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Abstract. Some tests for an epidemic type change in a first order nearly nonstationary autoregressi-
ve process are investigated. Limit distributions of the tests are found under no change. Consistency
is examined under short epidemics in the mean of innovations.
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1 Introduction

Consider random variables X1, X2, . . . , Xn with parameters of interest θ1, . . . , θn,
n > 2. Testing an epidemic type change (or changed segment) in these parameters
means testing null hypothesis θ1 = θ2 = · · · = θn against the alternative θ1 = · · · =
θk∗ = θm∗+1 = · · · = θn = µ0 and θk∗+1 = · · · = θm∗ = µ1 for some unknown
1 < k∗ < m∗ 6 n and µ0 6= µ1. Here k∗ is the beginning, m∗ is the end and
`∗ = m∗ − k∗ is the length or duration of the epidemic state.

To the best of our knowledge such a problem for independent observations have been
formulated for the first time by Levin and Kline [1] (we also refer to [2, Sect. 1.4]). Yao [3]
have studied various test statistics in order to detect an epidemic change in the mean values
of a sequence of independent normally distributed random variables. Ramanayake and
Gupta [4, 5] investigated various likelihood ratio type statistics and independent random
variables from an exponential family. Graiche et al. [6] investigated the changed segment
problem for α-mixing random variables. For more information on this subject, see [7,
Sects. 9.3, 9.4] and [8–11].
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A natural way to construct test statistic for detecting the epidemic change in the mean
is to construct the uniform increments statistic:

T0,n(X1, . . . , Xn) = max
16`6n−1

max
16k6n−`

∣∣∣∣∣
k+∑̀
j=k+1

Xj −
`

n

n∑
j=1

Xj

∣∣∣∣∣.
Such statistic can detect epidemic state whose the length `∗ is such that n1/2 = oP (`

∗)
(see [12]). For the shorter durations, Račkauskas and Suquet [12] have proposed the
uniform increments statistics with an additional normalization. For α ∈ [0, 1), the class
of statistics is defined by

Tα,n = Tα,n(X1, . . . , Xn) = max
16`6n−1

`−α max
16k6n−`

∣∣∣∣∣
k+∑̀
j=k+1

Xj −
`

n

n∑
j=1

Xj

∣∣∣∣∣.
For the model Xi = θi + εi, i > 1, where (εi, i > 1) is a sequence of independent iden-
tically distributed mean zero random variables, Račkauskas and Suquet [12] have shown
that, for any 0 < α < 1/2, statistics Tα,n(X1, . . . , Xn) is able to detect epidemics with
duration nδ = o(`∗), where δ = (1−2α)/(2−2α). Further, Mikosch and Račkauskas [13]
have studied Tα,n for regularly varying random variables (εi) and 0 < α < 1.

Assume we are given an n-sample yn,1, . . . , yn,n generated by

yn,k = φnyn,k−1 + εk + an,k, k = 1, . . . , n, n > 1, yn,0 = 0, (1)

where the parameter φn ∈ (0, 1) satisfies φn → 1 as n → ∞, (εk, k > 1) are i.i.d.
centered, at least square integrable random variables, (an,k) is a sequence that will be
precised later. The process (1), when φn → 1 as n → ∞ is a nearly nonstationary
first order autoregressive process with drift. Throughout the paper, the parameter φn is
supposed to be known. Our aim is to propose tests for the null hypothesis

(H0) an,1 = · · · = an,n = 0

against the epidemic or changed segment alternative

(HA) there exist 1 6 k∗n < m∗n 6 n such that
an,k = an1I∗n(k), an 6= 0, 1 6 k 6 n,

where I∗n is the epidemics interval I∗n = {k∗n + 1, . . . ,m∗n} and 1I∗n denotes its indicator
function.

To investigate such hypothesis, we consider the test statistics

T̃α,n = Tα,n(yn,1, . . . , yn,n), 0 6 α < 1/2. (2)

To motivate such choice, rewrite the model (1) in the following way:

yn,k − τn,k = φn(yn,k−1 − τn,k−1) + εk,
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Testing the epidemic change 69

where

τn,k =

k∑
j=1

φk−jn an,j , (3)

k = 1, . . . , n, n > 1. Set for n > 1, zn,0 = 0 and

zn,k = yn,k − τn,k, k = 1, . . . , n. (4)

Note that (zn,k) is a nearly nonstationary first order autoregressive process

zn,k = φnzn,k−1 + εk, k = 1, . . . , n, n > 1, zn,0 = 0.

So, due to (4), we have the epidemic change model, where a sequence of dependent
random variables satisfying the null hypothesis is shifted by a deterministic sequence.
This is the reason why statistics (2) seems very natural in this situation.

We study limit behavior of T̃α,n for α = 0 (Levin and Kline statistic) and α ∈
(0, 1/2 − 1/p), p > 2, (Račkauskas and Suquet statistics) trying to see how the use
of extra weighting improves the detection of (relatively) short epidemics. Of course the
range of detection will be smaller here than that in the case of independent samples. If
α = 0, then the innovations are required to have finite second moment. For another case,
the innovations should satisfy the stronger integrability condition

lim
t→∞

tpP
(
|ε0| > t

)
= 0. (5)

In this paper, we study two types of models depending on parameterization of the
coefficient φn in (1). The first type model corresponds to

φn = eγ/n, γ < 0, (6)

see [14]. The second type model corresponds to

φn = 1− γn
n
, where γn →∞, and

γn
n
→ 0 as n→∞, (7)

see [15]. As we shall see, the limit behavior of T̃α,n differs for these two types of models.
The paper is organized as follows. Section 2 is devoted to the limit behaviour of

statistics under null hypothesis. In Section 3, we show the consistency of test statistics
T̃α,n. We investigate the power of the test in Section 4. Final section is devoted to some
auxiliary results.

2 Limit behavior of test statistics under null hypothesis

The next two processes play the central role in this paper. We denote by W = {W (t),
0 6 t 6 1} the standard Wiener process and by Uγ = {Uγ(t), t ∈ [0, 1]} the following
Ornstein–Uhlenbeck process:

Uγ(t) =

t∫
0

e(t−s)γ dW (s). (8)
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As usual, C[0, 1] is the Banach space of continuous functions with uniform norm
‖f‖∞ = sup06t61 |f(t)|, f ∈ C[0, 1]. For α ∈ [0, 1), the Hölder space

Hoα[0, 1] :=
{
f ∈ C[0, 1]: lim

δ→0
ωα(f, δ) = 0

}
is a linear space endowed with the norm ‖f‖α := |f(0)|+ ωα(f, 1), where

ωα(f, δ) := sup
s,t∈[0,1]
0<t−s<δ

|f(t)− f(s)|
|t− s|α

.

Let us note that the spaces Ho0[0, 1] and C[0, 1] are isomorphic.
For any function f ∈ Hoα[0, 1] and 0 6 α < 1/2, set

Tα,∞(f) := sup
0<t<s<1

|f(t)− f(s)− (t− s)f(1)|
|t− s|α

. (9)

The functional (9) appears in the limit of our test statistics.
Throughout the paper E→ denotes convergence in distribution in the metric space E as

n → ∞. Accordingly, the classical convergence in distribution of a sequence of random
variables is denoted by R→ as n→∞, while convergence in probability is denoted by P→
as n→∞.

2.1 Levin and Kline statistic

We start with Levin and Kline statistic T̃0,n. First, we study the model (1) with the coeffi-
cient φn = eγ/n, γ < 0. Under the assumption of square integrability of innovations, we
obtain that the limit of such statistic is a functional of an integrated Ornstein–Uhlenbeck
process.

Theorem 1. Under (H0), for the first type model defined by (1) and (6),

n−3/2σ−1T̃0,n
R−→ T0,∞(J), (10)

where σ2 = Eε21 and J is an integrated Ornstein–Uhlenbeck process J(t) =
∫ t
0
Uγ(s) ds

with Uγ defined by (8).

Proof. Consider the functionals gn and g defined on the continuous function space C[0, 1]
by

gn(x) := max
16i<j6n

I0

(
x,
i

n
,
j

n

)
, g(x) := sup

0<s<t<1
I0(x, s, t), (11)

where
I0(x, s, t) :=

∣∣x(t)− x(s)− (t− s)x(1)
∣∣, 0 < t− s < 1.
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By the special case of Lemma A.1 where α = 0, the functionals gn and g are Lipschitz
on G0 = {x ∈ C[0, 1]: x(0) = 0}. Note that

T̃0,n = gn
(
Spl
n

)
, T0,∞(J) = g(J), (12)

where (Spl
n (t), t ∈ [0, 1]) is the polygonal line partial sums process build on the observa-

tions (yn,k−1):

Spl
n (t) :=

[nt]∑
k=1

yn,k−1 +
(
nt− [nt]

)
yn,[nt]. (13)

From Theorem 1 in [16],

n−3/2σ−1Spl
n

C[0,1]−−−−→ J. (14)

Note that limit theorems in [16] are proved with σ2 = 1 for simplicity, but the results hold
the same for σ2 6= 1 as well.

Lemma A.1 now gives

gn
(
n−3/2σ−1Spl

n

)
= g
(
n−3/2σ−1Spl

n

)
+ oP(1) (15)

and the convergence (10) follows from (12), (14), (15) and the continuous mapping
theorem.

Now we find the limit of test statistic T̃0,n under null hypothesis in second type model.

Theorem 2. Under (H0), for the second type model defined by (1) and (7),

n−1/2(1− φn)σ−1T̃0,n
R−→ T0,∞(W ), (16)

where σ2 = Eε21.

Proof. The proof of this theorem is essentially the same as the proof of Theorem 1 using
Theorem 2 in [16] instead of Theorem 1 in [16] and Lemma A.1 given below.

2.2 T̃α,n statistics with α > 0

Now we show that, for the model (1) with φn = eγ/n, γ < 0, the limit of T̃α,n (α > 0)
is a functional of an integrated Ornstein–Uhlenbeck process. Here we need a stronger
integrability on innovations than just a second moment.

Theorem 3. In the first type model defined by (1) and (6), assume that (εi) satisfy
condition (5) for some p > 2. Then under (H0), for any α ∈ (0, 1/2− 1/p),

n−3/2+ασ−1T̃α,n
R−→ Tα,∞(J), (17)

where σ2 = Eε21 and J is an integrated Ornstein–Uhlenbeck process J(t) =
∫ t
0
Uγ(s) ds

with Uγ defined by (8).
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Proof. We use the Hölderian framework to prove this theorem. Consider the functionals
gn, g, defined on Hoα[0, 1] by

gn(x) := max
16i<j6n

Iα

(
x,
i

n
,
j

n

)
, g(x) := sup

0<s<t<1
Iα(x, s, t),

where

Iα(x, s, t) :=
|x(t)− x(s)− (t− s)x(1)|

|t− s|α
, 0 < t− s < 1.

By Lemma A.1, gn and g are Lipschitz on Gα = {x ∈ Hoα[0, 1]: x(0) = 0}. Observe
that

nαT̃α,n = gn(S
pl
n ), Tα,∞(J) = g(J), (18)

where (Spl
n (t), t ∈ [0, 1]) is defined by (13). From Theorem 1 in [16],

n−3/2σ−1Spl
n

Hoα[0,1]−−−−→ J. (19)

Now from Lemma A.1 it follows that

gn(n
−3/2σ−1Spl

n ) = g(n−3/2σ−1Spl
n ) + oP(1) (20)

and the convergence (17) follows from (18), (19), (20) and the continuous mapping
theorem.

Further we find the limit of test statistics T̃α,n under null hypothesis in the second type
model, i.e., where coefficient φn in model (1) is defined by φn = 1−γn/n, γn →∞ and
γn/n → 0 as n → ∞. The limit of these statistics is a functional depending on Wiener
process. Here the requirement is not only integrability condition on innovations, but also
the rate of divergence of γn.

Theorem 4. In the second type model defined by (1) and (7), assume that (εi) satisfy
condition (5) for some p > 2. Then, for α ∈ (0, 1/2− 1/p), under (H0),

n−1/2+α(1− φn)σ−1T̃α,n
R−→ Tα,∞(W ) (21)

provided that

lim inf
n→∞

γnn
−α/(1/2−1/p) > 0.

Proof. The proof of this theorem is based on the same Hölderian framework as the proof
of Theorem 3 using Theorem 3 in [16] instead of Theorem 1 in [16] and Lemma A.1.
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3 Consistency of test statistics

We investigate the consistency of the test statistics T̃α,n. The practical results are given
in Corollaries 2 and 1. Proofs of these corollaries are based on the following generic
result (Theorem 5) which has a broader scope. The consistency condition is expressed in
terms of

Tα,n(τn,1, . . . , τn,n) = max
16`6n−1

`−α max
16k6n−`

∣∣∣∣∣
k+∑̀
j=k+1

τn,j −
`

n

n∑
j=1

τn,j

∣∣∣∣∣, (22)

where the τn,k’s are defined by (3).
For notational simplicity, we omit the index n in k∗n, m∗n and `∗n.

Theorem 5. Consider both types of models. Assume that, for some normalizing sequence
(bn)n>1, the statistics bnT̃α,n is stochastically bounded under (H0). Then under (HA),

bnT̃α,n
P−→∞ (23)

if and only if
bnTα,n(τn,1, . . . , τn,n) −−−−→

n→∞
∞. (24)

A sufficient condition for (24) is

anbn
(1− φn)2`∗α

(
`∗(1−φn)

(
1− `

∗

n

)
−
(
1−φ`

∗

n

)(
φn−

`∗

n
φn−m

∗+1
n

))
−−−−→
n→∞

∞. (25)

Proof. Recall that the process (zn) is defined by zn,k = yn,k − τn,k, 0 6 k 6 n. The
key point here is that the process (zn) satisfies (H0), when the process (yn) satisfies (HA)
(if (yn) satisfies (H0), then both processes are identical). Hence bnTα,n(zn,1, . . . , zn,n)
is stochastically bounded. Now by triangle inequality for the sequential norm Tα,n:

∣∣Tα,n(yn,1, . . . , yn,n)− Tα,n(τn,1, . . . , τn,n)∣∣
6 Tα,n(yn,1 − τn,1, . . . , yn,n − τn,n) = Tα,n(zn,1, . . . , zn,n),

so the stochastic boundedness of bnTα,n(zn,1, . . . , zn,n) gives the equivalence between
(23) and (24).

Looking now for a practical sufficient condition for (24), we choose as a lower bound
for Tα,n(τn,1, . . . , τn,n) the weighted increment corresponding to the epidemics interval
(k∗,m∗] with length m∗ − k∗ = `∗. With these notations,

τn,k =

k∑
j=1

φk−jn an1(k∗,m∗](j), 1 6 k 6 n, τn,0 := 0.

It is enough to write the proof for the case an = 1, since in the general case, all the
computations made below remain valid with an in factor.
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Let us compute
∑n
k=1 τn,k.

n∑
k=1

τn,k =
∑
k6k∗

τn,k +
∑

k∗<k6m∗

τn,k +
∑

m∗<k6n

τn,k

=
∑

k∗<k6m∗

∑
k∗<j6k

φk−jn︸ ︷︷ ︸
=:A

+
∑

m∗<k6n

∑
k∗<j6m∗

φk−jn︸ ︷︷ ︸
=:B

.

We compute separately the double geometric sums A and B and we obtain

A =
1

(1− φn)2
(
`∗(1− φn)− φn

(
1− φ`

∗

n

))
(26)

and
B =

1

(1− φn)2
(
φn
(
1− φ`

∗

n

)
− φn−m

∗+1
n

(
1− φ`

∗

n

))
. (27)

Gathering (26) and (27), we obtain
n∑
j=1

τn,j =
1

(1− φn)2
(
`∗(1− φn)− φn−m

∗+1
n

(
1− φ`

∗

n

))
. (28)

Finally,

A− `∗

n
(A+B)

=

k∗+`∗∑
j=k∗+1

τn,j −
`∗

n

n∑
j=1

τn,j

=
1

(1− φn)2

(
`∗(1− φn)

(
1− `∗

n

)
−
(
1− φ`

∗

n

)(
φn −

`∗

n
φn−m

∗+1
n

))
(29)

and

bnTα,n(τn,1, . . . , τn,n) >
bnan
`∗α

∣∣∣∣∣
k∗+`∗∑
j=k∗+1

τn,j −
`∗

n

n∑
j=1

τn,j

∣∣∣∣∣
which explains why (25) is a sufficient condition for (24).

Corollary 1. In the first type model defined by (1) and (6), assume that, for some p > 2,
(εi) satisfy condition (5). Let α ∈ (0, 1/2− 1/p), then under (HA),

n−3/2+αT̃α,n
P−→∞ (30)

provided that `∗2−αn−3/2+αan →∞ as n→∞, and

lim inf
n→∞

∣∣∣∣1 + γ

2
− eγ(1−m

∗/n)

∣∣∣∣ > 0. (31)

All this extends to the special case α = 0, assuming that Eε21 <∞.
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Remark 1. From a statistical point of view, it is useful to find for which values of the
parameter γ condition (31) does not induce some extra restriction on the choice of the
sequence (m∗(n))n>1. Writing θn := m∗(n)/n, we see that (31) is not satisfied if and
only if there exists some subsequence (θnj )j>1 in (0, 1) such that eγ(1−θnj ) tends to
1 + γ/2. Then any θ limit of some subsequence of (θnj )j>1 (there is at least one such θ
by compactness of [0, 1]) must satisfy 1 + γ/2 = eγ(1−θ). Clearly, this equation has no
solution for γ 6 −2. For −2 < γ < 0, it has a unique solution

θ = 1− 1

γ
ln
(
1 +

γ

2

)
.

It is easily seen that this solution belongs to [0, 1] only if γ0 6 γ < 0, where γ0 '
−1.5937. From this we can conclude that if γ < γ0, the condition (31) is satisfied without
any extra restrictions on the choice of the sequence (m∗(n))n>1. For γ0 6 γ < 0, one
can always find a sequence (m∗(n))n>1 for which (31) fails.

Remark 2. From the consistency condition, one can see that the bigger α the shorter
change can be detected with the statistics. As expected, the detection is not so good as in
the i.i.d. case, see [12].

Proof. We keep the notationsA andB already used in the previous proof. By Theorem 3,
under (H0), bnT̃α,n converges in distribution and hence is stochastically bounded for the
normalization bn = n−3/2+α. So it remains only to check condition (25). This requires
an estimate for the asymptotic order of magnitude of

A− `∗

n
(A+B)

=
1

(1− φn)2

(
`∗(1− φn)

(
1− `∗

n

)
− φn

(
1− φ`

∗

n

)(
1− `∗

n
φn−m

∗

n

))
.

Using the second order expansions

1− φn = −γ
n
− γ2

2n2
+ o
(
n−2

)
,

1− φ`
∗

n = −γ`
∗

n
− γ2`∗2

2n2
+ o

(
`∗2

n−2

)
,

we deduce ∣∣∣∣A− `∗

n
(A+B)

∣∣∣∣ > `∗2
∣∣∣∣12 +

1

γ

(
1− eγ(1−m

∗/n)
)∣∣∣∣.

So the divergence (25) follows from the condition n−3/2+α`∗2−αan → ∞ as n → ∞
and (31).

Corollary 2. In the second type model defined by (1) and (7), assume that, for some
p > 2, (εi) satisfy condition (5). Let α ∈ (0, 1/2− 1/p) and assume that

lim inf
n→∞

γnn
−α/(1/2−1/p) > 0.

Suppose that either of the following conditions is satisfied:

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 1, 67–82
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1. `∗(1− φn)→∞, lim supn→∞ `∗/n < 1 and n−1/2+α`∗1−αan →∞ as n→∞;

2. `∗(1− φn)→ c > 0 and n−1/2+α`∗1−αan →∞ as n→∞;

3. `∗(1− φn)→ 0 and n−3/2+αγn`∗2−αan →∞ as n→∞.

Then under (HA),
n−1/2+α(1− φn)T̃α,n

P−→∞. (32)

The conclusion extends to the special case α = 0, under the same assumptions provided
that (5), is replaced by Eε21 <∞.

Proof. By Theorem 4, under (H0), bnT̃α,n converges in distribution and hence is stochas-
tically bounded for the normalization bn = n−1/2+α(1−φn). So it remains only to check
condition (25) in the three considered cases.

Case 1. If `∗(1− φn)→∞, noting that∣∣(1− φ`∗n )(φn − `∗n−1φn−m∗+1
n

)∣∣ 6 1

and recalling that lim sup `∗/n < 1, we immediately see that, for n large enough,
there is some positive constant c such that∣∣∣∣A− `∗

n
(A+B)

∣∣∣∣ > c`∗

1− φn
.

Then the divergence (25) follows clearly from the condition

n−1/2+α`∗1−αan →∞ as n→∞.

Case 2. If `∗(1− φn)→ c > 0, this implies in particular that `∗/n tends to zero and

1− φ`
∗

n −−−−→
n→∞

1− e−c.

By strict convexity of the exponential function, e−c > 1 − c with equality only
if c = 0, hence c− 1 + e−c > 0 since c > 0 and∣∣∣∣A− `∗

n
(A+B)

∣∣∣∣ ∼ c− 1 + e−c

(1− φn)2
∼ (c− 1 + e−c)`∗

c(1− φn)
.

Again the divergence (25) follows from the condition

n−1/2+α`∗1−αan →∞ as n→∞.

Case 3. Assume finally that `∗(1 − φn) → 0 (this implies in particular that `∗ = o(n)).
Then in (29) the term `∗(1 − φn) is equivalent to (1 − φ`n

∗
). By second order

expansion, we find that

1− φ`
∗

n =
`∗γn
n

+
`∗2γ2n
2n2

(
1 + o(1)

)
.
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Fig. 1. Detection area in the space of parameters (`∗ � na, γn � nb) for Corollary 2.

This leads by elementary computation to

A− `∗

n
(A+B) ∼ −`

∗2

2
,

so the the divergence (25) follows from the condition

n−3/2+αγn`
∗2−αan →∞ as n→∞.

Remark 3. The graphical interpretation presented in Fig. 1 may provide a better under-
standing of the results in Corollary 2. Assume for simplicity that an = 1, `∗ � na (that
is there are positive constants c1 and c2 such that, for n large enough, c1na 6 `∗ 6 c2n

a)
and that φn � nb for some 0 < a, b < 1. For a given value of p in condition (5), what are
the pairs (a, b) for which Corollary 2 allows detection of an epidemics of length `∗ � na,
subject to an admissible choice of α? The set of solutions is represented by the shadowed
area of the unit square. The light grey part above the diagonal corresponds to Cases 1
and 2, that is limn→∞ `∗(1 − φn) belongs to (0,∞]. The triangular darker grey area
corresponds to the case where `∗(1− φn) tends to 0. One can remark that, when p tends
to infinity, the whole shadowed area converges to the trapezoid with upper basis the upper
side of the unit square and lower basis the segment [2/3, 1] on the horizontal axis.
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4 Test power analysis

Here we perform the test power analysis. For this, we present the results of experiments
in the Tables 1 and 2. We computed empirical power on size-adjusted (not nominal size)
basis, i.e., replaced the nominal value of significance level by the value of empirical
distribution function for p-values under null hypothesis. For more details on size power
curves, see [17].

For different values of parameters γ, γn, α, k∗, `∗ and an, we compute N = 1000
realizations of test statistics with the sample size n. Innovations have been generated as
standard normally distributed random variables. For the limit distribution, we compute
N = 5000 realizations of test statistics with the sample size n = 5000. We approximate
the values of the standard Wiener process by

W

(
k

5000

)
= n−1/2

k∑
j=1

ε(j), k = 1, . . . , 5000,

where ε(j) are generated as standard normally distributed random variables. The Ornstein–
Uhlenbeck process have been approximated by the the following discretization:

Sj = Sj−1e
γ/n +

√
1− e2γ/n

−2γ
· εj , εj ∼ N(0, 1), j = 1, 2 . . . , n, (33)

and S0 = 0. For more details about (33), see [18]. Using values generated by (33), we
approximate the integrated Ornstein–Uhlenbeck process by

J

(
k

5000

)
= n−1

k∑
j=1

Sj , k = 1, . . . , 5000.

Next, we define the basic parameter set for the first type model

γ = −2, an = 1, n = 1000,
`∗

n
= 0.05,

k∗

n
= 0.4, yn,0 = 0.

Further modifying the separate parameters we compute the empirical size-power. We
always keep all these parameters except one (indicated in the first column in both tables)
which we allow to vary. Note that, in order to compute the test power, we need to compute
the empirical p-values. Usually, the estimate of empirical p-value is p̂ = s/N , where s is
the number of values (limit process) that are greater than or equal to the observed value
(statistics), N is the number of values. Nevertheless, the previous formula is biased due
to the finite sampling. Davison and Hinkley [19, p. 141] suggested to correct the bias
with such formula p̂ = (s + 1)/(N + 1). One can observe, that these two formulas are
essentially the same when the number of replications N is large, but we use unbiased
estimate in this computations.

As one can see in Table 1 the test power is almost the same for all α. The test power
increases with the length of epidemics, but it has no big difference with increasing α.
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Table 1. Empirical power at the size-adjusted significance level 0.05 for the first type model.

Parameters α = 0 α = 2/32 α = 6/32 α = 12.5/32

`∗/n = 0.035 0.442 0.440 0.446 0.421
`∗/n = 0.050 0.758 0.757 0.767 0.752
`∗/n = 0.100 1.000 1.000 1.000 1.000

k∗/n = 0.2 0.591 0.589 0.615 0.653
k∗/n = 0.4 0.758 0.757 0.767 0.752
k∗/n = 0.8 0.587 0.616 0.697 0.784

an = 0.8 0.554 0.549 0.556 0.534
an = 1 0.758 0.757 0.767 0.752
an = 1.2 0.907 0.908 0.920 0.914

n = 500 0.388 0.404 0.408 0.409
n = 1000 0.758 0.757 0.767 0.752
n = 2000 0.979 0.982 0.980 0.983

γ = −2 0.758 0.757 0.767 0.752
γ = −12 0.677 0.728 0.822 0.896
γ = −100 0.748 0.833 0.967 0.998

Table 2. Empirical power at the size-adjusted significance level 0.05 for the second type model.

Parameters α = 0 α = 2/32 α = 6/32 α = 10/32

`∗/n = 0.035 0.373 0.441 0.675 0.909
`∗/n = 0.050 0.758 0.859 0.974 0.996
`∗/n = 0.065 0.980 0.990 0.999 1.000

k∗/n = 0.2 0.780 0.875 0.980 0.999
k∗/n = 0.4 0.758 0.859 0.974 0.996
k∗/n = 0.8 0.783 0.877 0.981 0.998

an = 0.8 0.478 0.565 0.780 0.929
an = 1 0.758 0.859 0.974 0.996
an = 1.2 0.949 0.985 0.999 1.000

n = 500 0.422 0.480 0.676 0.813
n = 1000 0.758 0.859 0.974 0.996
n = 2000 0.997 1.000 1.000 1.000

γn = n/ ln(n) 0.754 0.847 0.970 0.995
γn = ln2.5(n) 0.758 0.844 0.972 0.995

γn = n3/4 0.758 0.859 0.974 0.996

Note that, for the first type model, the location of epidemics makes the difference. The
biggest power is for the epidemics in the middle of the observations. For this model, the
test can detect the epidemic change best when an = 1 or bigger, for the smaller changes,
it has a lower power. Naturally, the test power increases with the number of observations
and α. Further the bigger is γ, the bigger is test power. That is the test power increases
when the ratio γ/n increases.
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The basic parameter set for the second type model (φn = 1− γn/n) are

γn = n3/4, an = 1, n = 1000,
`∗

n
= 0.05,

k∗

n
= 0.4, yn,0 = 0.

For the second type model (Table 2), the test power for all parameter values is the
lowest, when α = 0 and increases with the α. For this model, detection of epidemic
changes becomes better with the increasing length of epidemics, but the test detects short
epidemic change very good for the bigger α. Note that the test power does not depend
on the place of epidemics. Also, it detects quite good even small changes as an = 0.8.
The test power increases when the number of observations and α are increasing. The test
power does not vary to much depending on γn.

Acknowledgment. The authors would like to thank the Referee for very careful reading
and precise suggestions that led to an improvement of the paper.

Appendix. Tools

The next results help us to prove the limiting behaviour of the test statistics under null
hypothesis.

Lemma A.1. Suppose α ∈ [0, 1/2 − 1/p], p > 2. Consider the functionals gn and g
defined on the Hölder space Hoα[0, 1] by

gn(x) := max
16i,j6n

Iα

(
x,
i

n
,
j

n

)
, g(x) := sup

0<s<t<1
Iα(x, s, t), (A.1)

where

Iα(x, s, t) :=
|x(t)− x(s)− (t− s)x(1)|

|t− s|α
, 0 < t− s < 1. (A.2)

Then gn and g are Lipschitz on Gα = {x ∈ Hoα[0, 1]: x(0) = 0} with the same constant
C = 2, if α ∈ (0, 1/2 − 1/p]. Also, gn and g are Lipschitz on G0 = {x ∈ C[0, 1]:
x(0) = 0} with the same constant C = 2, if α = 0.

Further, for any tight sequence of random elements (ηn)n>0 in C[0, 1] or Hoα[0, 1], it
holds

gn(ηn) = g(ηn) + oP(1). (A.3)

Proof. Here we shall give an unified proof for the cases α = 0 and α ∈ (0, 1/2 − 1/p].
Since the spaces (C, ‖·‖∞) and (Ho0, ‖·‖0) are isomorphic, thus putting α = 0 in the proof
gives the special case of gn and g being Lipschitz on C[0, 1]. To show that q = I(·, s, t)
is Lipschitz, we shall use Lemma A.3. Clearly, q satisfies conditions (i) and (ii) of this
lemma. We shall check the condition (iii)

q(x) = Iα(x, s, t) 6
|x(t)− x(s)|
|t− s|α

+ |t− s|1−α
∣∣x(1)∣∣ 6 2‖x‖α. (A.4)
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Let us introduce the closed subspace Gα = {x ∈ Hoα[0, 1]: x(0) = 0}. From (A.4)
we see that the functional q = Iα(·, s, t) satisfies onGα the Condition (iii) of Lemma A.3
with the constant C = 2. It follows by Lemma A.3 that gn as well as g are Lipschitz
on Gα with the same constant C. In fact, the sequence (gn)n>2 is equicontinuous on Gα.

Further, to check the pointwise convergence on Gα of gn to g, it is enough to show
that, for each x ∈ Gα, the function (s, t) 7→ Iα(x, s, t) can be extended by continuity
to the compact set K = {(s, t) ∈ [0, 1]2: 0 6 s 6 t 6 1}. From (A.4) we get 0 6
Iα(x, s, t) 6 ωα(x, t−s)+ |x(1)||t−s|1−α which allows the continuous extension along
diagonal by putting Iα(x, s, s) := 0. The definition of Iα(x, s, t) allows us continuous
extension at the point (0, 1) putting Iα(x, 0, 1) := 0.

Suppose that the sequence (ηn)n>1 is tight on C[0, 1] or on Hoα[0, 1]. As the pointwise
convergence of (gn) is established, using Lemma A.2 we obtain that

gn(ηn) = g(ηn) + oP(1).

The two following lemmas one can find in [12].

Lemma A.2. Let (ηn) be a tight sequence of random elements in separable Banach
space B and gn, g be continuous functionals B→ R. Assume that gn converges pointwise
to g on B and that (gn) is equicontinuous. Then

gn(ηn) = g(ηn) + oP(1).

Lemma A.3. Let (B, ‖·‖) be a vector normed space and q : B → R such that:
(i) q is subadditive: q(x+ y) 6 q(x) + q(y), x, y ∈ B;

(ii) q is symmetric: q(−x) = q(x), x ∈ B;
(iii) for some constant C, q(x) 6 C‖x‖, x ∈ B.

Then q satisfies the Lipschitz condition∣∣q(x+ y)− q(x)
∣∣ 6 C‖y‖, x, y ∈ B. (A.5)

IfF is any set of functionals q fulfilling (i), (ii) and (iii) with the same constantC, then (i),
(ii) and (iii) are satisfied by g(x) := sup{q(x): q ∈ F} which therefore satisfies (A.5).
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