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Abstract. This paper investigates the asymptotic behavior for the tail probability of the randomly
weighted sums

∑n
k=1 θkXk and their maximum, where the random variables Xk and the random

weights θk follow a certain dependence structure proposed by Asimit and Badescu [1] and Li et
al. [2]. The obtained results can be used to obtain asymptotic formulas for ruin probability in the
insurance risk models with discounted factors.
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1 Introduction

Let (X1, θ1), . . . , (Xn, θn) be n mutually independent random vectors, where X1, . . . ,
Xn are real-valued random variables (r.v.s) with distribution functions (d.f.s) F1, . . . , Fn,
respectively, and the random weights θ1, . . . , θn are nonnegative and nondegenerate
at zero r.v.s with d.f.s G1, . . . , Gn, respectively. For each k = 1, . . . , n, Xk and θk
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can be dependent. For n > 1, denote the randomly weighted sum and its maximum,
respectively, by

Sθn =

n∑
k=1

θkXk and Mθ
n = max

16k6n
Sθk . (1)

Such randomly weighted sums and their maximums are often encountered in actuarial
and financial situations. For instance, in a discrete-time risk model proposed by Nyrhinen
in [3] and in [4], the real-valued r.v. Xk (k = 1, . . . , n) can be interpreted as the net loss
of an insurance company (i.e. the total claim amount minus the total premium income)
during period k, and the random weight θk (k = 1, . . . , n) can be regarded as the
stochastic discount factor from time k to time 0. In this situation, the sum Sθn is the
present value of all net losses from time 0 to time n and the maximum Mθ

n is the maximal
discounted net loss of an insurance company during the first n periods.

In the present paper, we are interested in the asymptotic behavior (as x → ∞) of tail
probabilities P(Sθn > x) and P(Mθ

n > x), where the last probability can be understood
as the probability of ruin during the first n periods with an initial capital reserve x.

In this paper, we use limit relationships only for x tending to infinity. For two positive
functions u(x) and v(x): we write u(x) ∼ v(x) if limu(x)/v(x) = 1 and write u(x) =
o(v(x)) if limu(x)/v(x) = 0. In addition, we denote by x+ = max{x, 0} the positive
part of a real number x. For any distribution function V , we denote its tail by V (x) =
1− V (x) for all x. The indicator function of an event A we denote by 1A.

Before discussing the asymptotic properties of probabilities P(Sθn > x) and
P(Mθ

n > x) we recall the definitions of some classes of heavy-tailed d.f.s. A d.f. V on
[0,∞) is called subexponential if V ∗2(x) ∼ 2V (x), where V ∗2 denotes the convolution
of V with itself. The class of all subexponential d.f.s, as usually, will be denoted by S .
A d.f. V on [0,∞) is said to belong to the class L of long-tailed d.f.s if for every
positive y, we have V (x + y) ∼ V (x). A d.f. V supported on [0,∞) belongs to the
class D (has dominatingly varying tail) if lim supF (xy)/F (x) < ∞ for every fixed
y ∈ (0, 1). If a d.f. V is supported on R, then V belongs to some of classes S , L , D if the
d.f. V (x)1{x>0} belongs to the corresponding class. It is known (see, e.g., [5, Chap. 1.4])
that

L ∩D ⊂ S ⊂ L .

In the last years, a number of papers considering asymptotic behavior of P(Sθn > x)
and P(Mθ

n > x) have been contributed to the case where X1, . . . , Xn are independent
identically distributed (i.i.d.) r.v.s, independent of θ1, . . . , θn, while there is no indepen-
dence assumption and distribution identity assumption on θ1, . . . , θn. For example, Tang
and Tsitsiashvili [6] considered the case whereX1, . . . , Xn have common subexponential
d.f. and the random weights are two-sided bounded, i.e. P(a 6 θk 6 b) = 1 for all
k = 1, . . . , n, and some 0 < a 6 b <∞. In [6], it was proved that for each n > 1

P(Mθ
n > x) ∼ P(Sθn > x) ∼

n∑
k=1

P(θkXk > x). (2)
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Similar results can be found in [7–10], among others. In particular, Chen et al. [9]
obtained general result by considering nonidentically distributed r.v.s Xk having long-
tailed d.f.s. Theorem 2.1 of [9] states that

P(Mθ
n > x) ∼ P(Sθn > x) ∼ P

(
n∑
k=1

θkX
+
k > x

)
(3)

if the following conditions are satisfied: r.v.s X1, . . . , Xn are independent; Fk is long-
tailed for each k = 1, . . . , n; θ1, . . . , θn are such that P(a 6 θk 6 b) = 1 for k =
1, . . . , n and some 0 < a 6 b < ∞; the sequences {X1, . . . Xn}, {θ1, . . . , θn} are
mutually independent. In addition, Theorem 2.2 of [9] shows that asymptotic relation (3)
still holds for bounded from above random weights, assuming some restriction on the
dependence structure of {θ1, . . . , θn}.

In the present paper, motivated by the results in [9], we study asymptotic behavior
of r.v.s in the case of nonidentically distributed r.v.s X1, . . . , Xn. We also suppose that
random vectors (X1, θ1), . . . , (Xn, θn) are mutually independent, whereas some depen-
dence structure exists between Xk and θk for each k = 1, . . . , n. For each pair (Xk, θk),
we use the dependence structure which was introduced by Asimit and Badescu [1], i.e.,
for each fixed k = 1, . . . , n, there exists a measurable function hk : [0,∞) → (0,∞)
such that

P(Xk > x | θk = t) ∼ F k(x)hk(t) (4)

uniformly for t > 0, where the uniformity is understood as

lim
x→∞

sup
t>0

∣∣∣∣P(Xk > x | θk = t)

F k(x)hk(t)
− 1

∣∣∣∣ = 0.

When t is not a possible value of some θk, the conditional probability in (4) is understood
as unconditional and therefore hk(t) = 1 for such t.

Some examples of the r.v.s satisfying dependence condition (4) can be found in [1]
and [2]. These examples are constructed using the Ali–Mikhail–Haq, the Farlie–Gumbel–
Morgenstern and the Frank copulas.

Note that Yang et al. [11] obtained relation (2) in the case of dependence (4), when
X1, . . . , Xn are i.i.d. real-valued r.v.s with common distribution F ∈ S , and θ1, . . . , θn
are bounded from above, i.e. P(0 6 θk 6 b) = 1 for all k = 1, . . . , n and some
positive constant b. In this paper, we consider a more general case where F1, . . . , Fn can
be different and θ1, . . . , θn can be unbounded. We establish relation (3) as in [9] under
dependence relation (4) and the assumption that F1, . . . , Fn are in L . In the case when
F1, . . . , Fn belong to the class L ∩D , we obtain relation (2).

The following statement is the main result of the paper. We remark only that in this
main assertion, we suppose θ1, . . . , θn to be strictly positive.

Theorem 1. Suppose that (X1, θ1), . . . , (Xn, θn) are mutually independent random vec-
tors, where X1, . . . , Xn are real-valued r.v.s with d.f.s F1, . . . , Fn, respectively, and
θ1, . . . , θn are positive r.v.s with d.f.s G1, . . . , Gn, respectively. Assume that, for each
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fixed k = 1, . . . , n, the pair (Xk, θk) satisfies condition (4). If, for each k = 1, . . . , n,
Fk ∈ L (respectively, Fk ∈ L ∩ D) and Gk(x) = o(F k(ckx)) for some positive ck,
then relation (3) (respectively, (2)) holds.

In the insurance context, researchers are often interested in asymptotic behavior of
ruin probability P(Mθ

n > x). According to relation (3), in order to obtain asymptotics
for this probability, it suffices to find asymptotics of the tail P(

∑n
k=1 θkX

+
k > x). The-

orem 1 states that relation (3) holds in the case Fk ∈ L , k = 1, . . . , n, and dependence
structure (4). If, in addition, Fk ∈ L ∩ D , k = 1, . . . , n, then due to relation (2) we
can obtain asymptotic formula of ruin probability from the asymptotics of discounted net
losses P(θkXk > x), k = 1, . . . , n. In both cases, the required asymptotics depend on
d.f.s Fk, Gk, k = 1, . . . , n, and on functions hk, k = 1, . . . , n, given in (4).

2 Proof of Theorem 1

The following lemmas will be used in the proof of Theorem 1. The first lemma is due to
Lemma 2.1 in [11].

Lemma 1. Let ξ be a real-valued r.v. with distribution Fξ, and let η be a nonnegative and
nondegenerate at zero r.v. with distribution Fη . Assume that there exists a measurable
function h : [0,∞)→ (0,∞) such that

P(ξ > x | η = t) ∼ F ξ(x)h(t) (5)

uniformly for all t ∈ [0,∞). If Fξ ∈ L and F η(x) = o(F ξ(cx)) for some c > 0, then
the d.f. Fξη of the product ξη belongs to L .

The second lemma shows that similar statement holds for the class of d.f.s with
dominatingly varying tails.

Lemma 2. Let ξ be a real-valued r.v. and η be a nonnegative and nondegenerate at zero
r.v., such that relation (5) holds. If Fξ ∈ D and F η(x) = o(F ξ(x)), then Fξη ∈ D .

Proof. It suffices to prove that

lim inf
F ξη(2x)

F ξη(x)
> 0. (6)

According to (5) and definition of the class D , there exist c1 > 0 and D > 2 such that

1

2
F ξ(z)h(t) 6 P(ξ > z | η = t) 6

3

2
F ξ(z)h(t) and F ξ(2z) > c1F ξ(z)

for all z > D/2 and t > 0.
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For x sufficiently large, the bounds above imply that

F ξη(2x) =

∫
(0,∞)

P

(
ξ >

2x

y

∣∣∣ η = y

)
dFη(y)

>
1

2

∫
(0,2x/D]

P

(
ξ >

2x

y

)
h(y) dFη(y)

>
c1
2

∫
(0,2x/D]

P

(
ξ >

x

y

)
h(y) dFη(y)

>
c1
3

∫
(0,2x/D]

P

(
ξ >

x

y

∣∣∣ η = y

)
dFη(y)

=
c1
3

(
F ξη(x)−

∫
(2x/D,∞)

P

(
ξ >

x

y

∣∣∣ η = y

)
dFη(y)

)

>
c1
3

(
F ξη(x)− F η

(
2x

D

))
.

Therefore,

lim inf
F ξη(2x)

F ξη(x)
>
c1
3

(
1− lim sup

F η(2x/D)

F ξη(x)

)
.

Hence, (6) will follow if we show that

lim sup
F η(2x/D)

F ξη(x)
= 0. (7)

The last relation can be proved in the same manner as relation (2.8) in [11]. Namely,
if η is bounded (and nondegenerate at zero according to conditions of the lemma), then
there exists c2 > 0 such that E

(
h(η)1{η>c2}

)
is positive and thus by (5)

lim sup
F η(2x/D)

F ξη(x)
= lim sup

F η(2x/D)∫
(0,∞)

P(ξ > x/y | η = y)dFη(y)

6 lim sup
F η(2x/D)∫

[c2,∞)
P(ξ > x/c2 | η = y)dFη(y)

= lim sup
F η(2x/D)

F ξ(x/c2)
∫
[c2,∞)

h(y)dFη(y)
= 0.
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If η is unbounded, then F η(x) > 0 for all x, and assumption (5) together with condition
Fη(x) = o(Fξ(x)) of the lemma imply

lim sup
F η(x)

F ξη(xD/2)
6 lim sup

F η(x)∫
[D/2,∞)

P(ξ > x | η = y)dFη(y)

=
1

E(h(η)1{η>D/2})
lim sup

F η(x)

F ξ(x)
= 0

for every fixed positive D. Hence, the estimate (7) holds in both cases and the lemma is
proved.

The following statement is due to [12] and shows that the class L ∩D is closed under
convolution of different d.f.s and has the max-sum equivalence property.

Lemma 3. (See [12, Thm. 2.1].) If d.f.s V1 ∈ L ∩D , V2 ∈ L ∩D , then V1∗V2 ∈ L ∩D
and V1 ∗ V2(x) ∼ V 1(x) + V 2(x).

The next lemma follows from Theorem 2.1 in [9].

Lemma 4. Assume that Y1, Y2, . . . are independent real-valued r.v.s such that d.f. of Yk
is long-tailed for each k = 1, 2, . . . . Then, for each n = 1, 2, . . . , it holds

P

(
n∑
k=1

Yk > x

)
∼ P

(
n∑
k=1

Y +
k > x

)
. (8)

Proof of Theorem 1. First, consider the case where Fk ∈ L for all k = 1, . . . , n. Since
Sθn 6Mθ

n 6
∑n
k=1 θkX

+
k , it suffices to prove

P

(
n∑
k=1

θkXk > x

)
∼ P

(
n∑
k=1

θkX
+
k > x

)
. (9)

Relation (9) follows from Lemma 4, noting that (θkXk)
+ = θkX

+
k and that d.f. of θkXk

belongs to L by Lemma 1 for each k = 1, . . . , n.
In the case Fk ∈ L ∩D, the result follows immediately from the obtained asymptotic

relations and Lemmas 1–3. Indeed, by Lemma 1 and Lemma 2, for each k, r.v. θkX+
k

belongs to L ∩ D . Since vectors (X1, θ1), . . . , (Xn, θn) are independent, Lemma 3
implies that

P

(
n∑
k=1

θkX
+
k > x

)
∼

n∑
k=1

P
(
θkX

+
k > x

)
,

where P(θkX
+
k > x) = P(θkXk > x) for x > 0. This and obtained asymptotic

relation (3) proves (2) and, hence, the theorem.
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