥∥ 6 L0‖x1 − x2‖,∥∥K(ξ1, s, x1, u1)−K(ξ2, s, x2, u2)
∥∥

6
[
L1 +H1

(
‖u1‖+ ‖u2‖

)]
|ξ1 − ξ2|+

[
L2 +H2

(
‖u1‖+ ‖u2‖

)]
‖x1 − x2‖

+
[
L3 +H3

(
‖x1‖+ ‖x2‖

)]
‖u1 − u2‖

for every (ξ1, s, x1, u1) ∈ [a, b]× [a, b]×Rn×Rm, (ξ2, s, x2, u2) ∈ [a, b]× [a, b]×
Rn × Rm;

(C) 0 6 λ(L2(b− a) + 2H2(b− a)(p−1)/pµ) < 1− L0.

Now let us define the trajectory of system (2) generated by an admissible control
function u(·) ∈ Up. Let u∗(·) ∈ Up. A continuous function x∗(·) : [a, b]→ Rn satisfying
the equation

x∗(ξ) = f
(
ξ, x∗(ξ)

)
+ λ

ξ∫
a

K
(
ξ, s, x∗(s)u∗(s)

)
ds, ξ ∈ [a, b],

is said to be a trajectory of system (2) generated by the admissible control function
u∗(·) ∈ Up.

Conditions (A)–(C) guarantee that every admissible control function generates
a unique trajectory (see [8]). We denote by Xp the set of all trajectories of system (2)
generated by all admissible control functions u(·) ∈ Up. The set Xp is called the set of
trajectories of system (2). According to [8], the set of trajectories Xp is a precompact
subset of the space C([a, b];Rn), and hence there exists γ∗ > 0 such that∥∥x(·)∥∥

C
6 γ∗ (3)

for every x(·) ∈ Xp. For each fixed ξ ∈ [a, b], we set

Xp(ξ) =
{
x(ξ) ∈ Rn: x(·) ∈ Xp

}
. (4)
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It is not difficult to verify that Xp(a) = {sa}, where sa is unique fixed point of the
function x → f(a, x) : Rn → Rn, i.e., sa ∈ Rn is unique vector satisfying the equality
sa = f(a, sa).

Denote

R∗ =
λ(L3 + 2γ∗H3)

1− L0
exp

[
λ(L2(b− a) + 2H2µ(b− a)(p−1)/p)

1− L0

]
, (5)

where γ∗ is defined by (3).
The validity of the following proposition follows from conditions (A) and (B).

Proposition 1. Let x(·) ∈ Xp and x∗(·) ∈ Xp be arbitrary trajectories of system (2) gen-
erated by the admissible control functions u(·) ∈ Up and u∗(·) ∈ Up, respectively. Then

∥∥x(ξ)− x∗(ξ)∥∥ 6 R∗

ξ∫
a

∥∥u(s)− u∗(s)∥∥ds
for every ξ ∈ [a, b].

3 The set of trajectories generated by mixed constrained control
functions

For given H ∈ (0,∞), we set

UHp =
{
u(·) ∈ Up:

∥∥u(s)∥∥ 6 H for every s ∈ [a, b]
}
,

and let XH
p be the set of trajectories of system (2) generated by the control functions

u(·) ∈ UHp . Let

XH
p (ξ) =

{
x(ξ) ∈ Rn: x(·) ∈ XH

p

}
, ξ ∈ [a, b],

k∗ = 2µpR∗. (6)

The following theorem characterizes the Hausdorff distance between the sets Xp and
XH
p .

Theorem 1. For each H ∈ (0,∞), the inequality

hC(Xp,X
H
p ) 6

k∗
Hp−1

holds, where k∗ is defined by (6).

Proof. Let us choose an arbitrary x(·) ∈ Xp generated by the admissible control function
u(·) ∈ Up. We define a new control function u0(·) : [a, b]→ Rm, setting

u0(s) =

{
u(s), ‖u(s)‖ 6 H,

u(s)
‖u(s)‖H, ‖u(s)‖ > H,

(7)
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where s ∈ [a, b]. It is not difficult to verify that u0(·) ∈ UHp . Let x0(·) be the trajectory
of system (2) generated by the control function u0(·) ∈ UHp . Then x0(·) ∈ XH

p and
according to the Proposition 1 we have

∥∥x(ξ)− x0(ξ)∥∥ 6 R∗

ξ∫
a

∥∥u(s)− u0(s)∥∥ds (8)

for every ξ ∈ [a, b], where R∗ is defined by (5).
Now, for ξ ∈ [a, b], we set

Gξ =
{
s ∈ [a, ξ]:

∥∥u(s)∥∥ > H
}
.

Then we get from (7) and (8) that∥∥x(ξ)− x0(ξ)∥∥ 6 R∗

∫
Gξ

∥∥u(s)− u0(s)∥∥ds (9)

for every ξ ∈ [a, b].
Taking into consideration that u(·) ∈ Up, u0(·) ∈ UHp ⊂ Up and applying Hölder’s

and Minkowski’s inequalities, we obtain∫
Gξ

∥∥u(s)− u0(s)∥∥ds 6 2µ
[
ν(Gξ)

](p−1)/p
, (10)

where ν(Gξ) denotes the Lebesgue measure of the set Gξ. Since Gξ ⊂ [a, b], u(·) ∈ Up
and ‖u(s)‖ > H for every s ∈ Gξ, then we have

Hp · ν(Gξ) 6
∫
Gξ

∥∥u(s)∥∥p ds 6 b∫
a

∥∥u(s)∥∥p ds 6 µp,

and hence
ν(Gξ) 6

µp

Hp
. (11)

From (6), (9), (10) and (11) it follows that∥∥x(ξ)− x0(ξ)∥∥ 6
2µp

Hp−1R∗ =
k∗

Hp−1

for every ξ ∈ [a, b] and consequently,∥∥x(·)− x0(·)∥∥C 6
k∗

Hp−1 .

Since x(·) ∈ Xp is arbitrarily chosen, we conclude that

Xp ⊂ XH
p +

k∗
Hp−1BC(1), (12)

where BC(1) is defined by (1). From inclusion XH
p ⊂ Xp and (12) we obtain the

proof.
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4 The set of trajectories generated by the mixed constrained and
Lipschitz continuous control functions

Let us define new set of control functions, setting

UH,lipp =
{
u(·) ∈ UHp : u(·) : [a, b]→ Rm is Lipschitz continuous

}
,

and let XH,lip
p be the set of trajectories of system (2) generated by the control functions

u(·) ∈ UH,lipp . Denote

XH,lip
p (ξ) =

{
x(ξ) ∈ Rn: x(·) ∈ XH,lip

p

}
, ξ ∈ [a, b], (13)

g0 = R∗
(
b− a

)(p−1)/p
, (14)

where R∗ is defined by (5).
The following theorem characterizes the Hausdorff distance between the sets XH

p and
XH,lip
p .

Theorem 2. Let H > 0 be fixed. Then

hC
(
XH
p ,X

H,lip
p

)
= 0.

Proof. Let us choose an arbitrary ε > 0. Now let us choose an arbitrary x(·) ∈ XH
p and

let u(·) ∈ UHp be the control function, generating the trajectory x(·). For given h ∈ (0, 1),
let uh(·) be the Steklov function of u(·) ∈ UHp , i.e.,

uh(s) =
1

2h

s+h∫
s−h

ũ(τ) dτ, s ∈ [a, b],

where

ũ(τ) =

{
u(τ), τ ∈ [a, b],

0, τ ∈ [a− 1, a) ∪ (b, b+ 1].

u(·) ∈ UHp yields that ‖u(·)‖p 6 µ and ‖u(s)‖ 6 H for every s ∈ [a, b]. According
to [12], we have that, for each fixed h ∈ (0, 1), the inequalities ‖uh(·)‖p 6 µ and
‖uh(s)‖ 6 H are satisfied for every s ∈ [a, b], the function uh(·) : [a, b] → Rm is
Lipschitz continuous with Lipschitz constant H/h. Then we obtain that uh(·) ∈ UH,lipp

for each fixed h ∈ (0, 1). Moreover, it is known (see, e.g., [12]) that limh→0+ ‖uh(·) −
u(·)‖p = 0. Then, for given ε/g0 > 0, there exists h0 ∈ (0, 1) such that∥∥uh0

(·)− u(·)
∥∥
p
6

ε

g0
, (15)

where g0 > 0 is defined by (14). Let u0(·) = uh0
(·) and let x0(·) be the trajectory of

system (2) generated by the control function u0(·). Thus, x0(·) ∈ XH,lip
p . Proposition 1,
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(14) and (15) imply that

∥∥x(ξ)− x0(ξ)∥∥ 6 R∗

ξ∫
a

∥∥u(s)− u0(s)∥∥ds
6 R∗(b− a)(p−1)/p

∥∥u(·)− u0(·)∥∥p 6 ε

for every ξ ∈ [a, b] and hence ∥∥x(·)− x0(·)∥∥C 6 ε. (16)

Thus, for each x(·) ∈ XH
p , there exists x0(·) ∈ XH,lip

p such that inequality (16) is
verified. This means that

XH
p ⊂ XH,lip

p + εBC(1). (17)

Taking into consideration that XH,lip
p ⊂ XH

p , we obtain from (17) that

hC
(
XH
p ,X

H,lip
p

)
6 ε. (18)

Since ε > 0 is an arbitrarily chosen, (18) completes the proof.

In [8], it is shown that the set of trajectories Xp in general is not closed. It is also
possible to show that the set XH

p is not closed one in general. Therefore, from Theorem 2
we get the validity of the equality

cl
(
XH
p

)
= cl

(
XH,lip
p

)
,

where cl denotes the closure of a set.

5 Approximation of the sections of the set of trajectories by the com-
pact sets

For given L > 0, we denote

UH,lip,Lp =
{
u(·) ∈ UH,lipp : u(·) : [a, b]→ Rm is Lipschitz continuous and

Lipschitz constant is not greater than L
}
,

and let XH,lip,L
p be the set of trajectories of system (2) generated by the control functions

u(·) ∈ UH,lip,Lp . For given ξ ∈ [a, b], we set

XH,lip,L
p (ξ) =

{
x(ξ) ∈ Rn: x(·) ∈ XH,lip,L

p

}
. (19)

Proposition 2. For each fixed H > 0 and L > 0, the set of trajectories XH,lip,L
p is

a compact subset of the space C([a, b];Rn) and, for each ξ ∈ [a, b], the set XH,lip,L
p (ξ)

is a compact subset of the space Rn.
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Proof. According to [8], the set of trajectories Xp is a precompact subset of the space
C([a, b];Rn). Since XH,lip,L

p ⊂ Xp, then we have that the set XH,lip,L
p is a precom-

pact subset of the space C([a, b];Rn). From compactness of the set of control func-
tions UH,lip,Lp in the space C([a, b];Rn) it follows that the set of trajectories XH,lip,L

p

is a closed subset of the space C([a, b];Rn), and hence it is a compact set.

Proposition 3. Let H > 0 be fixed. Then, for each ξ ∈ [a, b], the equality

lim
L→∞

XH,lip,L
p (ξ) = cl

(
XH,lip
p (ξ)

)
(20)

holds, and hence, for given ε > 0, there exists L∗(ξ, ε,H) > 0 such that the inequality

hn
(
XH,lip
p (ξ),XH,lip,L

p (ξ)
)
< ε (21)

is verified for every L > L∗(ξ, ε,H).
Here the sets XH,lip

p (ξ) and XH,lip,L
p (ξ) are defined by (13) and (19), respectively,

limL→∞XH,lip,L
p (ξ) is Kuratowski limit of the set sequence {XH,lip,L

p (ξ)}∞L=1 (see [13]).

Proof. From equality UH,lipp =
⋃∞
L=1 U

H,lip,L
p we obtain that XH,lip

p =
⋃∞
L=1 X

H,lip,L
p ,

and hence

XH,lip
p (ξ) =

∞⋃
L=1

XH,lip,L
p (ξ) (22)

for each ξ ∈ [a, b]. Since XH,lip,L
p ⊂ Xp for eachH > 0 and L = 1, 2, . . . , then from (3)

we have that ‖x(·)‖C 6 γ∗ for every x(·) ∈ XH,lip,L
p . Thus, for each fixed ξ ∈ [a, b], the

inclusion
XH,lip,L
p (ξ) ⊂ Bn(γ∗)

is satisfied for every H > 0 and L = 1, 2, . . . . Since

XH,lip,L
p (ξ) ⊂ XH,lip,L+1

p (ξ) ⊂ Bn(γ∗) (23)

for every L = 1, 2, . . . , then it is not difficult to verify that (22) and (23) imply the validity
of equality (20).

Thus, according to Proposition 3 for each fixed ε > 0, H ∈ (0,∞) and ξ ∈ [a, b],
there existsL∗(ξ, ε,H)>0 such that inequality (21) is satisfied for everyL>L∗(ξ, ε,H).
Is it possible to choose the number L∗(ξ, ε,H) > 0 not depending on ξ? The answer of
this question is positive.

Theorem 3. Let H > 0 be fixed. Then, for each ε > 0, there exists L(ε,H) > 0 such
that, for every L > L(ε,H) and ξ ∈ [a, b], the inequality

hn
(
XH,lip,L
p (ξ),XH,lip

p (ξ)
)
< ε

is satisfied.
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The proof of the theorem follows from Proposition 3 and Proposition 3 of [8], where
it is proved that there exists a function ϕ(·) : (0,+∞)→ (0,+∞) such that ϕ(δ)→ 0 as
δ → 0+ and ∥∥x(ξ∗)− x(ξ∗)∥∥ 6 ϕ

(
|ξ∗ − ξ∗|

)
for every ξ∗ ∈ [a, b], ξ∗ ∈ [a, b] and x(·) ∈ Xp.

The following theorem gives us an evaluation between the sets Xp(ξ) and XH,lip,L
p (ξ),

where the sets Xp(ξ) and X
H(ε),lip,L
p (ξ) are defined by (4) and (19), respectively.

Theorem 4. For each ε > 0, there exist H(ε) > 0 and L(ε) = L(ε,H(ε)) > 0 such
that, for every L > L(ε), the inequality

hn
(
Xp(ξ),X

H(ε),lip,L
p (ξ)

)
< ε

is verified for every ξ ∈ [a, b].

Proof. For given ε > 0, we denote

H(ε) =

(
2k∗
ε

)1/(p−1)

, (24)

where k∗ is defined by (6). From Theorem 1 and (24) it follows that

hn
(
Xp(ξ),X

H(ε)
p (ξ)

)
6

k∗
H(ε)p−1

=
ε

2
(25)

for every ξ ∈ [a, b]. Theorem 2 implies that, for fixed H(ε) > 0, the equality

hn
(
XH(ε)
p (ξ),XH(ε),lip

p (ξ)
)
= 0 (26)

holds for every ξ ∈ [a, b]. By virtue of Theorem 3 for H = H(ε) there exists L(ε) =
L(ε,H(ε)) such that, for every L > L(ε), the inequality

hn
(
XH(ε),lip
p (ξ),XH(ε),lip,L

p (ξ)
)
<
ε

2
(27)

is satisfied for every ξ ∈ [a, b]. (25), (26) and (27) give us the proof of the theorem.

Theorem 4 enables one to give an approximation of graph of the set valued map
ξ → Xp(ξ), ξ ∈ [a, b], where the graph of the set valued map ξ → Xp(ξ), ξ ∈ [a, b], is
denoted by grXp(·) and is defined as

grXp(·) =
{
(ξ, x) ∈ [a, b]× Rn: x ∈ Xp(ξ)

}
.

Let Γ = {a = ξ0 < ξ1 < · · · < ξN = b} be a partition of the closed interval [a, b].
The diameter of Γ is denoted by diam(Γ ) and is defined as

diam(Γ ) = max{ξi+1 − ξi: i = 0, 1, . . . , N − 1}.
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For given partition Γ = {a = ξ0 < ξ1 < · · · < ξN = b} of the closed interval [a, b],
we set

ZH,lip,L,Γp =

N⋃
i=0

(
ξi,X

H,lip,L
p (ξi)

)
.

The following corollary characterizes the Hausdorff distance between the sets grXp(·)
and ZH,lip,L,Γp .

Corollary 1. For each ε > 0, there exists H(ε) > 0, L(ε) = L(ε,H(ε)) > 0, δ(ε) > 0
such that, for everyL > L(ε) and partition Γ of the closed interval [a, b] with diam(Γ ) <
δ(ε), the inequality

hn+1

(
grXp(·),ZH(ε),lip,L,Γ

p

)
< ε

is satisfied. Here hn+1(·, ·) denotes Hausdorff distance between the sets of the space
Rn+1.

The proof of the corollary follows from Theorem 4 and Proposition 3 of [8].
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