A note on the max-sum equivalence of randomly weighted sums of heavy-tailed random variables*

Yang Yang^a, Kaiyong Wang^b, Remigijus Leipus^{c,d}, Jonas Šiaulys^{d,1}

^aSchool of Economics and Management, Southeast University Nanjing, 210096, China yyangmath@gmail.com

^bDepartment of Mathematics, Southeast University Nanjing, 210096, China beewky@163.com

^cInstitute of Mathematics and Informatics, Vilnius University Akademijos str. 4, LT-08663 Vilnius, Lithuania remigijus.leipus@mif.vu.lt

^dFaculty of Mathematics and Informatics, Vilnius University Naugarduko str. 24, LT-03225 Vilnius, Lithuania jonas.siaulys@mif.vu.lt

Received: 12 March 2013 / Revised: 19 June 2013 / Published online: 25 September 2013

Abstract. This paper investigates the asymptotic behavior for the tail probability of the randomly weighted sums $\sum_{k=1}^{n} \theta_k X_k$ and their maximum, where the random variables X_k and the random weights θ_k follow a certain dependence structure proposed by Asimit and Badescu [1] and Li et al. [2]. The obtained results can be used to obtain asymptotic formulas for ruin probability in the insurance risk models with discounted factors.

Keywords: long-tailed distribution, randomly weighted sum, max-sum equivalence.

1 Introduction

Let $(X_1, \theta_1), \ldots, (X_n, \theta_n)$ be *n* mutually independent random vectors, where X_1, \ldots, X_n are real-valued random variables (r.v.s) with distribution functions (d.f.s) F_1, \ldots, F_n , respectively, and the random weights $\theta_1, \ldots, \theta_n$ are nonnegative and nondegenerate at zero r.v.s with d.f.s G_1, \ldots, G_n , respectively. For each $k = 1, \ldots, n$, X_k and θ_k

© Vilnius University, 2013

^{*}Research supported by National Natural Science Foundation of China (Nos. 11001052, 71171046), Natural Science Fundation of Jiangsu Province of China (Nos. BK2010480, BK2012165, BK20131339), Qing Lan Project and a grant (No. MIP-13079) from the Research Council of Lithuania.

¹Corresponding author.

can be dependent. For $n \ge 1$, denote the randomly weighted sum and its maximum, respectively, by

$$S_n^{\theta} = \sum_{k=1}^n \theta_k X_k \quad \text{and} \quad M_n^{\theta} = \max_{1 \le k \le n} S_k^{\theta}.$$
(1)

Such randomly weighted sums and their maximums are often encountered in actuarial and financial situations. For instance, in a discrete-time risk model proposed by Nyrhinen in [3] and in [4], the real-valued r.v. X_k (k = 1, ..., n) can be interpreted as the net loss of an insurance company (i.e. the total claim amount minus the total premium income) during period k, and the random weight θ_k (k = 1, ..., n) can be regarded as the stochastic discount factor from time k to time 0. In this situation, the sum S_n^{θ} is the present value of all net losses from time 0 to time n and the maximum M_n^{θ} is the maximal discounted net loss of an insurance company during the first n periods.

In the present paper, we are interested in the asymptotic behavior (as $x \to \infty$) of tail probabilities $\mathbf{P}(S_n^{\theta} > x)$ and $\mathbf{P}(M_n^{\theta} > x)$, where the last probability can be understood as the probability of ruin during the first *n* periods with an initial capital reserve *x*.

In this paper, we use limit relationships only for x tending to infinity. For two positive functions u(x) and v(x): we write $u(x) \sim v(x)$ if $\lim u(x)/v(x) = 1$ and write u(x) = o(v(x)) if $\lim u(x)/v(x) = 0$. In addition, we denote by $x^+ = \max\{x, 0\}$ the positive part of a real number x. For any distribution function V, we denote its tail by $\overline{V}(x) = 1 - V(x)$ for all x. The indicator function of an event A we denote by $\mathbf{1}_A$.

Before discussing the asymptotic properties of probabilities $\mathbf{P}(S_n^{\theta} > x)$ and $\mathbf{P}(M_n^{\theta} > x)$ we recall the definitions of some classes of heavy-tailed d.f.s. A d.f. V on $[0,\infty)$ is called subexponential if $\overline{V^{*2}}(x) \sim 2\overline{V}(x)$, where V^{*2} denotes the convolution of V with itself. The class of all subexponential d.f.s, as usually, will be denoted by \mathscr{S} . A d.f. V on $[0,\infty)$ is said to belong to the class \mathscr{L} of long-tailed d.f.s if for every positive y, we have $\overline{V}(x+y) \sim \overline{V}(x)$. A d.f. V supported on $[0,\infty)$ belongs to the class \mathscr{D} (has dominatingly varying tail) if $\limsup \overline{F}(xy)/\overline{F}(x) < \infty$ for every fixed $y \in (0,1)$. If a d.f. V is supported on \mathbb{R} , then V belongs to some of classes \mathscr{S} , \mathscr{L} , \mathscr{D} if the d.f. $V(x)\mathbf{1}_{\{x \ge 0\}}$ belongs to the corresponding class. It is known (see, e.g., [5, Chap. 1.4]) that

$$\mathcal{L} \cap \mathcal{D} \subset \mathcal{S} \subset \mathcal{L}.$$

In the last years, a number of papers considering asymptotic behavior of $\mathbf{P}(S_n^{\theta} > x)$ and $\mathbf{P}(M_n^{\theta} > x)$ have been contributed to the case where X_1, \ldots, X_n are independent identically distributed (i.i.d.) r.v.s, independent of $\theta_1, \ldots, \theta_n$, while there is no independence assumption and distribution identity assumption on $\theta_1, \ldots, \theta_n$. For example, Tang and Tsitsiashvili [6] considered the case where X_1, \ldots, X_n have common subexponential d.f. and the random weights are two-sided bounded, i.e. $\mathbf{P}(a \leq \theta_k \leq b) = 1$ for all $k = 1, \ldots, n$, and some $0 < a \leq b < \infty$. In [6], it was proved that for each $n \geq 1$

$$\mathbf{P}(M_n^{\theta} > x) \sim \mathbf{P}(S_n^{\theta} > x) \sim \sum_{k=1}^n \mathbf{P}(\theta_k X_k > x).$$
(2)

www.mii.lt/NA

Similar results can be found in [7–10], among others. In particular, Chen et al. [9] obtained general result by considering nonidentically distributed r.v.s X_k having long-tailed d.f.s. Theorem 2.1 of [9] states that

$$\mathbf{P}(M_n^{\theta} > x) \sim \mathbf{P}(S_n^{\theta} > x) \sim \mathbf{P}\left(\sum_{k=1}^n \theta_k X_k^+ > x\right)$$
(3)

if the following conditions are satisfied: r.v.s X_1, \ldots, X_n are independent; F_k is longtailed for each $k = 1, \ldots, n$; $\theta_1, \ldots, \theta_n$ are such that $\mathbf{P}(a \leq \theta_k \leq b) = 1$ for $k = 1, \ldots, n$ and some $0 < a \leq b < \infty$; the sequences $\{X_1, \ldots, X_n\}$, $\{\theta_1, \ldots, \theta_n\}$ are mutually independent. In addition, Theorem 2.2 of [9] shows that asymptotic relation (3) still holds for bounded from above random weights, assuming some restriction on the dependence structure of $\{\theta_1, \ldots, \theta_n\}$.

In the present paper, motivated by the results in [9], we study asymptotic behavior of r.v.s in the case of nonidentically distributed r.v.s X_1, \ldots, X_n . We also suppose that random vectors $(X_1, \theta_1), \ldots, (X_n, \theta_n)$ are mutually independent, whereas some dependence structure exists between X_k and θ_k for each $k = 1, \ldots, n$. For each pair (X_k, θ_k) , we use the dependence structure which was introduced by Asimit and Badescu [1], i.e., for each fixed $k = 1, \ldots, n$, there exists a measurable function $h_k : [0, \infty) \to (0, \infty)$ such that

$$\mathbf{P}(X_k > x \mid \theta_k = t) \sim \overline{F}_k(x)h_k(t) \tag{4}$$

uniformly for $t \ge 0$, where the uniformity is understood as

$$\lim_{x \to \infty} \sup_{t \ge 0} \left| \frac{\mathbf{P}(X_k > x \mid \theta_k = t)}{\overline{F}_k(x)h_k(t)} - 1 \right| = 0.$$

When t is not a possible value of some θ_k , the conditional probability in (4) is understood as unconditional and therefore $h_k(t) = 1$ for such t.

Some examples of the r.v.s satisfying dependence condition (4) can be found in [1] and [2]. These examples are constructed using the Ali–Mikhail–Haq, the Farlie–Gumbel–Morgenstern and the Frank copulas.

Note that Yang et al. [11] obtained relation (2) in the case of dependence (4), when X_1, \ldots, X_n are i.i.d. real-valued r.v.s with common distribution $F \in \mathscr{S}$, and $\theta_1, \ldots, \theta_n$ are bounded from above, i.e. $\mathbf{P}(0 \leq \theta_k \leq b) = 1$ for all $k = 1, \ldots, n$ and some positive constant b. In this paper, we consider a more general case where F_1, \ldots, F_n can be different and $\theta_1, \ldots, \theta_n$ can be unbounded. We establish relation (3) as in [9] under dependence relation (4) and the assumption that F_1, \ldots, F_n are in \mathscr{L} . In the case when F_1, \ldots, F_n belong to the class $\mathscr{L} \cap \mathscr{D}$, we obtain relation (2).

The following statement is the main result of the paper. We remark only that in this main assertion, we suppose $\theta_1, \ldots, \theta_n$ to be strictly positive.

Theorem 1. Suppose that $(X_1, \theta_1), \ldots, (X_n, \theta_n)$ are mutually independent random vectors, where X_1, \ldots, X_n are real-valued r.v.s with d.f.s F_1, \ldots, F_n , respectively, and $\theta_1, \ldots, \theta_n$ are positive r.v.s with d.f.s G_1, \ldots, G_n , respectively. Assume that, for each

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 4, 519-525

fixed k = 1, ..., n, the pair (X_k, θ_k) satisfies condition (4). If, for each k = 1, ..., n, $F_k \in \mathscr{L}$ (respectively, $F_k \in \mathscr{L} \cap \mathscr{D}$) and $\overline{G}_k(x) = o(\overline{F}_k(c_k x))$ for some positive c_k , then relation (3) (respectively, (2)) holds.

In the insurance context, researchers are often interested in asymptotic behavior of ruin probability $\mathbf{P}(M_n^{\theta} > x)$. According to relation (3), in order to obtain asymptotics for this probability, it suffices to find asymptotics of the tail $\mathbf{P}(\sum_{k=1}^n \theta_k X_k^+ > x)$. Theorem 1 states that relation (3) holds in the case $F_k \in \mathscr{L}$, $k = 1, \ldots, n$, and dependence structure (4). If, in addition, $F_k \in \mathscr{L} \cap \mathscr{D}$, $k = 1, \ldots, n$, then due to relation (2) we can obtain asymptotic formula of ruin probability from the asymptotics of discounted net losses $\mathbf{P}(\theta_k X_k > x)$, $k = 1, \ldots, n$. In both cases, the required asymptotics depend on d.f.s $F_k, G_k, k = 1, \ldots, n$, and on functions $h_k, k = 1, \ldots, n$, given in (4).

2 Proof of Theorem 1

The following lemmas will be used in the proof of Theorem 1. The first lemma is due to Lemma 2.1 in [11].

Lemma 1. Let ξ be a real-valued r.v. with distribution F_{ξ} , and let η be a nonnegative and nondegenerate at zero r.v. with distribution F_{η} . Assume that there exists a measurable function $h : [0, \infty) \to (0, \infty)$ such that

$$\mathbf{P}(\xi > x \mid \eta = t) \sim \overline{F}_{\xi}(x)h(t) \tag{5}$$

uniformly for all $t \in [0,\infty)$. If $F_{\xi} \in \mathscr{L}$ and $\overline{F}_{\eta}(x) = o(\overline{F}_{\xi}(cx))$ for some c > 0, then the d.f. $F_{\xi\eta}$ of the product $\xi\eta$ belongs to \mathscr{L} .

The second lemma shows that similar statement holds for the class of d.f.s with dominatingly varying tails.

Lemma 2. Let ξ be a real-valued r.v. and η be a nonnegative and nondegenerate at zero r.v., such that relation (5) holds. If $F_{\xi} \in \mathcal{D}$ and $\overline{F}_{\eta}(x) = o(\overline{F}_{\xi}(x))$, then $F_{\xi\eta} \in \mathcal{D}$.

Proof. It suffices to prove that

$$\liminf \frac{\overline{F}_{\xi\eta}(2x)}{\overline{F}_{\xi\eta}(x)} > 0.$$
(6)

According to (5) and definition of the class \mathcal{D} , there exist $c_1 > 0$ and $D \ge 2$ such that

$$\frac{1}{2}\overline{F}_{\xi}(z)h(t) \leqslant \mathbf{P}(\xi > z \mid \eta = t) \leqslant \frac{3}{2}\overline{F}_{\xi}(z)h(t) \quad \text{and} \quad \overline{F}_{\xi}(2z) \geqslant c_1\overline{F}_{\xi}(z)h(t) \leq c_1\overline{F}_{\xi}(z)h(t) + c_1\overline{F}_{\xi}(z)h(t) = c_1\overline{F}_{\xi}(z)h($$

for all $z \ge D/2$ and $t \ge 0$.

www.mii.lt/NA

For x sufficiently large, the bounds above imply that

$$\begin{aligned} \overline{F}_{\xi\eta}(2x) &= \int\limits_{(0,\infty)} \mathbf{P}\left(\xi > \frac{2x}{y} \mid \eta = y\right) \mathrm{d}F_{\eta}(y) \\ &\geqslant \frac{1}{2} \int\limits_{(0,2x/D]} \mathbf{P}\left(\xi > \frac{2x}{y}\right) h(y) \, \mathrm{d}F_{\eta}(y) \\ &\geqslant \frac{c_1}{2} \int\limits_{(0,2x/D]} \mathbf{P}\left(\xi > \frac{x}{y}\right) h(y) \, \mathrm{d}F_{\eta}(y) \\ &\geqslant \frac{c_1}{3} \int\limits_{(0,2x/D]} \mathbf{P}\left(\xi > \frac{x}{y} \mid \eta = y\right) \mathrm{d}F_{\eta}(y) \\ &= \frac{c_1}{3} \left(\overline{F}_{\xi\eta}(x) - \int\limits_{(2x/D,\infty)} \mathbf{P}\left(\xi > \frac{x}{y} \mid \eta = y\right) \mathrm{d}F_{\eta}(y) \\ &\geqslant \frac{c_1}{3} \left(\overline{F}_{\xi\eta}(x) - \overline{F}_{\eta}\left(\frac{2x}{D}\right)\right). \end{aligned}$$

Therefore,

$$\liminf \frac{\overline{F}_{\xi\eta}(2x)}{\overline{F}_{\xi\eta}(x)} \ge \frac{c_1}{3} \left(1 - \limsup \frac{\overline{F}_{\eta}(2x/D)}{\overline{F}_{\xi\eta}(x)}\right).$$

Hence, (6) will follow if we show that

$$\limsup \frac{\overline{F}_{\eta}(2x/D)}{\overline{F}_{\xi\eta}(x)} = 0.$$
⁽⁷⁾

The last relation can be proved in the same manner as relation (2.8) in [11]. Namely, if η is bounded (and nondegenerate at zero according to conditions of the lemma), then there exists $c_2 > 0$ such that $\mathbf{E}(h(\eta)\mathbf{1}_{\{\eta \ge c_2\}})$ is positive and thus by (5)

$$\limsup \frac{\overline{F}_{\eta}(2x/D)}{\overline{F}_{\xi\eta}(x)} = \limsup \frac{\overline{F}_{\eta}(2x/D)}{\int_{(0,\infty)} \mathbf{P}(\xi > x/y \mid \eta = y) \mathrm{d}F_{\eta}(y)}$$
$$\leqslant \limsup \frac{\overline{F}_{\eta}(2x/D)}{\int_{[c_{2},\infty)} \mathbf{P}(\xi > x/c_{2} \mid \eta = y) \mathrm{d}F_{\eta}(y)}$$
$$= \limsup \frac{\overline{F}_{\eta}(2x/D)}{\overline{F}_{\xi}(x/c_{2}) \int_{[c_{2},\infty)} h(y) \mathrm{d}F_{\eta}(y)} = 0.$$

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 4, 519-525

If η is unbounded, then $\overline{F}_{\eta}(x) > 0$ for all x, and assumption (5) together with condition $\overline{F_{\eta}}(x) = o(\overline{F_{\xi}}(x))$ of the lemma imply

$$\limsup \frac{\overline{F}_{\eta}(x)}{\overline{F}_{\xi\eta}(xD/2)} \leqslant \limsup \frac{\overline{F}_{\eta}(x)}{\int_{[D/2,\infty)} \mathbf{P}(\xi > x \mid \eta = y) \mathrm{d}F_{\eta}(y)} \\ = \frac{1}{\mathbf{E}(h(\eta)\mathbf{1}_{\{\eta \ge D/2\}})}\limsup \frac{\overline{F}_{\eta}(x)}{\overline{F}_{\xi}(x)} = 0$$

for every fixed positive D. Hence, the estimate (7) holds in both cases and the lemma is proved.

The following statement is due to [12] and shows that the class $\mathcal{L} \cap \mathcal{D}$ is closed under convolution of different d.f.s and has the max-sum equivalence property.

Lemma 3. (See [12, Thm. 2.1].) If d.f.s $V_1 \in \mathscr{L} \cap \mathscr{D}$, $V_2 \in \mathscr{L} \cap \mathscr{D}$, then $V_1 * V_2 \in \mathscr{L} \cap \mathscr{D}$ and $\overline{V_1 * V_2}(x) \sim \overline{V_1}(x) + \overline{V_2}(x)$.

The next lemma follows from Theorem 2.1 in [9].

Lemma 4. Assume that Y_1, Y_2, \ldots are independent real-valued r.v.s such that d.f. of Y_k is long-tailed for each $k = 1, 2, \ldots$. Then, for each $n = 1, 2, \ldots$, it holds

$$\mathbf{P}\left(\sum_{k=1}^{n} Y_k > x\right) \sim \mathbf{P}\left(\sum_{k=1}^{n} Y_k^+ > x\right).$$
(8)

Proof of Theorem 1. First, consider the case where $F_k \in \mathscr{L}$ for all k = 1, ..., n. Since $S_n^{\theta} \leq M_n^{\theta} \leq \sum_{k=1}^n \theta_k X_k^+$, it suffices to prove

$$\mathbf{P}\left(\sum_{k=1}^{n}\theta_{k}X_{k} > x\right) \sim \mathbf{P}\left(\sum_{k=1}^{n}\theta_{k}X_{k}^{+} > x\right).$$
(9)

Relation (9) follows from Lemma 4, noting that $(\theta_k X_k)^+ = \theta_k X_k^+$ and that d.f. of $\theta_k X_k$ belongs to \mathcal{L} by Lemma 1 for each k = 1, ..., n.

In the case $F_k \in \mathcal{L} \cap \mathcal{D}$, the result follows immediately from the obtained asymptotic relations and Lemmas 1–3. Indeed, by Lemma 1 and Lemma 2, for each k, r.v. $\theta_k X_k^+$ belongs to $\mathscr{L} \cap \mathscr{D}$. Since vectors $(X_1, \theta_1), \ldots, (X_n, \theta_n)$ are independent, Lemma 3 implies that

$$\mathbf{P}\left(\sum_{k=1}^{n}\theta_{k}X_{k}^{+}>x\right)\sim\sum_{k=1}^{n}\mathbf{P}\left(\theta_{k}X_{k}^{+}>x\right),$$

where $\mathbf{P}(\theta_k X_k^+ > x) = \mathbf{P}(\theta_k X_k > x)$ for $x \ge 0$. This and obtained asymptotic relation (3) proves (2) and, hence, the theorem.

Acknowledgment. We would like to thank the referees and editors for their useful comments on the manuscript.

www.mii.lt/NA

References

- 1. A.A. Asimit, A.L. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model, *Scand. Actuar. J.*, **2**:93–104, 2010.
- 2. J. Li, Q. Tang, R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model, *Adv. Appl. Probab.*, **42**:1126–1146, 2010.
- 3. H. Nyrhinen, On the ruin probabilities in a general economic environment, *Stoch. Proc. Appl.*, **83**:319–330, 1999.
- 4. H. Nyrhinen, Finite and infinite time ruin probabilities in a stochastic economic environment, *Stoch. Proc. Appl.*, **92**:265–285, 2001.
- 5. P. Embrechts, C. Klüppelberg, T. Mikosch, *Modelling Extremal Events*, Springer, New York, 1997.
- 6. Q. Tang, G. Tsitsiashvili, Randomly weighted sums of subexponential random variables with application to ruin theory, *Extremes*, **6**:171–188, 2003.
- 7. D. Wang, Q. Tang, Tails probabilities of randomly weighted sums of random variables with dominated variation, *Stoch. Models*, **22**:253–272, 2006.
- 8. Y. Chen, K. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation, *Stoch. Models*, **25**:176–189, 2009.
- 9. Y. Chen, K. Ng, K. Yuen, The maximum of randomly weighted sums with long tails in insurance and finance, *Stoch. Anal. Appl.*, **29**:1033–1044, 2011.
- K. Wang, Randomly weighted sums of dependent subexponential random variables, *Lith.* Math. J., 51:573–586, 2011.
- 11. Y. Yang, R. Leipus, J. Šiaulys, Tail probability of randomly weighted sums of subexponential random variables under a dependence structure, *Stat. Probab. Lett.*, **82**:1727–1736, 2012.
- 12. J. Cai, Q. Tang, On the max-sum equivalence and convolution closure of heavy-tailed distributions and their applications, *J. Appl. Probab.*, **41**:117–130, 2004.