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Abstract. A diffusive ratio-dependent predator-prey system with Holling-III functional response
and delay effects is considered. Global stability of the boundary equilibrium and the stability of
the unique positive steady state and the existence of spatially homogeneous and inhomogeneous
periodic solutions are investigated in detail, by the maximum principle and the characteristic
equations. Ratio-dependent functional response exhibits rich spatiotemporal patterns. It is found
that, the system without delay is dissipative and uniformly permanent under certain conditions,
the delay can destabilize the positive constant equilibrium and spatial Hopf bifurcations occur
as the delay crosses through some critical values. Then, the direction and the stability of Hopf
bifurcations are determined by applying the center manifold reduction and the normal form theory
for partial functional differential equations. Some numerical simulations are carried out to illustrate
the theoretical results.
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1 Introduction

The well-known Lotka–Volterra type prepator-prey system describing predator-prey inter-
actions has long been and will continue to be one of the dominant themes in both ecology
and mathematics [1]. Generally, a predator-prey model can take the form

du

dt
= u(a− bu)− vg(u),

dv

dt
= −v

(
d− s

c
g(u)

)
,

(1)
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where u, v stand for prey and predator density, respectively. a, a/b, d, s/c are posi-
tive constants which denote prey intrinsic growth rate, carrying capacity, predator death
rate and conversion rate, respectively. g(u) is the prey-dependent functional response,
particularly, g(u) = cu2/(m2 + u2) is so-called Holling-type III, first proposed by
Holling [2]. Some biologists have questioned the functional response solely depending
on prey density, for example [3–5], especially when predators have to search for food
(and therefore, have to share or complete for food). A more suitable predator-prey theory
should be the so-called ratio-dependent theory. We replace g(u) by g(u/v). That is, the
per capita predator growth rate is a function of the ratio of prey to predator biomass, which
is strongly supported by numerous fields and experimental data [3,4]. The ratio-dependent
predator-prey system (1) with Holling-type III takes the form

du

dt
= u(a− bu)− cu2v

m2v2 + u2
,

dv

dt
= −v

(
d− su2

m2v2 + u2

)
,

(2)

where u2/(m2v2+u2) denotes the predator response function, s stands for the conversion
rate.

The above model can produce the richer and more reasonable dynamics biologically
[3,6,7]. It is well known that the past history and current state can affect the dynamics of
models. The effect of gestation delay has been studied by many authors [8–11]. Assuming
the reproduction of the predators after eating the prey will be not transient but need some
discrete time lag, we introduce a delay to the system (2) to make it close to reality.

Particularly, by using the continuation theorem of coincidence degree theory, Wang
and Li [12] investigated the existence of positive periodic solutions for a delayed ratio-
dependent predator-prey model with Holling-type III functional response in the following
form:

du(t)

dt
= u(t)

(
a(t)− b(t)

t∫
−∞

k(t− s)u(s) ds

)
− c(t)u2(t)v(t)

m2v2(t) + u2(t)
,

dv(t)

dt
= v(t)

(
−d(t) +

su2(t− τ)

m2v2(t− τ) + u2(t− τ)

)
,

(3)

where a(t), b(t), c(t) and d(t) are all positive ω-period functions, m > 0 and

k(s) : R+ → R+

is a measurable, ω-periodic, normalized function such that
∫ t
−∞ k(s) ds = 1. Clearly,∫ t

−∞ k(t − s)u(s) ds = u(t) when k(s) = δ(s), where δ(s) is Dirac delta function at
s = 0. In the case that k(s) = δ(s), and a(t), b(t), c(t) and d(t) are all positive constants,
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(3) becomes

du(t)

dt
= u(t)

(
a− bu(t)

)
− cu2(t)v(t)

m2v2(t) + u2(t)
,

dv(t)

dt
= v(t)

(
−d+

su2(t− τ)

m2v2(t− τ) + u2(t− τ)

)
.

Xu, Gan and Ma [13] studied the global stability of the equilibria of the above system and
the existence of Hopf bifurcation. Our work is an extension of the work in [13]. Assuming
that predators and preys are in an isolate patch in which the impact of migration, including
immigration and emigration, can be neglected, we only consider the diffusion of the
spatial domain. It has been shown that the reaction-diffusion system can generate more
complex spatiotemporal patterns [14–23]. We consider the ratio-dependent Holling-III
predator-prey system with delay and diffusion

∂u(x, t)

∂t
= d1∆u(x, t) + u(x, t)

(
a− bu(x, t)

)
− cu2(x, t)v(x, t)

m2v2(x, t) + u2(x, t)
,

x ∈ (0, lπ), t > 0,

∂v(x, t)

∂t
= d2∆v(x, t)− v(x, t)

[
d− su2(x, t− τ)

m2v2(x, t− τ) + u2(x, t− τ)

]
,

x ∈ (0, lπ), t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x = 0, lπ, t > 0,

u(x, t) = φ(x, t) > 0, v(x, t) = ψ(x, t) > 0, (x, t) ∈ [0, lπ]× [−τ, 0],

(4)

where ∆ = ∂2/∂x2 denotes the usual Laplacian operator in the one-dimension space, d1,
d2 denote the diffusion rate of prey and predator, respectively. We assume that d1 > d2,
which implies that the prey has some hope of escaping. ν is the outward unit normal on
∂Ω, and the homogeneous Neumann boundary conditions imply the closed domain where
the populations can not move across the boundary of the domain.

Let ū(x, t) = (b/a)u(x, t), v̄(x, t) = (b/a)mv(x, t) and h = c/m, φ̄(x, t) =
(b/a)φ(x, t), ψ̄(x, t) = (b/a)mψ(x, t), and drop the bars for simplicity of notations,
then (4) can be transformed into the following system:

∂u(x, t)

∂t
= d1∆u(x, t) + au(x, t)

(
1− u(x, t)

)
− hu2(x, t)v(x, t)

v2(x, t) + u2(x, t)
,

x ∈ (0, lπ), t > 0,

∂v(x, t)

∂t
= d2∆v(x, t)− v(x, t)

[
d− su2(x, t− τ)

v2(x, t− τ) + u2(x, t− τ)

]
,

x ∈ (0, lπ), t > 0,

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0, t > 0,

u(x, t) = φ(x, t) > 0, v(x, t) = ψ(x, t) > 0, (x, t) ∈ [0, lπ]× [−τ, 0].

(5)
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In addition, what is more important in ecosystem is whether the species would survive
in the long run. That is, whether the system is permanent. In the present paper, we aim
to study the uniform permanence and dissipativeness and investigate the effects of the
delay and diffusion on system (5). The main results are that, the boundary equilibrium is
globally asymptotically stable if s < d and 2a > h, and unstable if s > d for all τ > 0.
The delay and diffusion have no effects on the stability of the boundary equilibrium. In
addition, the system without delay is dissipative when s > d and is uniformly permanent
when s > d, 2a > h. And, if s > d, there is τ̃ > 0 such that the positive constant
equilibrium is stable for τ ∈ [0, τ̃) and unstable for τ ∈ (τ̃ ,+∞). And a family of
homogeneous, as well as inhomogeneous periodic solutions, may bifurcate from the
positive constant steady state under some certain conditions, by virtue of the effects of
diffusion and delay.

The rest of the paper is organized as follows. In Section 2, the global stability of
the boundary equilibrium and the stability of the positive coexistence of system (5) are
studied in detail. And the dissipativeness and uniform permanence of the system without
delay are investigated by the comparison principle. And we also consider the existence of
Hopf bifurcations as the delay τ crosses a sequence of critical values. In Section 3, the
direction and stability of the Hopf bifurcations are given. Some numerical simulations are
carried out to illustrate the theoretical results in Section 4.

2 Some dynamical behaviors of the system

Firstly, we make the following assumptions:

(H1) d1, d2, a, h, d and s are all positive constants, and d1 > d2.

(H2) s > d and h
√

(s− d)d < as.

It is easy to check that system (5) always has a unique boundary equilibrium point
E1(1, 0). And the system has a unique positive constant steady stateE(u∗, v∗) if and only
if (H2) holds, where u∗ = 1 − h/(as)

√
(s− d)d > 0, v∗ = as/(hd)u∗(1 − u∗) > 0.

Next, we study the stability of the boundary equilibrium.

2.1 Global stability analysis of the boundary equilibrium

The linearized equations of system (5) at E1(1, 0) are given by

∂u

∂t
= d1∆u− au(x, t)− hv(x, t),

∂v

∂t
= d2∆v + (s− d)v(x, t).

(6)

From the properties of the Laplacian operator defined on the bounded domain the operator
on X has the eigenvalues −n2/l2 with the relative eigenfunctions

β1
n =

(
cos nl x

0

)
, β2

n =

(
0

cos nl x

)
, n = 0, 1, 2, . . . ,
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where

X =

{
u, v ∈W 2,2(Ω):

∂u(x, t)

∂x
=
∂v(x, t)

∂x
= 0, x ∈ ∂Ω

}
and Ω = (0, lπ).

The characteristic equations of the linearized equations (6) are given by(
λ+

d1n
2

l2
+ a

)(
λ+

d2n
2

l2
+ d− s

)
= 0, n = 0, 1, 2, . . . .

That is, λ1 = −d1n2/l2 − a < 0, λ2 = −d2n2/l2 + s− d 6 s− d, n = 0, 1, 2, . . . .
Then we know that all the characteristic roots of the linearization of system (5) at

E1(1, 0) are negative if s < d. And there is at least one positive characteristic root, if
s > d. Combining the stability theory, we can obtain the following result.

Theorem 1. Suppose (H1) is satisfied. Then the boundary equilibrium E1(1, 0) of sys-
tem (5) is locally asymptotically stable if s < d and unstable if s > d for all τ > 0.

In the following, we shall apply the comparison method in [6, 22, 23] to obtain that,
E1(1, 0) is globally asymptotically stable for all τ > 0 under the certain conditions.

Theorem 2. Suppose that (H1), s < d and 2a > h are satisfied. Then for any initial
value φ(x, θ) > 0, ψ(x, θ) > 0, θ ∈ [−τ, 0], the corresponding solution (u(x, t), v(x, t))
of system (5) converges uniformly toE1(1, 0) as t→ +∞. Thus, the equilibriumE1(1, 0)
is globally asymptotically stable.

Proof. It is easy to see that all the solutions (u(x, t), v(x, t)) of system (5) are nonnegative
by the maximum principle. And since φ(x, t) > 0, u(x, t) is strictly positive for t > 0. It
is well known that if ω(x, t) satisfies

∂ω

∂t
− d∆ω = ω(a− bω), x ∈ Ω, t > 0,

∂ω

∂µ
= 0, x ∈ ∂Ω, t > 0,

ω(x, 0) > 0 ( 6≡ 0), x ∈ Ω,

where d, a, b > 0, then ω(x, t)→ a/b as t→ +∞ uniformly in x ∈ Ω̄.
By the second equation of system (5), we know that

∂v

∂t
− d2∆v = −dv +

su2(x, t− τ)v(x, t)

u2(x, t− τ) + v2(x, t− τ)
6 (s− d)v.

By the comparison principle of parabolic equations, we obtain that

lim sup
t→+∞

max
x∈[0,lπ]

v(x, t) 6 0, since s− d < 0.

Thus
v(x, t)→ 0 as t→ +∞ uniformly in Ω. (7)
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By the first equation of system (5), we have

∂u

∂t
− d1∆u(x, t) = u(x, t)

(
a− au(x, t)− hu(x, t)v(x, t)

u2(x, t) + v2(x, t)

)
> u

(
a− h

2
− au

)
, x ∈ (0, lπ),

according to uv/(u2 + v2) 6 1/2.
From the maximum principle

lim inf
t→+∞

min
x∈[0,lπ]

u(x, t) > 1− h

2a
, u0 > 0, since 2a > h. (8)

By (7) and (8), we have that

lim
t→+∞

hu(x, t)v(x, t)

u2(x, t) + v2(x, t)
= 0 uniformly in Ω.

Then, for all ε ∈ (0, a), there exists T (ε) > 0 such that

hu(x, t)v(x, t)

u2(x, t) + v2(x, t)
< ε ∀t > T (ε), x ∈ Ω.

On the one hand,

∂u

∂t
− d1∆u(x, t) = u(x, t)

(
a− au(x, t)− hu(x, t)v(x, t)

u2(x, t) + v2(x, t)

)
6 au(x, t)

(
1− u(x, t)

)
,

and
∂u

∂t
− d1∆u(x, t) = u(x, t)

(
a− au(x, t)− hu(x, t)v(x, t)

u2(x, t) + v2(x, t)

)
> u(x, t)

(
a− ε− au(x, t)

)
.

Again from the comparison principle, we can obtain that

lim sup
t→+∞

max
x∈[0,lπ]

u(x, t) 6 1, lim inf
t→+∞

min
x∈[0,lπ]

u(x, t) > 1− ε

a
.

Let ε→ 0, we have u(x, t)→ 1 as t→ +∞ uniformly in Ω. The result is derived.

2.2 Dissipativeness and uniform permanence of the system without delay

In this subsection, we analyze the dynamical behavior of the system. We assume that the
initial value v(x, 0) > 0 for all x ∈ [0, lπ]. The system (5) with τ = 0 is the following

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 1, 132–153



138 W. Zuo, J. Wei

form:

∂u(x, t)

∂t
= d1∆u(x, t) + au(x, t)

(
1− u(x, t)

)
− hu2(x, t)v(x, t)

v2(x, t) + u2(x, t)
,

x ∈ (0, lπ), t > 0,

∂v(x, t)

∂t
= d2∆v(x, t)− dv(x, t) +

su2(x, t)v(x, t)

v2(x, t) + u2(x, t)
,

x ∈ (0, lπ), t > 0,

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0, t > 0,

u(x, 0) = φ(x) > 0 ( 6≡ 0), v(x, 0) = ψ(x) > 0, x ∈ [0, lπ].

(9)

In order to obtain the main result, we first give a lemma.

Lemma 1. Consider the ordinary differential equation

dx

dt
= xf(x), x(t0) = x0 > 0. (10)

Suppose f(x) is continuously differentiable with respect to x,

f(a) = 0 and (x− a)f(x) < 0

for a constant a > 0. Then the solution of (10), x(t), satisfies limt→+∞ x(t) = a.

Note that the system (10) has only two fixed points x ≡ 0 and x ≡ a. Then one can
prove the conclusion by the uniqueness of the solution. So we omit the detailed proof
here.

Theorem 3. Suppose (H1) is satisfied. Then the system (9) is dissipative if s > d.

Proof. Standard maximum principle of parabolic equations shows the solutions of sys-
tem (9) always exist and are nonnegative. And since ψ(x, 0) > 0, v(x, t) is strictly
positive for t > 0.

By the first equation of (9),

∂u

∂t
− d1∆u(x, t) 6 au(x, t)

(
1− u(x, t)

)
.

From the comparison principle we know that lim supt→+∞maxx∈[0,lπ] u(x, t) 6 1.
Then, for all ε > 0, there is T > 0 such that u(x, t) < 1 + ε for all t > T , x ∈ [0, lπ].

By the second equation of (9),

∂v(x, t)

∂t
− d2∆v(x, t) = v(x, t)

(
−d+

su2(x, t)

v2(x, t) + u2(x, t)

)
6 v(x, t)

(
−d+

s(1 + ε)2

(1 + ε)2 + v2(x, t)

)
= v(x, t)

(s− d)(1 + ε)2 − dv2(x, t)

(1 + ε)2 + v2(x, t)
for t > T.
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Consider the corresponding initial value problem

dz

dt
= z(t)

(s− d)(1 + ε)2 − dz2(t)

(1 + ε)2 + z2(t)
, z(T ) = max

[0,lπ]
v(x, T ) > 0.

By Lemma1, we know that limt→+∞ z(t) =
√

(s− d)/d(1 + ε). Again from the com-
parison principle it follows

lim sup
t→+∞

max
x∈[0,lπ]

v(x, t) 6

√
s− d
d

(1 + ε).

Let ε→ 0,

lim sup
t→+∞

max
x∈[0,lπ]

v(x, t) 6

√
s− d
d

.

Hence, system (9) is dissipative.

Theorem 4. Suppose that (H1) is satisfied. Then system (9) is uniformly permanent if
s > d and 2a > h.

Proof. By (8), there exists T > 0 such that minx∈[0,lπ] u(x, t) > u0/2 > 0 for all t > T .
Then, for t > T ,

∂v(x, t)

∂t
− d2∆v(x, t) = v(x, t)

(
−d+

su2(x, t)

u2(x, t) + v2(x, t)

)
> v(x, t)

(
−d+

s(u0

2 )2

(u0

2 )2 + v2(x, t)

)
= v(x, t)

(s− d)u20 − 4dv2(x, t)

u20 + 4v2(x, t)
.

Consider the corresponding initial value problem

dz

dt
= z(t)

(s− d)u20 − 4dz2(t)

u20 + 4z2(t)
, z(T ) = max

[0,lπ]
v(x, T ) > 0.

By virtue of Lemma1, we obtain that limt→+∞ z(t) =
√

(s− d)/(4d)u0. Again from
the maximum principle, we have that

lim inf
t→+∞

min
x∈[0,lπ]

v(x, t) >

√
s− d

4d
u0 > 0. (11)

By (8) and (11), system (9) is uniformly permanent.

2.3 Stability of E(u∗, v∗) and existence of Hopf bifurcation

In this section, under the assumption s > d, we study the stability of the equilibrium
E(u∗, v∗) and the existence of Hopf bifurcation, by analyzing the distribution of the
eigenvalues.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 1, 132–153



140 W. Zuo, J. Wei

Let ũ = u − u∗, ṽ = v − v∗ and drop the tildes for the sake of simplicity. Then
(5) becomes

∂u(x, t)

∂t
= d1∆u(x, t) + a

(
u(x, t) + u∗

)(
1− u(x, t)− u∗

)
− h(u(x, t) + u∗)2(v(x, t) + v∗)

(u(x, t) + u∗)2 + (v(x, t) + v∗)2
,

∂v(x, t)

∂t
= d2∆v(x, t)− d

(
v(x, t) + v∗

)
+

s(u(x, t− τ) + u∗)2(v(x, t) + v∗)

(u(x, t− τ) + u∗)2 + (v(x, t− τ) + v∗)2
,

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0, t > 0,

(12)

and (0, 0) is the constant equilibrium point of (12).
Let

f (1)(u, v) = a(u(x, t) + u∗)(1− u(x, t)− u∗)− h(u(x, t) + u∗)2(v(x, t) + v∗)

(u(x, t) + u∗)2 + (v(x, t) + v∗)2
,

f (2)(u, v, w) = −d(v + v∗) +
s(u+ u∗)2(v + v∗)

(u+ u∗)2 + (w + v∗)2
.

Define f (1)ij (i+ j > 1) and f (2)ijl (i+ j + l > 1) by

f
(1)
ij =

∂i+jf (1)

∂ui∂vj
(0, 0), f

(2)
ijl =

∂i+j+lf (2)

∂ui∂vj∂wl
(0, 0, 0).

By virtue of Taylor expansions, (12) can be rewritten as

∂u(x, t)

∂t
= d1∆u(x, t) +

(
2hd

s2

√
(s− d)d− a

)
u(x, t)− dh

s2
(2d− s)v(x, t)

+
∑
i+j>2

1

i!j!
f
(1)
ij (0, 0)ui(x, t)vj(x, t),

∂v(x, t)

∂t
= d2∆v(x, t) + 2

s− d
s

√
(s− d)du(x, t− τ)− 2d

s
(s− d)v(x, t− τ)

+
∑

i+j+l>2

1

i!j!l!
f
(2)
ijl (0, 0, 0)ui(x, t− τ)vj(x, t)vl(x, t− τ).

(13)

Denote U1(t) = u(·, t), U2(t) = v(·, t) and U = (U1, U2)T. Then (13) can be rewritten
as an abstract differential equation in the phase space C = C([−τ, 0], X),

U̇(t) = D∆U(t) + L(Ut) + F (Ut), (14)
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where D =
(
d1

d2

)
and L : C → X , F : C → X are defined by

L(φ) =

(
( 2dh
s2

√
(s− d)d− a)φ1(0)− dh

s2 (2d− s)φ2(0)

2 s−ds
√

(s− d)dφ1(−τ)− 2d
s (s− d)φ2(−τ)

)
and

F (φ) =

( ∑
i+j>2

1
i!j!f

(1)
ij (0, 0)φi1(0)φj2(0)∑

i+j+l>2
1

i!j!l!f
(2)
ijl (0, 0, 0)φi1(−τ)φj2(0)φl2(−τ)

)
,

respectively, for φ = (φ1, φ2)T ∈ C .
Some computations show that the characteristic equation of the linearization of (14)

is equivalent to the sequence of the transcendental equations

λ2 +

(
(d1 + d2)

n2

l2
− p
)
λ+

d1d2n
4

l4
− d2n

2

l2
p+ e−λτ

(
kλ+ kd1

n2

l2
+ r

)
= 0, (15)

where p = 2hd/s2
√

(s− d)d−a, k = 2d/s(s−d), r = 2d(s− d)/s2(as−h
√

(s− d)d).
By (H2), we obtain k > 0 and r > 0.

If d1 = d2 = 0, then (15) is reduced to

λ2 − pλ+ e−λτ (kλ+ r) = 0. (16)

Obviously, λ = 0 is not the root of (16) since r > 0, and Bogdanov–Takens singularity
does not occur at the positive equilibrium E at the absence of diffusion.

Next we consider the system with diffusion. Equation (15) with τ = 0 is the following
sequence of quadratic equations:

λ2 − Tnλ+Dn = 0, n = 0, 1, 2, . . . , (17)

where

Tn = −(d1 + d2)
n2

l2
+ p− k, Dn = d1d2

n4

l4
− (d2p− d1k)

n2

l2
+ r.

If h ∈ (0, (as2 + 2ds(s − d))/(2d
√

(s− d)d)), then p − k < 0. And hence, from
d2 < d1, it follows that d2p− d1k < (d2 − d1)k 6 0. This and r > 0 imply that

Tn 6 p− k < 0, Dn > 0 ∀n ∈ N0 = {0, 1, 2, . . .}.

Thus, the roots of Eq. (17) have real parts for h ∈ (0, (as2+2ds(s−d))/(2d
√

(s− d)d)).
If h ∈ ((as2 + 2ds(s − d))/(2d

√
(s− d)d),+∞), then p − k > 0. Hence T0 =

p− k > 0. This implies that Eq. (17) has at least a root with positive real part.
And if h = (as2 + 2ds(s− d))/(2d

√
(s− d)d), then p− k = 0. Hence we have

T0 = 0, Tn < 0 ∀n ∈ N = {1, 2, . . .},

Dn = d1d2
n4

l4
+ (d1 − d2)k

n2

l2
+ r > r > 0 ∀n ∈ N0.
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Thus Eq. (17) has a pair of simple purely imaginary roots, and other roots have negative
real parts. Meanwhile, by dT0(p)/(dp)|p=k = 1 > 0, the transversality condition holds.

Summarizing the discussion above, we have the following conclusions.

Lemma 2. Suppose that (H1) and (H2) are satisfied. Then the positive equilibrium
E(u∗, v∗), of system (5) with τ = 0 is asymptotically stable when h ∈ (0, (as2 + 2ds(s−
d))/(2d

√
(s− d)d)), and unstable when h ∈ ((as2+2ds(s−d))/(2d

√
(s− d)d),+∞).

And h = (as2 + 2ds(s − d))/(2d
√

(s− d)d) is a Hopf bifurcation value of system (5)
with τ = 0 and the bifurcating periodic solutions are all spatially homogeneous.

Now we consider the effects of delay τ on the stability of the equilibrium E(u∗, v∗)
of system (5). We confine h ∈ (0, (as2+2ds(s−d))/(2d

√
(s− d)d)), that is, E(u∗, v∗)

is stable when τ = 0. It is well known that iω (ω > 0) is a root of Eq. (15) if and only if
ω satisfies the following equation for some n ∈ N0:

−ω2+

(
(d1+d2)

n2

l2
−p
)

iω+d1d2
n4

l4
− d2n

2

l2
p+e−iωτ

(
kωi+d1

n2

l2
k+r

)
= 0. (18)

Separating the real and imaginary parts of Eq. (18) leads to

− ω2 + d1d2
n4

l4
− d2p

n2

l2
+

(
d1k

n2

l2
+ r

)
cosωτ + kω sinωτ = 0,(

(d1 + d2)
n2

l2
− p
)
ω + kω cosωτ −

(
d1k

n2

l2
+ r

)
sinωτ = 0,

(19)

which implies that

ω4 − Pnω2 +Qn = 0, n = 0, 1, 2, . . . , (20)

where

Pn = −
(
d21 + d22

)n4
l4

+ 2d1p
n2

l2
+ k2 − p2,

Qn= Dn

(
d1d2

n4

l4
− (d2p+ d1k)

n2

l2
− r
)
.

By Q0 = −r2 < 0 and Dn > 0, there exists n0 ∈ {1, 2, . . . } such that

Qn < 0, n ∈ {0, 1, 2, . . . , n0 − 1}, and Qn > 0, n ∈ {n0, n0 + 1, . . . }.

If p ∈ (−∞,−k], then Pn 6 k2 − p2 6 0 for all n ∈ N0.
If p ∈ (−k, k), we assume further,

(H3) −(d21 + d22)(n40/l
4) + 2d1p(n

2
0/l

2) + k2 − p2 < 0.

By (H3), it follows that

Pn 6 −
(
d21 + d22

)n40
l4

+ 2d1p
n20
l2

+ k2 − p2 < 0 ∀n > n0.
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Thus Eq. (15) with n > n0 have no purely imaginary roots.
And Qn < 0 for all n ∈ {0, 1, 2, . . . , n0 − 1}. Thus Eq. (20) has only a positive root

ωn+ =

√
2

2

√√√√
Pn +

√
P 2
n − 4

[(
d1d2

n4

l4
− d2p

n2

l2

)2

−
(
d1k

n2

l2
+ r

)2]
,

where Pn = −(d21 + d22)(n4/l4) + 2d1p(n
2/l2) + k2 − p2.

In addition, by Eq. (19), we have

sinωn+τ =
kω(ω2 − d1d2 n

4

l4 + d2p
n2

l2 ) + ((d1 + d2)n
2

l2 − p)(d1k
n2

l2 + r)ω

k2ω2 + (d1k
n2

l2 + r)2
, F (ωn+),

cosωn+τ =
(ω2 − d1d2 n

4

l4 + d2p
n2

l2 )(d1k
n2

l2 + r)− ((d1 + d2)n
2

l2 − p)kω
2

k2ω2 + (d1k
n2

l2 + r)2
, E(ωn+).

Define

τnj =


1
ωn

+
(arccosE(ωn+) + 2jπ) if F (ωn+) > 0,

1
ωn

+
(2π − arccosE(ωn+) + 2jπ) if F (ωn+) < 0.

Obviously, τn0 = minj∈N0
{τnj }.

Denote
τ̃ = min

n∈{0,1,...,n0−1}
{τn0 }. (21)

Let λ(τ) = α(τ) + iβ(τ) be the roots of Eq. (15) near τ = τnj , n ∈ {0, 1, 2, . . . ,
n0 − 1}, satisfying α(τnj ) = 0, β(τnj ) = ωn+, j = 0, 1, 2, . . . .

Lemma 3. The transversality condition holds, i.e. Re(dλ/dτ |τ=τn
j

) > 0.

Proof. Differentiating the two sides of Eq. (15) with respect to τ , we obtain(
dλ

dτ

)−1
=

(2λ+ (d1 + d2)n
2

l2 − p)e
λτ + k

λ(kλ+ d1k
n2

l2 + r)
− τ

λ
.

By (19), we have

Re

(
dλ

dτ

∣∣∣∣
τ=τn

j

)−1

= Re
(2iωn+ + (d1 + d2)n

2

l2 − p)e
iωn

+τ
n
j + k − τnj (kωn+i + d1k

n2

l2 + r)

iωn+(kωn+i + d1k
n2

l2 + r)

=
−((d1 + d2)n

2

l2 − p)(kω
n
+ cosωn+τ

n
j − (d1k

n2

l2 + r) sinωn+τ
n
j )

(k2(ωn+)2 + (d1k
n2

l2 + r)2)ωn+

+
2ωn+(kωn+ sinωn+τ

n
j + (d1k

n2

l2 + r) cosωn+τ
n
j )− k2ωn+

(k2(ωn+)2 + (d1k
n2

l2 + r)2)ωn+

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 1, 132–153



144 W. Zuo, J. Wei

=
((d1 + d2)n

2

l2 − p)
2ωn+ + 2ωn+((ωn+)2 − d1d2 n

4

l4 + d2p
n2

l2 )− k2ωn+
(k2(ωn+)2 + (d1k

n2

l2 + r)2)ωn+

=

√
∆

k2(ωn+)2 + (d1k
n2

l2 + r)2
> 0,

where ∆ = P 2
n − 4[(d1d2(n4/l4)− d2p(n2/l2))2 − (d1k(n2/l2) + r)2].

These points τnj , j = 0, 1, 2, . . . , n = 0, 1, 2, . . . , n0 − 1, are potential Hopf bifurca-
tion values. But it is possible that τn1

i = τn2
j for some i, j, n1, n2. In this case, ±iωnj are

not a pair of simple eigenvalues of Eq. (15) and the dimension of center manifold at the
equilibrium can be at least as high as two, and we shall not consider Hopf bifurcations at
such points.

Assume τn1
i 6= τn2

j for all i, j ∈ {0, 1, 2, . . . }, n1, n2 ∈ {0, 1, 2, . . . , n0 − 1}.
Applying the theorem proved by Ruan and Wei [24], and combining Lemmas 2 and 3,
we arrive at the following stability results.

Theorem 5. Suppose the conditions (H1) and (H2) hold for p ∈ (−∞,−k] and (H1)–
(H3) hold for p ∈ (−k, k). And τ̃ is given by (21). Then the following results are true
when h ∈ (0, (as2 + 2ds(s− d))/(2d

√
(s− d)d)):

(i) The positive equilibrium E(u∗, v∗) of system (5) is asymptotically stable for τ ∈
[0, τ̃) and unstable for τ ∈ (τ̃ ,+∞).

(ii) τ = τnj , j = 0, 1, 2, . . . , n = 0, 1, 2, . . . , n0 − 1, are Hopf bifurcation values
of system (5). Furthermore, if n = 0, these bifurcating periodic solutions are all
spatially homogeneous, otherwise, these bifurcating periodic solutions are all spa-
tially inhomogeneous.

Remark. The characteristic equations (15) have two pairs of purely imaginary roots and
the transversality condition holds for τ = τk1i = τk2j for some i, j ∈ N0, k1, k2 ∈
{0, 1, 2, . . . , n0 − 1}. Thus a double-Hopf bifurcation occurs at E(u∗, v∗) when τ =
τk1i = τk2j .

3 Direction and stability of the Hopf bifurcations

In this section, we consider the stability, the direction and the period of bifurcating
periodic solutions by using the normal formal theory and the center manifold theorem
of partial functional differential equation presented in [25, 26] and [27]. Without loss
of generality, denote any one of the these critical values τnj , j ∈ {0, 1, 2, . . . }, n ∈
{0, 1, 2, . . . , n0− 1}, by τ∗ at which Eq. (15) has a pair of simply purely imaginary roots
±iωn+, denoted by ±iω.

Let τ = τ∗ + α, α ∈ R, ũ(·, t) = u(·, τ t), ṽ(·, t) = v(·, τ t), Ũ(t) = (ũ(·, t), ṽ(·, t)),
and drop the tildes for simplicity. Then system (14) can be written as

dU(t)

dt
= τD∆U(t) + L(α)(Ut) + f(Ut, α), (22)
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in the space C = C([−1, 0], X), where, for φ = (φ1, φ2) ∈ C ,

L(α)(φ) = (τ∗ + α)

(
( 2dh
s2

√
(s− d)d− a)φ1(0)− dh

s2 (2d− s)φ2(0)

2 s−ds
√

(s− d)dφ1(−1)− 2d
s (s− d)φ2(−1)

)
,

f(φ, α) = (τ∗ + α)

 ∑
i+j>2

1
i!j!f

(1)
ij (0, 0)φi1(0)φj2(0)∑

i+j+l>2
1

i!j!l!f
(2)
ijl (0, 0, 0)φi1(−1)φj2(0)φl2(−1)

 .

(23)

Note that α = τ − τ∗, then α = 0 is a Hopf bifurcation value of (22).
By the Riesz representation theorem, there exists a 2 × 2 matrix function η(θ, α)

(−1 6 θ 6 0) such that

−τDn
2

l2
φ(0) + L(α)(φ) =

0∫
−1

d[η(θ, α)]φ(θ)

for φ ∈ C([−1, 0], R2). In fact, we can choose

η(θ, α) =



(τ∗+α)

(
−d1 n

2

l2 + 2dh
s2

√
(s−d)d− a −dhs2 (2d−s)

0 −d2 n
2

l2

)
, θ = 0,

0, θ ∈ (−1, 0),

(τ∗+α)

(
0 0

−2 s−ds
√

(s−d)d 2d
s (s−d)

)
, θ = −1.

For φ ∈ C1([−1, 0], R2), ψ ∈ C([0, 1], R2), define A1 and A∗1 as

A1

(
φ(θ)

)
=

{dφ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1 dη(θ, 0)φ(θ), θ = 0,

A∗1
(
ψ(s)

)
=

{
−dψ(s)ds , s ∈ (0, 1],∫ 0

−1 dη(θ, 0)ψ(−θ), s = 0.

Then A∗1 is the formal adjoint of A1 [27, 28] under the bilinear pairing

(ψ, φ)0 = ψ(0)φ(0) + τ∗
0∫
−1

ψ(ξ + 1)

(
0 0

2 s−ds
√

(s−d)d − 2d
s (s−d)

)
φ(ξ) dξ. (24)

It can be verified that q(θ) = (1, ξ)Teiωτ
∗θ, θ ∈ [−1, 0] is an eigenvector of A1 cor-

responding to iωτ∗, and q∗(s) = r(1, η)eiωτ
∗s, s ∈ [0, 1], is an eigenvector of A∗1
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corresponding to −iωτ∗, where

ξ =
s2

dh(s− 2d)

(
d1n

2

l2
− 2dh

s2

√
(s− d)d+ a+ iω

)
,

η =
se−iωτ

∗

2(s− d)
√

(s− d)d

(
d1n

2

l2
− 2dh

s2

√
(s− d)d+ a− iω

)
,

r̄ =

{
1 + ξη̄ + τ∗

(
2(s− d)

s

√
(s− d)d− 2d

s
(s− d)ξ

)
η̄e−iωτ

∗
}−1

.

Then P = span{q(θ), q̄(θ)} and P ∗ = span{q∗(s), q∗(s)} are the center subspace of
system, see [25].

In addition, fn , (β1
n, β

2
n), where β1

n =
(
cos nx

l
0

)
, β2

n =
(

0
cos nx

l

)
. Let c · fn =

c1β
1
n + c2β

2
n for c = (c1, c2)T ∈ C([−1, 0], X).

Let 〈·, ·〉 be the complex-valued L2 inner product on Hilbert space XC , defined as

〈U1, U2〉 =
1

lπ

lπ∫
0

u1v̄1 dx+
1

lπ

lπ∫
0

u2v̄2 dx (25)

for U1 = (u1, u2)T, U2 = (v1, v2)T ∈ XC . And 〈β1
0 , β1

0〉 = 1, 〈β1
n, β

1
n〉 = 1/2,

n = 1, 2, . . . ,

〈φ, fn〉 =
(〈
φ, β1

n

〉
,
〈
φ, β2

n

〉)T
, where φ ∈ C

(
[−1, 0], X

)
. (26)

Then the center subspace of linear equation of (22) with α = 0 is given by PCNC , where

PCNC (φ) = Φ
(
Ψ, 〈φ, fn〉

)
· fn, PCNC =

{(
q(θ)z + q̄(θ)z̄

)
· fn, z ∈ C

}
. (27)

Following the algorithms in Hassard [27], the solutions of (22) at α = 0 are as follows:

Ut =
(
q(θ)z(t) + q̄(θ)z̄(t)

)
· fn +W

(
z(t), z̄(t), θ

)
, (28)

where

W (z, z̄) ,W
(
z(t), z̄(t), θ

)
= W20(θ)

z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · . (29)

Moreover, at τ = τ∗, ż = iωτ∗z + g(z, z̄), where

g(z, z̄) = q∗(0)
〈
f(Ut, 0), fn

〉
= g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · . (30)

Notice that
∫ lπ
0

cos3(nx/l) dx = 0, 1/(lπ)
∫ lπ
0

cos4(nx/l) dx = 3/8, n = 1, 2, . . . , and
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combine q∗(0) = r̄(1, η̄) and (23), (25), (26), (28) and (30), we have

g20 =


0, n = 1, 2, . . . ,

τ∗r̄{f (1)20 + f
(1)
02 ξ

2 + 2f
(1)
11 ξ + η̄[(f

(2)
200 + f

(2)
002ξ

2)e−2iωτ
∗

+f
(2)
020ξ

2 + 2(f
(2)
110ξ + f

(2)
011ξ

2)e−iωτ
∗

+ 2f
(2)
101ξe

−2iωτ∗
]}, n = 0,

g11 =


0, n = 1, 2, . . . ,

τ∗r̄{f (1)20 + f
(1)
02 |ξ|2 + 2f

(1)
11 Re ξ + η̄[f

(2)
200 + (f

(2)
020 + f

(2)
002)|ξ|2

+2f
(2)
110 Re(ξeiωτ

∗
) + 2f

(2)
101 Re ξ + 2f

(2)
011|ξ|2 cosωτ∗]}, n = 0,

g02 = g20,

g21

=
τ∗r̄

lπ

{(
f
(1)
03 ξ

2ξ̄ + f
(1)
30 + f

(1)
12

(
ξ2 + 2|ξ|2

)
+ f

(1)
21 (2ξ + ξ̄)

) lπ∫
0

cos4
nx

l
dx

+ 2

lπ∫
0

[
f
(1)
20

(
W

(1)
11 (0)+

1

2
W

(1)
20 (0)

)
+f

(1)
02

(
ξW

(2)
11 (0)+

1

2
ξ̄W

(2)
20 (0)

)]
cos2

nx

l
dx

+ 2

lπ∫
0

[
f
(1)
11

(
W

(2)
11 (0) +

1

2
W

(2)
20 (0) +

1

2
ξ̄W

(1)
20 (0) + ξW

(1)
11 (0)

)]
cos2

nx

l
dx

+ η̄
[(
f
(2)
300 + f

(2)
003ξ

2ξ̄
)
e−iωτ

∗
+ f

(2)
030ξ

2ξ̄ + f
(2)
120

(
2|ξ|2e−iωτ

∗
+ ξ2eiωτ

∗)
+ f

(2)
102e−iωτ

∗(
2|ξ|2 + ξ2

)
+ f

(2)
012ξ

2ξ̄
(
2 + e−2iωτ

∗)
+ f

(2)
021ξ

2ξ̄
(
2e−iωτ

∗
+ eiωτ

∗)
+ f

(2)
201

(
2ξ + ξ̄

)
e−iωτ

∗
+ f

(2)
210

(
2ξ + ξ̄e−2iωτ

∗)
+ f

(2)
111

(
2|ξ|2

(
1 + e−2iωτ

∗)
+ 2ξ2

)] lπ∫
0

cos4
nx

l
dx

+ 2

lπ∫
0

[
f
(2)
110

(
e−iωτ

∗
W

(2)
11 (0) +

1

2
eiωτ

∗
W

(2)
20 (0) +

1

2
ξ̄W

(1)
20 (−1)

)]
cos2

nx

l
dx

+ 2

lπ∫
0

[
f
(2)
101

(
1

2
eiωτ

∗(
W

(2)
20 (−1)+ξ̄W

(1)
20 (−1)

)
+ξe−iωτ

∗
W

(1)
11 (−1)

)]
cos2

nx

l
dx

+ 2

lπ∫
0

[
f
(2)
011

(
ξW

(2)
11 (−1) +

1

2
ξ̄
(
W

(2)
20 (−1) + eiωτ

∗
W

(2)
20 (0)

))]
cos2

nx

l
dx

+ 2

lπ∫
0

[
f
(2)
200

(
e−iωτ

∗
W

(1)
11 (−1) +

1

2
eiωτ

∗
W

(1)
20 (−1)

)]
cos2

nx

l
dx
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+ 2

lπ∫
0

f
(2)
020

(
ξW

(2)
11 (0) +

1

2
ξ̄W

(2)
20 (0)

)
cos2

nx

l
dx

+ 2

lπ∫
0

[
f
(2)
110ξW

(1)
11 (−1) +f

(2)
101e−iωτ

∗
W

(2)
11 (−1)+f

(2)
011ξe

−iωτ∗
W

(2)
11 (0)

]
cos2

nx

l
dx

+ 2

lπ∫
0

[
f
(2)
002

(
ξe−iωτ

∗
W

(2)
11 (−1) +

1

2
ξ̄eiωτ

∗
W

(2)
20 (−1)

)]
cos2

nx

l
dx

}
,

n = 0, 1, 2, . . . . Since W20(θ) and W11(θ) are in g21, we need to compute them. By
Wu [25], W (z, z̄) satisfies

Ẇ = AUW +H(z, z̄), (31)

where

AUW = AUW20(θ)
z2

2
+AUW11(θ)zz̄ +AUW02(θ)

z̄2

2
+ · · · ,

H(z, z̄) = H20
z2

2
+H11zz̄ +H02

z̄2

2
+ · · ·

= X0f(Ut, 0)− Φ
(
Ψ,
〈
X0f(Ut, 0), fn

〉)
· fn.

(32)

Thus, from (31), (32), we can obtain that

W20 =
(
2iωτ∗ −AU

)−1
H20, W11 = −A−1U H11. (33)

From (32) we know that for −1 6 θ < 0,

H(z, z̄) = −
(
q(θ)g20 + q̄(θ)g02

)
cos

nx

l

z2

2
−
(
q(θ)g11 + q̄(θ)g11

)
cos

nx

l
zz̄ + · · · .

Therefore, for −1 6 θ < 0,

H20(θ) =

{
0,

−g20q(θ)−g02q̄(θ),
H11(θ) =

{
0, n = 1, 2, . . . ,

−g11q(θ)−g11q̄(θ), n = 0,

and H(z, z̄)(0) = f(Ut, 0)− Φ(Ψ, 〈f(Ut, 0), fn〉) · fn.

H20(0)

=



τ∗


f
(1)
20 + f

(1)
02 ξ

2 + 2f
(1)
11 ξ

(f
(2)
200 + f

(2)
002ξ

2)e−2iωτ
∗

+ f
(2)
020ξ

2

+2(f
(2)
110ξ + f

(2)
011ξ

2)e−iωτ
∗

+ 2f
(2)
101ξe

−2iωτ∗


−g20q(0)− g02q̄(0), n = 0,

τ∗


f
(1)
20 + f

(1)
02 ξ

2 + 2f
(1)
11 ξ

(f
(2)
200 + f

(2)
002ξ

2)e−2iωτ
∗

+ f
(2)
020ξ

2

+2(f
(2)
110ξ + f

(2)
011ξ

2)e−iωτ
∗

+ 2f
(2)
101ξe

−2iωτ∗

 cos2 nxl , n = 1, 2, . . . ,
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H11(0)

=



τ∗


f
(1)
20 + f

(1)
02 |ξ|2 + 2f

(1)
11 Re ξ

f
(2)
200 + (f

(2)
020 + f

(2)
002)|ξ|2 + 2f

(2)
110 Re(ξeiωτ

∗
)

+2f
(2)
101 Re ξ + 2f

(2)
011|ξ|2 cosωτ∗


−g11q(0)− g11q̄(0), n = 0,

τ∗


f
(1)
20 + f

(1)
02 |ξ|2 + 2f

(1)
11 Re ξ

f
(2)
200 + (f

(2)
020 + f

(2)
002)|ξ|2 + 2f

(2)
110 Re(ξeiωτ

∗
)

+2f
(2)
101 Re ξ + 2f

(2)
011|ξ|2 cosωτ∗

 cos2 nxl , n = 1, 2, . . . .

By the definition of AU and q(θ) = q(0)eiωτ
∗θ, −1 6 θ 6 0, we have

W20(θ) =

(
ig20
ωτ∗

q(θ) +
ig02

3ωτ∗
q(θ)

)
· fn + E1e2iωτ

∗θ,

W11(θ) =

(
−ig11q(θ)

ωτ∗
+

iq(θ)g11
ωτ∗

)
· fn + E2.

(34)

By AU again and combining (33) and (34), it follows that

E1 = E′1


f
(1)
20 + f

(1)
02 ξ

2 + 2f
(1)
11 ξ

(f
(2)
200 + f

(2)
002ξ

2)e−2iωτ
∗

+ f
(2)
020ξ

2

+2(f
(2)
110ξ + f

(2)
011ξ

2)e−iωτ
∗

+ 2f
(2)
101ξe

−2iωτ∗

 cos2
nx

l
,

where

E′1 =

(
2iω + d1n

2

l2 −
2dh
s2

√
(s− d)d+ a dh

s2 (2d− s)

− 2(s−d)
s

√
(s− d)de−2iωτ

∗
2iω + d2n

2

l2 + 2d
s (s− d)e−2iωτ

∗

)−1
.

Similar to the above, we can obtain that

E2 = E′2


f
(1)
20 + f

(1)
02 |ξ|2 + 2f

(1)
11 Re ξ

f
(2)
200 + (f

(2)
020 + f

(2)
002)|ξ|2 + 2f

(2)
110 Re(ξeiωτ

∗
)

+2f
(2)
101 Re ξ + 2f

(2)
011|ξ|2 cosωτ∗

 cos2
nx

l
,

where

E′2 =

(
d1n

2

l2 −
2dh
s2

√
(s− d)d+ a dh

s2 (2d− s)

− 2(s−d)
s

√
(s− d)d d2n

2

l2 + 2d
s (s− d)

)−1
.

So far, g21 can be expressed by the parameters of system (5). Thus, we can compute the
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following quantities:

c1(0) =
i

2ωτ∗

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+

1

2
g21,

µ2 = − Re(c1(0))

Re(λ′(τ∗))
, β2 = 2 Re(c1(0)),

T2 = − 1

ωτ∗
(

Im
(
c1(0)

)
+ µ2 Im

(
λ′(τ∗)

))
.

Combining Lemma3, we have the following results.

Theorem 6. (i) µ2 determines the direction of the Hopf bifurcation: if µ2 > 0 (< 0), the
direction of the Hopf bifurcation is forward (backward), that is, the bifurcating periodic
solutions exist for τ > τ∗ (τ < τ∗);

(ii) β2 determines the stability of the bifurcating periodic solutions on the center
manifold: if β2 < 0 (> 0), the bifurcating periodic solutions are orbitally asymptotically
stable (unstable);

(iii) T2 determines the period of the bifurcating periodic solutions: the period in-
creases (decreases), if T2 > 0 (< 0).

4 Numerical simulations

In this section, some numerical simulations for a special case of system (5) are given to
support our analytical results obtained in Sections 2 and 3. As an example, we consider
system (5) with d1 = 1, d2 = 0.5, a = 0.5, s = 0.4, d = 0.3, h = 0.8, l = 2, that is,

∂u(x, t)

∂t
= ∆u(x, t) + 0.5u(x, t)

(
1− u(x, t)

)
− 0.8u2(x, t)v(x, t)

v2(x, t) + u2(x, t)
,

x ∈ (0, 2π), t > 0,

∂v(x, t)

∂t
= 0.5∆v(x, t)− 0.3v(x, t) +

0.4u2(x, t− τ)v(x, t)

v2(x, t− τ) + u2(x, t− τ)
,

x ∈ (0, 2π), t > 0,

ux(0, t) = ux(2π, t) = vx(0, t) = vx(2π, t) = 0, t > 0,

u(x, t) = 0.3 + 0.3 cosx, v(x, t) = 0.2− 0.2 cosx,

(x, t) ∈ [0, 2π]× [−τ, 0].

(35)

Obviously, s > d and h < min(as/
√

(s− d)d, (as2 + 2ds(s − d))/(2d
√

(s− d)d)).
Then system (35) has a unique positive constant equilibrium E(0.3072, 0.1774). In ad-
dition, p = 0.0196 ∈ (−k, k) = (−0.15, 0.15). And by the formulas as derived in
Section 3, we can obtain that τ̃ = minn∈{0,1,...,n0}{τn0 } = τ00 = 4.1405, C1(0) ≈
−17.0709 − 9.1476i. By Theorem 5, we obtain that the positive equilibrium
E(0.3072, 0.1774) is asymptotically stable for τ ∈ [0, 4.1405) as illustrated in Fig. 1.
When τ crosses through the critical value 4.1405, the equilibrium E(0.3072, 0.1774)
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Fig. 1. The positive equilibrium E(0.3072, 0.1774) is asymptotically stable, where τ = 3.8 < τ̃ = 4.1405.

Fig. 2. The periodic solutions bifurcating from the equilibrium are stable, where τ = 5 > τ̃ = 4.1405.

loses its stability and a family of homogeneous periodic solutions bifurcate from the
positive constant steady state. The direction of Hopf bifurcations is forward and the
periodic solutions are stable since µ2 = −Re(C1(0))/Re(λ′(τ̃)) ≈ 657.967 > 0,
β2 = 2 Re(C1(0)) ≈ −34.1419 < 0, which are depicted in Fig. 2. And the period
increases with the increase of delay since T2 ≈ 14.6813 > 0.

5 Conclusion

The dynamics of the diffusive Holling-III ratio-dependent predator-prey system with de-
lay effect are investigated under the Neumann boundary conditions. The global stability
and instability of the boundary equilibrium are obtained by the maximum principle and
comparison principle of the parabolic equations. It shows that, the diffusion and delay
have no effects on the stability of the boundary equilibrium and have effect on the positive
coexistence. In particular, the system without delay is dissipative and uniformly persistent.
We hope that our work could be instructive to study the population.
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