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Abstract. In this paper spatial classification rules based on Bayes discriminant functions are
considered. The novelty of this work is that the statistical supervised classification method is
improved by extending the influence of spatial correlation between observation to be classified
and training sample. Such methods are used for data containing spatially correlated noise. Method
accuracy is tested experimentally on artificially corrupted images. This classification rule with
distance based conditional distribution for class label shows advantage against other classification
rule ignoring such influence and against other commonly used supervised classification methods.
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1 Introduction

The incorporation of the spatial information (image texture, direction, closeness and
other) into image classification is highly potential [1]. In the series of papers (see e.g.,
[2–4]) the incorporation of geostatistical information of features into plug-in versions
of classifiers is based on the marginal distribution of the observation to be classified.
Thus the geostatistical Bayes classifiers based on conditional feature distribution of the
observation to be classified were investigated.

Author Dučinskas [5] discusses the problems of classification for Gaussian random
field observations. In his paper he offer to take into account the spatial closeness of the
points, i.e., the correlation of their feature values, which is typical to the spatial data.
According to the Tobler’s first law of geography: everything is related to everything else,
but near things are more related then distant things [6]. The formal property that describes
this is spatial autocorrelation. Spatial autocorrelation represents the degree to which that
correlation changes with distance [7].

In this paper the statistical supervised classification method [8] is extended by in-
corporating more influence from the spatial dependency into classification problem and
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achieving higher accuracy. This method can be used in image analysis and in other fields,
where data used for classification is corrupted by spatially correlated noise.

In the earlier papers of authors [9] conditional independence assumption is changed.
Also the observation of features to be classified is assumed to be dependent to the features
observations in training sample. The stationary Gaussian Random Field (GRF) model for
features and discrete Markov Random Field (MRF) model for class label are considered.

The earlier method was applied in papers [8,10] and the defended doctoral thesis [11]
was based on it. This method was applied in the real situation for the remotely sensed
image, covered with clouds, classification [12]. The error rates for the earlier method were
presented and investigated in [13]. The error rates of the multivariate case was presented
and investigated in [14].

The main idea of the method proposed in this paper is the following. In the classifi-
cation methods proposed by the authors, the prior class probabilities are calculated only
from the neighbor observations of the observation to be classified. These neighbor obser-
vation are from the training sample and based on some neighboring scheme. Usually such
prior class probabilities are calculated only according to the amount of the observations
belonging to concrete class. But these observations are far from the observation to be
classified in different distances and this must be also added into account while calculating
prior probabilities. In such way the prior information is evaluated more accurately when
the observations of some class are closer to the observation to be classified then the
observations from the other classes.

In this paper when assigning the object into one of the classes the classification rule
with distance based posterior distribution for class label is used. Advantage of classifi-
cation rule with distance based posterior distribution for class label against one ignoring
spatial proximity between locations is shown visually and confirmed numerically.

In order to verify the reliability of the method the large experiment is performed.
During this experiment artificially corrupted images of different symbols are classified
with the method proposed in this paper, with the earlier method of the authors with less in-
fluence of the spatial dependency and with other commonly used supervised classification
methods. These commonly used methods are not investigated in this paper, they are used
only for the general orientation of the supervised classification methods. The comparison
of these methods lets other researchers who are using supervised classification methods
to evaluate better the methods proposed by the authors. The classification with these
methods is done on the same data and on the same training sample as for the methods
proposed by the authors. These commonly used supervised classification methods are:
Support Vector Machines (SVM), Neural Networks (NNet), Random Forests (RF) and
Multinomial Logistic Regression (Logit). The advantage of SVMs classifiers is their
capabilities to learn from small number of samples [15]. The class (label) of a new sample
is determined by a linear combination of the kernel functions evaluated on a certain subset
of the examples the support vectors and the input. The coefficients of the combination
are obtained as a solution to a convex optimization problem occurring at the learning
stage [16]. Neural networks rely on the iterative derivation of weights which effectively
define hyper-planes and hyper-regions in the pattern feature space [17]. Although artificial
neural network methods are frequently found to give a higher total classification accuracy
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when compared to other methods, they do not always perform universally well [18].
Random Forests method grows many classification trees and then every tree gives the
class label for the observation to be classified. Then the class is assigned according to the
most classes given by all trees in the forest [19].

Numerical and visual analysis of proposed discriminant function in the case of iso-
tropic exponential spatial correlation for the nearest neighbor neighborhood system using
eight nearest neighbors NN(8) is done. All calculations are done in R system [20]. For
the commonly used supervised classification methods the rassclass package from the
R system is used.

2 Method description

In this paper extended statistical supervised classification method is presented. Spatial
classification rule based on the plug-in Bayes discriminant function with posterior dis-
tribution of class label ignoring the distances among the locations is denoted by SCR.
The extended method depending on distances among unclassified locations and training
sample locations is called SCRD (Spatial Classification Rule with Distance).

In this paper features are modeled by stationary Gaussian random field (GRF) {Z(s):
s ∈ D ⊂ R2}, and class labels are modeled by discrete Markov random field (MRF).
Such modeling is common in image analysis. In the context of image analysis index s
means pixel.

The marginal model of observation Z(s) in class Ωl is Z(s) = µl + ε(s), where µl is
the mean, and the error term ε(s) is generated by zero-mean stationary Gaussian random
field {ε(s): s ∈ D} with covariance function defined by model cov{ε(s), ε(u)} =
σ2r(s − u) for all s, u ∈ D, where r(s − u) is the spatial correlation function and σ2

is variance as a scale parameter. During the experiments, the exponential covariance
function is used:

C(h) = σ2 exp

{
−|h|
α

}
, (1)

where α is the correlation range parameter. r(s−u) = r(h) = exp{−|h|/α}, where h is
the Euclidean distance between s and u locations.

Let L = {1, 2} be a label set. A label of pixel s ∈ D associated with Z(s) is a random
variable Y (s) taking values in L. Let Sn = {si ∈ D; i = 1, . . . , n} be a set of training
pixels. Set Y = (Y (s1), . . . , Y (sn))

′ and Z = (Z(s1), . . . , Z(sn))
′ and call them labels

vector and features vector, respectively. Thus, the vector T ′ = (Z ′, Y ′)′ constitutes the
training sample. Suppose that the event {T = t} is equivalent to the event {Z = z} ∩
{Y = y}, where t, z, y are the realizations of the corresponding random vectors.

Assume that the model of Z for given Y = y is Z = Xyµ + E, where Xy is
a design matrix, µ′ = (µ1, µ2) andE is the n-vector of random errors that has multivariate
Gaussian distribution Nn(0, σ2R). Consider the problem of classification (estimation of
Y (s0)) of the feature observation Z0 = Z(s0), s0 ∈ D, s0 /∈ Sn with given training
sample T = t. Here s0 is the location of the observation to be classified. Zn = (Z(si |
si ∈ Sn)) is the feature vector from the neighbor observations of the observation to be
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classified. Denote by r0 the vector of spatial correlations betweenZ0 andZn. Also denote
by R the matrix of spatial correlations among components of Zn. R and r0 components
are calculated according to the Eq. (1). Since Z0 is correlated with training sample, we
have to deal with conditional Gaussian distribution of Z0 given T = t (Z = z, Y = y)
with means µ0

lt and variance σ2
0t that are defined by

µ0
lt = E

(
Z0

∣∣ T = t; Y (s0) = l
)
= µl(s0) + α′0(z0 −Xyµ),

σ2
0t = V

(
Z0

∣∣ T = t; Y (s0) = l
)
= σ2R0n,

(2)

where α′0 = r′0R
−1, R0n = 1− r′0R−1r0 and l = 1, 2.

In this methodology assumption that the posterior distribution of Y (s0) given T = t
depends only on Y = y and N0 is made. The posterior distribution of Y (s0) is

πl(y) = P
(
Y (s0) = l

∣∣ T = t
)
, l = 1, 2.

Suppose that means {µl(s)} and σ2 are unknown and need to be estimated from
training sample T . Let µ̂ and σ̂2 be the estimates of µ and σ2, based on T = t. Denote
the three component vector of parameters by Ψ ′ = (µ, σ2) and denote the vector of their
estimates by Ψ̂ ′ = (µ̂, σ̂2).

The plug-in Bayes discriminant function (PBDF) is obtained by replacing the param-
eters in Bayes discriminant function (BDF) with their estimates based on T = t. Then
PBDF to the classification problem specified above is

Wt(Z0; Ψ̂) =

(
Z0 −

µ̂0
1t + µ̂0

2t

2

)
µ̂0
1t − µ̂0

2t

σ̂2
0t

+ γ(y), (3)

where µ̂0
lt = µ̂l + α′0(zn −Xyµ̂) and σ̂2

0t = σ̂2Ron, γ(y) = ln(π1(y)/π2(y)).
SCR is denoted the classification rule based on the posterior distribution of Y (s0)

specified by

π1(y) =
1

1 + exp{ρ(1− 2n1

n )}
, n1 = 0, 1, . . . , n, (4)

when I0 = {i: si ∈ N0 = NN(8), i = 1, . . . , n} and where ρ is non negative constant
called a clustering parameter, and n1 is the number of locations from N0 with label
equal 1. Here NN(8) is the nearest neighbor scheme with eight nearest neighbors.

In this paper proposed spatial classification rule SCRD is based on the following
posterior distribution

π1(y) =

∑
i∈I0

δ(yi=1)
d(si,s0)∑

i∈I0
∑2
j=1

δ(yi=j)
d(si,s0)

=

∑
i∈I0

δ(yi=1)
d(si,s0)∑

i∈I0
1

d(si,s0)

, (5)

where δ(·) is the 0-1 indicator function and d(· , ·) denotes the Euclidean distance function
between locations. For the case of two classes π2 = 1− π1.

According to the situation illustrated in Fig. 1 using SCR method the probabilities of
class labels are π1 = 1/2 and π2 = 1/2. While using SCRD method the prior probability
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S3

Fig. 1. Illustration of situation.

of the first class increases because s1 and s2 locations are closer to the observation to be
classified s0 then the locations s3 and s4 from the second class. According to the SCRD
method for the situation illustrated in Fig. 1 π1 prior probability is calculated:

π1(y) =
( δ(y1=1)

1 + δ(y2=1)
1 + δ(y3=1)

2 + δ(y4=1)
2 )∑

i=I0
( δ(yi=1)
d(si,s0)

+ δ(yi=2)
d(si,s0)

)
= · · ·

=
2

( 11 + 0
1 ) + ( 11 + 0

1 ) + ( 02 + 1
2 ) + ( 02 + 1

2 )
=

2

3
.

3 Method illustration

The aim of this experiment is to test the overall accuracy of proposed method. The artifi-
cially corrupted images of different symbols are used in this experiment for classification.
All calculations are done with statistical computing software R [20].

3.1 Preparation for the experiment

In this experiment 100 different images are used. The dimensions of every image are 200×
200 pixels. Every initial image consists of pure white and pure black color pixels. All these
images are prepared outside the R software and read using rtiff package. This package
reads .tiff type image and produces the number matrix corresponding image pixels. With
this package black pixels become 0 and white pixels become 1 inside of the number
matrix. All other gray level pixel are from the interval (0, 1). Several of initial images are
shown in figure Fig. 2.

According to every initial image the training sample is randomly generated for every
of the classes. 0.8% of image points are used in training sample. That is only about 320
from 40000 points are taken for the training sample. The first class is sampled from white
pixels and the second from black pixels. Sampling is done proportionally for each class.

Further initial images are corrupted by spatially correlated Gaussian random fields.
Random fields are generated with geoR package inside R software using isotropic expo-
nential covariance function, and variance equal to 1. Also, during this experiment, the
influence of correlation range parameter α is investigated. So each of the initial images
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Fig. 2. Several of initial images used in experiment. 100 such different initial images are used in the experiment.

Fig. 3. Experiment preparation scheme. 100 different images, for 4 different α values, are prepared according
to this scheme for the experiment.

is corrupted by four different Gaussian random fields where spatial correlation range
parameter α is equal to 5, 10, 20 and 50. Four different Gaussian random fields generated
with different α parameter values are shown in Fig. 3. These four Gaussian random fields
are generated separately for every initial image.

Every generated random field is a number matrix and this matrix is normalized in
order to gain values between 0 and 1. Then such field is combined with initial image
by summing their matrix values with proportion 1 : 0.33. It means that during this
summation the random field matrix is taken as is – with values between 0 and 1, but
initial image matrix is multiplied by 0.33 before summation. This is done in order to
get the corrupted image which is corrupted hard enough for such classification problems.
After this summation the resulting matrix is once more normalized in order to gain values
between 0 and 1. These data normalizations are done in order to get the situation similar
to the situation when real corrupted image is read. The whole experiment preparation
scheme is shown in Fig. 3.

According to the preparation scheme presented in Fig. 3, 100 different images were
prepared for classification. This gives us 400 different images because of 4 different
α values which were investigated. All these 400 images are used for the classification.
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3.2 Results of the experiment

During the experiment all 400 different corrupted images are classified by 6 different
classification methods. As described above the classification process is done using 6 dif-
ferent classification methods. Two of them are methods of this letter authors. These are
SCR – the older method of the authors and SCRD – the method proposed in this letter.
Other four methods are supervised classification method commonly used for image per
pixel classification. These methods are Logit, RF, NNet and SVM. After the classification
lots of resulting images were obtained. One of the classification sets with letter “B” is
presented in Fig. 4.

According to the visual classification results presented in Fig. 4 it can be shown
that older method of authors (SCR) performs better when the other commonly used
classification methods. The new classification method SCRD – proposed in this letter
is even better. The classification errors appear at the same places for both methods but
for the new method these error places are smaller. Also from the visual results it ca be
seen that results become better for the authors methods when spatial correlation range
parameter α increases. For the other commonly used methods this situation is opposite.

In this letter only one set off classified images is presented, but other sets show
very similar results. After the classification of all the images all the resulting images are
analyzed numerically. The average classification accuracy, standard deviation of classifi-
cation accuracy, the minimum and the maximum classification accuracies are calculated
for every method and presented in the Table 1.

Fig. 4. Visual results of the experiment. Such classification sets are obtained for 100 different initial images.

Table 1. Overall classification accuracy results.

Method SCRD SCR Logit RF NNet SVM

Average 0.984 0.977 0.908 0.888 0.907 0.908
σ 0.009 0.014 0.030 0.037 0.030 0.030
Min 0.946 0.925 0.759 0.731 0.761 0.756
Max 0.999 0.999 0.978 0.965 0.977 0.978
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Table 2. Average and minimum classification accuracy according to parameter α.

Methods: SCRD SCR Logit RF NNet SVM

α Average classification accuracy
5 0.973 0.962 0.927 0.910 0.926 0.926
10 0.980 0.971 0.915 0.896 0.914 0.915
20 0.988 0.984 0.905 0.882 0.904 0.904
50 0.994 0.993 0.886 0.863 0.886 0.886
α Minimum classification accuracy
5 0.946 0.925 0.879 0.858 0.878 0.881
10 0.958 0.943 0.863 0.841 0.857 0.859
20 0.972 0.963 0.817 0.753 0.814 0.815
50 0.976 0.972 0.759 0.731 0.761 0.756

As it was mentioned before, the influence of the parameter α is tested in this paper.
The results of the overall classification accuracy for increasing α parameter is presented
in Table 2.

According to the numerical results presented in Tables 1, 2 it can be stated that the
method SCRD proposed in this paper is better then the older method of the authors (SCR).
Also the classification accuracy for SCRD and SCR methods increases for the larger
α values while other commonly used classification methods looses their accuracy.

4 Conclusions

The quite large classification experiment is performed, so the results can be considered as
representative enough for such classification problems.

Visual and numerical results show that the incorporation off more spatial dependen-
cies into the classification problem increases the classification accuracy.

The SCRD method, proposed in this letter, is more accurate when the other method
SCR, which is also proposed by the authors.

According to the visual analysis the new method (SCRD) gets errors at the same
places like the older authors method (SCR) but the area off these errors is significantly
decreased.

Other commonly used supervised classification methods are influenced by the spatial
correlation. The experiment results show that the accuracy of these methods decreases
then the spatial correlation grows.

This new method can also be used for all image per pixel and other spatial supervised
univariate classification problems especially when data consists spatially correlated noise
(variation).
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