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Abstract. We consider the estimation of important parameters of a linear combination of order
statistics (L-statistic) in a finite population, emphasizing the influence of auxiliary information
on the estimation accuracy. Assuming that values of an auxiliary variable are available for all
population units, we construct calibrated estimators for the variance of L-statistics and for the
parameters, which define one-term Edgeworth expansions of distributions of L-statistics. The gain
of the new estimators is demonstrated by the simulation study.
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1 Introduction

Consider a study variable x with the real values X = {x1, . . . , xN} in the finite popu-
lation U = {1, . . . , N}. Assume that an auxiliary (completely known) real variable z is
available with the values Z = {z1, . . . , zN}. Let X = {X1, . . . , Xn} be the measure-
ments of the simple random sample units {1, . . . , n}, n < N , drawn without replacement
from the population. Let Z = {Z1, . . . , Zn} be the corresponding measurements of the
variable z. The L-statistic

L = Ln(X) =
1

n

n∑

j=1

cjXj:n (1)

is a linear combination of the order statisticsX1:n 6 · · · 6 Xn:n with the real coefficients

cj = J

(
j

n+ 1

)
, J : (0, 1)→ R,

called weights. Usually, it is convenient to use the function J(·) for the definition of the
weights. Here are two examples of L-statistic (1).
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328 D. Pumputis, A. Čiginas

Example 1. The trimmed mean is defined as follows: for any fixed numbers 0 < t1 <
t2 < 1,

Mt1;t2 =
(
[t2n]− [t1n]

)−1 [t2n]∑

j=[t1n]+1

Xj:n, (2)

where [·] represents the greatest integer function. This statistic is close (asymptotically
equivalent) to the statistic (1), with the weight function J(u) = (t2−t1)−1I{t1<u<t2}.
Here I{·} is the indicator function. Note that the marginal case, where t1 = 0 and t2 = 1,
represents the usual sample mean. In this case J ≡ 1. The trimmed means are applied in
a robust estimation of the center of population X .

Example 2. In the case of independent and identically distributed (i.i.d.) observations,
the L-statistic, defined by the weight function J(u) = 6u(1 − u), is applied as an
efficient estimator of the location parameter for the logistic distribution [1]. Let us denote
it by Lloc. Therefore, if it is assumed that the population X is obtained from the logistic
distribution, the defined statistic Lloc may be useful in the estimation of the center of
population X . Clearly, in many other situations, it may also be meaningful to give smaller
weights to extreme observations.

The first object of our interest is an estimation of the variance σ2
L = VarL. The

quality of estimators of σ2
L is important, if, e.g., we construct the confidence intervals for

a parameter which is some L-functional or, we choose between two or more competing
statistics by comparing their variances. To construct estimators for σ2

L, we choose the fol-
lowing strategy. Since the L-statistic is a symmetric function of observations, application
of Hoeffding’s decomposition to symmetric statistics [2] yields

L = EL+ U1 + U2 + · · · , (3)

where

U1 =

n∑

i=1

g1(Xi) and U2 =
∑

16i<j6n

g2(Xi, Xj)

are the linear and quadratic parts of the decomposition, respectively. Next, for many com-
monly used statistics higher-order terms in (3) are stochastically negligible. For instance,
for statistic (1) normalized by the factor n1/2, it follows from Theorem 1 in [2] and by the
proof of Theorem 1 in [3] that, if J(·) has a bounded second derivative J ′′(·) on (0, 1) and
EX2

1 is finite, then the variance of higher than the second-order terms in (3) is of the order
O(n−2∗ ) where n∗ = min{n,N −n}. Therefore, we truncate the variance decomposition
formula (2.6) in [2]:

σ2
L ≈

n(N − n)

N − 1
σ2
1 +

(
n

2

)(
N − n

2

)(
N − 2

2

)−1
σ2
2 , (4)

where

σ2
1 =

1

N

N∑

k=1

g21(xk) and σ2
2 =

(
N

2

)−1 ∑

16k<l6N

g22(xk, xl).
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Here, in the case of L-statistics, the first- and the second-order influence functions g1(·)
and g2(·,·) have explicit expressions, see [3]. In particular, denote by

HN,n,i(j) =

(
i

j

)(
N − i
n− j

)/(
N

n

)

the probability that a hypergeometric random variable with the parameters N , n and i
attains the value j. Assume that, without loss of generality, x1 6 · · · 6 xN . Denote
∆xi = xi+1 − xi. For 1 6 k 6 N ,

g1(k;X ) := g1(xk) = −n−1
N−1∑

i=1

(
I{i > k} − i

N

)
ai∆xi (5)

with the numbers ai := aN,n,i =
∑n
p=1 cpHN−2,n−1,i−1(p− 1). For 1 6 k < l 6 N ,

g2(k, l;X ) := g2(xk, xl) = −n−1
N−1∑

i=1

φk,l(i)bi∆xi, (6)

where

φk,l(i) =





i(i− 1)/A if 1 6 i < k,
−(i− 1)(N − i− 1)/A if k 6 i < l,
(N − i− 1)(N − i)/A if l 6 i < N ,

A = (N − 1)(N − 2),

and with bi := bN,n,i =
∑n
p=2(cp − cp−1)HN−4,n−2,i−2(p − 2). The main variance

estimation idea is simple. To estimate the right-hand side of (4), we estimate all values
of the functions g1(·) and g2(·,·) given by (5) and (6). The same approach is applied in
a construction of bootstrap estimators using information of the sample X only, see [4]. In
the present paper, we incorporate auxiliary information into the estimation process.

The second object of our survey is approximations to the distribution function of the
standardized L-statistic

F (x) = P {L−EL 6 xσL} (7)

and the distribution function of the Studentized statistic

FS(x) = P{L−EL 6 xσ̂LJ}. (8)

Here

σ̂2
LJ =

(
1− n

N

)
n− 1

n

n∑

k=1

(L(k) − L)2, L =
1

n

n∑

k=1

L(k) (9)

is the jackknife estimator of σ2
L based on X. Here L(k) = Ln−1(X \ {Xk}),

1 6 k 6 n are L-statistics with the weights c′j = J(j/n), 1 6 j 6 n − 1. A very usual
approximation to distributions (7) and (8) is the standard normal distribution function
Φ(x). Theorem 1 of [5] states that if J(·) is bounded and satisfies the Hölder condition
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of order δ > 1/2 on (0, 1), and EX2
1 is finite and a condition of the Lindeberg-type

is satisfied for all n∗, then distribution (7) converges to Φ(x) as n∗ → ∞. The same
conditions imply the convergence of (8). It follows from the same theorem and from
Proposition 3 in [2]. In the case of a trimmed mean, the requirements for J(·) are replaced
by a little stronger than the Lindeberg-type smoothness condition, see Theorem 2 in [5].
However, if, e.g., the sample size is not large enough, the normal approximation can be
inaccurate. One of the methods to correct Φ(x) is Edgeworth expansions. Compared to
the theoretical error O(n

−1/2
∗ ) of the normal approximation, the error of the one-term

Edgeworth approximation, under an appropriate conditions, is of the order o(n−1/2∗ )
or, under more restrictive conditions, O(n−1∗ ). The corresponding one-term Edgeworth
expansions for distributions (7) and (8) are, see [2, 6],

G(x) = Φ(x)− (q − p)α+ 3κ

6τ
Φ′(x)

(
x2 − 1

)
(10)

and

GS(x) = Φ(x) +
(q − p+ (q + 1)x2)α+ 3(x2 + 1)κ

6τ
Φ′(x). (11)

Here Φ′(x) denotes the derivative of Φ(x) and τ2 = Npq, p = n/N , q = 1− p, and

α = σ−31

1

N

N∑

k=1

g31(xk),

κ = σ−31 τ2
(
N

2

)−1 ∑

16k<l6N

g2(xk, xl)g1(xk)g1(xl).

(12)

If J ′′(·) is bounded on (0, 1) and E |X1|3+δ is finite for some δ > 0, and a nonlattice
condition is satisfied, then the error of approximation (10) is of the order o(n−1/2∗ ) as
n∗ → ∞. In the case of (8), by Theorem 2 of [6], in order to ensure the rate o(n−1/2∗ ),
the finite E |X1|6+δ and the additional condition qτ → ∞ are needed as n∗ → ∞. The
case of trimmed means is still not studied for samples without replacement, but one can
expect that conditions sufficient for the validity of the short Edgeworth expansions should
be similar to that appearing in the i.i.d. case, see [7].

Note that the parameters α and κ completely define the one-term Edgeworth expan-
sions and depend on the functions g1(·) and g2(·,·) only. Thus, here the problem is the
same as in the case of the variance estimation.

There is a number of variance estimation methods. One of more popular methods,
which also appears in our numerical comparisons, is the jackknife estimator (9). It is
well studied in the case of symmetric statistics, see [8]. In addition to the mentioned
papers [2–4, 6] on the Edgeworth expansions in the cases of finite population symmetric
statistics and L-statistics, we note that similar problems are historically important in the
classical case of i.i.d. observations, see [7, 9–13].

In Section 2, we apply the calibration technique, see [14], to estimate the functions
g1(·) and g2(·,·). It is a specific method applied in finite population problems. As a basis
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for the construction of the calibrated estimators, we use two different types of estimators
of (5) and (6). It is bootstrap estimators derived in [4] and also certain new estimators.
The calibrated estimators obtained yield new results in estimating the variance σ2

L and the
one-term Edgeworth expansionsG(x) andGS(x). In Section 3, to demonstrate the power
of calibrated estimators, we present a simulation study for L-statistics of Examples 1
and 2. We compare the accuracies of estimators of the parameters σ2

L, α, and κ, and show
how the estimators of α and κ affect the efficiency of empirical one-term Edgeworth
expansions. We also separately simulate and discuss the estimates of the functions g1(·)
and g2(·,·). In Section 4, we summarize the main findings of our work.

2 Estimation

We present four different estimators of (5) and (6). Assume that, without loss of gener-
ality, x1 6 · · · 6 xN . Let zj1 6 · · · 6 zjN be the corresponding ordered sequence,
which is necessary for the calculation of g1(k;Z) and g2(k, l;Z) below. Here j1, . . . , jN
is some permutation of 1, . . . , N . Let Z1:n 6 · · · 6 Zn:n be the order statistics of Z.
Denote ∆Zj:n = Zj+1:n − Zj:n.

2.1 Bootstrap estimators

The construction in [4] is based on one of the finite population bootstrap variants [15].
Write N = mn + t, 0 6 t < n, where m is integer. Denote ∆Xj:n = Xj+1:n −Xj:n.
Denote ui(k) = −n−1(I{i > k} − i/N)ai and vi(k, l) = −n−1φk,l(i)bi. Then, for
1 6 k 6 N ,

ĝ1B(k;X) =

n−1∑

j=1

mj+t∑

i=mj

ui(k)Hn,t,j(i−mj)∆Xj:n (13)

and, for 1 6 k < l 6 N ,

ĝ2B(k, l;X) =

n−1∑

j=1

mj+t∑

i=mj

vi(k, l)Hn,t,j(i−mj)∆Xj:n. (14)

By [4], these estimators give more stable estimates of the parameters α and κ, compared
to the universal jackknife estimation method from [16], in the sense that they are less
sensitive to a non-smoothness of the weight function J(·).

2.2 Calibrated bootstrap estimators

We construct calibrated estimators on the basis of the bootstrap estimators. Rewrite, for
1 6 k 6 N ,

ĝ1B(k;X) =

n−1∑

j=1

d
(1B)
j (k)

mj+t∑

i=mj

ui(k)Hn,t,j(i−mj)∆Xj:n (15)

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 3, 327–343



332 D. Pumputis, A. Čiginas

and, for 1 6 k < l 6 N ,

ĝ2B(k, l;X) =

n−1∑

j=1

d
(2B)
j (k, l)

mj+t∑

i=mj

vi(k, l)Hn,t,j(i−mj)∆Xj:n, (16)

where d(1B)
j (k) = 1, d(2B)

j (k, l) = 1, j = 1, . . . , n− 1.

The weights d(1B)
j (k) and d(2B)

j (k, l) can be modified using auxiliary variables and
calibration ideas from [14, 17] to obtain estimators with a smaller variance. We define
here the calibrated estimators of g1(k;X ), 1 6 k 6 N , and g2(k, l;X ), 1 6 k < l 6 N ,
of the following shape:

ĝ1Bw(k;X,Z) =

n−1∑

j=1

w
(1B)
j (k)

mj+t∑

i=mj

ui(k)Hn,t,j(i−mj)∆Xj:n (17)

and

ĝ2Bw(k, l;X,Z) =

n−1∑

j=1

w
(2B)
j (k, l)

mj+t∑

i=mj

vi(k, l)Hn,t,j(i−mj)∆Xj:n, (18)

where the new (calibrated) weights w(1B)
j (k) and w(2B)

j (k, l)

• minimize the distance measure

D(w) =

n−1∑

j=1

(wj − 1)2; (19)

here wj = w
(1B)
j (k) for ĝ1Bw(k;X,Z), and wj = w

(2B)
j (k, l) for

ĝ2Bw(k, l;X,Z);

• satisfy the calibration equations

n−1∑

j=1

w
(1B)
j (k)

mj+t∑

i=mj

ui(k)Hn,t,j(i−mj)∆Zj:n = g1(k;Z), (20)

and
n−1∑

j=1

w
(2B)
j (k, l)

mj+t∑

i=mj

vi(k, l)Hn,t,j(i−mj)∆Zj:n = g2(k, l;Z), (21)

respectively.

Calibration equations (20) and (21) are treated as the requirements to use the new
weights in order to obtain the exact estimates of the known values g1(k;Z) and g2(k, l;Z).
Thus, in the case of quite a high correlation between the study and auxiliary variables, it is
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natural to expect that the estimates of g1(k;X ) and g2(k, l;X ) will be more accurate when
the calibrated weightsw(1B)

j (k) andw(2B)
j (k, l) are applied in (17) and (18), respectively.

The weights w(1B)
j (k) and w(2B)

j (k, l) of estimators (17) and (18) are given by the
following proposition that is actually a corollary which follows from the derivation of
weights of a calibrated estimator of the finite population total in [14].

Proposition 1. The weights w(1B)
j (k), 1 6 k 6 N , and w(2B)

j (k, l), 1 6 k < l 6 N ,
j = 1, . . . , n− 1, of estimators (17) and (18), which minimize the distance measure (19)
and satisfy the corresponding equations (20) and (21), are given by

w
(1B)
j (k) = 1 +

(
g1(k;Z)− ĝ1B(k;Z)

)
(
n−1∑

t=1

r2t (k)

)−1
rj(k)

and

w
(2B)
j (k, l) = 1 +

(
g2(k, l;Z)− ĝ2B(k, l;Z)

)
(
n−1∑

t=1

q2t (k, l)

)−1
qj(k, l).

Here

rj(k) =

mj+t∑

i=mj

ui(k)Hn,t,j(i−mj)∆Zj:n,

qj(k, l) =

mj+t∑

i=mj

vi(k, l)Hn,t,j(i−mj)∆Zj:n.

Proof. Let us take the distance measure (19) and calibration equation (20), and define the
Lagrange function

Λ =

n−1∑

j=1

(
w

(1B)
j (k)− 1

)2 − λ
(
n−1∑

j=1

w
(1B)
j (k)rj(k)− g1(k;Z)

)
.

The derivatives ∂Λ/∂w
(1B)
j (k) are equal to zero in case

w
(1B)
j (k) = 1 +

1

2
λrj(k). (22)

Then, summing (22) multiplied by rj(k), respectively, and taking into account calibration
equation (20), we can find

λ = 2
(
g1(k;Z)− ĝ1B(k;Z)

)
(
n−1∑

t=1

r2t (k)

)−1
.

Substituting this expression into (22), we get an equation for w(1B)
j (k).

The proof for the case of a calibrated bootstrap estimator of the function g2(·,·) is
similar.
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2.3 Horvitz–Thompson type estimators

To construct more typical calibrated estimators, following [14], we introduce simple
estimators which are similar to the usual Horvitz–Thompson estimators in the sense
that, in expressions (5) and (6), population characteristics are replaced by their empirical
analogs. Let 1 6 i1 < · · · < in 6 N denote the positions of the order statistics
X1:n 6 · · · 6 Xn:n in the ordered set X . Since these indexes are unknown, we introduce
their estimators 1 6 î1 < · · · < în 6 N , which are the positions of the order statistics
Z1:n 6 · · · 6 Zn:n in the auxiliary ordered set Z . Then, for 1 6 k 6 N , define

ĝ1HT (k;X,Z) = −n−1
n−1∑

j=1

(
I{̂ij > k} − îj

N

)
aîj∆Xj:n (23)

and, for 1 6 k < l 6 N ,

ĝ2HT (k, l;X,Z) = −n−1
n−1∑

j=1

φk,l(̂ij)bîj∆Xj:n. (24)

2.4 Calibrated estimators

The following estimators are based on the Horvitz–Thompson type estimators (23)
and (24) which are modified analogously as the bootstrap estimators (13) and (14), i.e.,
we consider the calibrated estimators of (5) and (6) of the form: for 1 6 k 6 N ,

ĝ1w(k;X,Z) = −n−1
n−1∑

j=1

w
(1)
j (k)

(
I{̂ij > k} − îj

N

)
aîj∆Xj:n, (25)

and, for 1 6 k < l 6 N ,

ĝ2w(k, l;X,Z) = −n−1
n−1∑

j=1

w
(2)
j (k, l)φk,l(̂ij)bîj∆Xj:n. (26)

Here the calibrated weights w(1)
j (k) and w(2)

j (k, l)

• minimize the distance measure (19), where wj = w
(1)
j (k) for ĝ1w(k;X,Z), and

wj = w
(2)
j (k, l) for ĝ2w(k, l;X,Z);

• satisfy the calibration equations

−n−1
n−1∑

j=1

w
(1)
j (k)

(
I{̂ij > k} − îj

N

)
aîj∆Zj:n = g1(k;Z), (27)

and

−n−1
n−1∑

j=1

w
(2)
j (k, l)φk,l(̂ij)bîj∆Zj:n = g2(k, l;Z), (28)

respectively.
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Proposition 2. The weights w(1)
j (k), 1 6 k 6 N , and w(2)

j (k, l), 1 6 k < l 6 N ,
j = 1, . . . , n − 1, of estimators (25) and (26) which minimize the distance measure (19)
and satisfy corresponding equations (27) and (28) are given by

w
(1)
j (k) = 1 +

(
g1(k;Z)− ĝ1HT (k;Z,Z)

)
(
n−1∑

t=1

p2
ît

(k)

)−1
pîj (k)

and

w
(2)
j (k, l) = 1 +

(
g2(k, l;Z)− ĝ2HT (k, l;Z,Z)

)
(
n−1∑

t=1

s2
ît

(k, l)

)−1
sîj (k, l).

Here

pîj (k) = −n−1
(
I{̂ij > k} − îj

N

)
aîj∆Zj:n,

sîj (k, l) = −n−1φk,l(̂ij)bîj∆Zj:n.

The proof is similar to that of Proposition 1.

2.5 Estimators of variance and parameters of Edgeworth expansions

Using the bootstrap estimators (13) and (14) of all the values of functions g1(·) and g2(·,·),
we define bootstrap estimators of the variance of L-statistic and parameters (12):

σ̂2
LB =

n(N − n)

N − 1
σ̂2
1B +

(
n

2

)(
N − n

2

)(
N − 2

2

)−1
σ̂2
2B ,

α̂B = σ̂−31B

1

N

N∑

k=1

ĝ31B(k;X),

κ̂B = σ̂−31Bτ
2

(
N

2

)−1 ∑

16k<l6N

ĝ2B(k, l;X)ĝ1B(k;X)ĝ1B(l;X),

where

σ̂2
1B =

1

N

N∑

k=1

ĝ21B(k;X) and σ̂2
2B =

(
N

2

)−1 ∑

16k<l6N

ĝ22B(k, l;X).

Similarly, by substituting estimators (17), (18), (23), (24), (25), and (26) into (4) and (12),
we define the calibrated bootstrap (σ̂2

LBw, α̂Bw, κ̂Bw), Horvitz–Thompson type (σ̂2
LHT ,

α̂HT , κ̂HT ) and calibrated estimators (σ̂2
Lw, α̂w, κ̂w) of the parameters (σ2

L, α, κ).
Replacing the true parameters α and κ in (10) and (11) by their estimators defined

above, we obtain the corresponding empirical Edgeworth expansions for which we use

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 3, 327–343
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the following notation: GB(x), GBw(x), GHT(x), Gw(x) and GSB(x), GSBw(x), GSHT(x),
GSw(x) where, for example, GB(x) and GSB(x) are defined as follows:

GB(x) = Φ(x)− (q − p)α̂B + 3κ̂B
6τ

Φ′(x)
(
x2 − 1

)

and

GSB(x) = Φ(x) +
(q − p+ (q + 1)x2)α̂B + 3(x2 + 1)κ̂B

6τ
Φ′(x).

3 Simulation study

The simulation study is performed to observe the efficiency of the estimators of variance
of L-statistic and to check how the empirical Edgeworth expansions improve the standard
normal approximation to distributions (7) and (8).

Case 1. First, we consider an artificial population UF of size N = 120. The auxiliary
variable z, that is defined on UF , is simulated from the Fisher distribution F(5, 4). The
values of the study variable x are generated according to the formula: xk = 2 + zk +
0.7
√
zk εk, εk ∼ N (0, 1). The variables x and z are strongly correlated with the correla-

tion coefficient ρ(x, z) = 0.92. The L-statistic of interest is Lloc (see Example 2).

Case 2. The second population of size N = 150 is also artificial. Let us denote it by UE .
In this case, the study variable x is simulated from the exponential distribution E(0.001)
with the expectation equal to 1000. The values of the auxiliary variable z are generated
according to the formula: zk = xk + 1100ξk, ξk ∼ U(0, 1). As in the previous case, the
correlation between the variables x and z is high (ρ(x, z) = 0.94). The trimmed mean
M0.25;0.75 (see Example 1) is chosen for analysis, as an example of L-statistic.

R = 1000 simple random samples of fixed size (n = 40 for Case 1, and n = 50
for Case 2) are drawn and for each of them the estimators of g1(k;X ), 1 6 k 6 N , and
g2(k, l;X ), 1 6 k < l 6 N , are computed. Consequently, the estimates of variance
of Lloc, M0.25;0.75 and parameters (12), required for the construction of the empirical
Edgeworth expansions, are also produced.

In the next subsections, we analyze the quality of these estimators by estimating some
of the following quality measures: expectation (E), bias (Bias), standard error (S), and
mean square error (MSE). For any estimator θ̂ of the finite population parameter θ, these
characteristics of accuracy are estimated by the following equations:

Ê(θ̂) =
1

R

R∑

r=1

θ̂r, B̂ias(θ̂) =
1

R

R∑

r=1

θ̂r − θ,

Ŝ(θ̂) =

√√√√ 1

R

R∑

r=1

(
θ̂r − Ê(θ̂)

)2
, M̂SE(θ̂) =

1

R

R∑

r=1

(θ̂r − θ)2,

where θ̂r is the estimate of θ computed from the rth simulated sample.
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3.1 Estimation of functions g1(·) and g2(·,·)

The quality of the estimators of variance of the L-statistic and parameters (12) depends on
the estimators of functions g1(·) and g2(·,·). Thus, we should first analyze the statistical
properties of these estimators. For the best estimators of g1(·) and g2(·,·), we expect the
highest accuracy of corresponding estimators of the parameters mentioned.

The following empirical study is performed for Case 1, i.e., for the case of population
UF and L-statistic Lloc. The results for Case 2 are similar. Because of many values of
the function g1(·), we illustrate the performance of estimators of g1(k;X ), 1 6 k 6 N ,
only graphically. Figure 1 shows the estimated expectation for some more important pairs
of estimators as well as real values of g1(·). Thus, one can estimate visually the bias for
each value.

The calibrated estimators ĝ1w(k;X,Z), 1 6 k 6 N , have the lowest bias on the
average. As one can see, both calibration methods reduce the bias, i.e., both calibrated es-
timators are less biased than the respective simple estimators (13) and (23). The Horvitz–
Thompson type estimator (23) is more biased than bootstrap estimator (13). The highest
bias of estimators is observed on the right side of the values.

Figure 2 illustrates the estimated mean square error for some pairs of estimators
discussed above.

The calibrated bootstrap estimators ĝ1Bw(k;X,Z), 1 6 k 6 N , have the lowest
mean square error on the average. It is of interest to note that for some values of g1(·)
this measure of accuracy is about 13 times lower than that of bootstrap estimator (13), but
there exist a few values of g1(·) for which the auxiliary information does not help, i.e., the
mean square error of the calibrated bootstrap estimator is higher than that of the bootstrap
estimator. Such a situation is not observed in the case of the pair (ĝ1HT , ĝ1w): for all
values of g1(·), the mean square error of calibrated estimator (25) is lower than the same
characteristics of Horvitz–Thompson type estimator (23). Compared to the corresponding
estimators (13) and (23), the most significant gain in reduction of the mean square error
of both calibrated estimators is observed on the right side of the values.
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Fig. 1. Estimated expectation of estimators of g1(·)
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0 20 40 60 80 100 120

0

1

2

3

x 10
−3

M̂SE(ĝ1B)
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Fig. 2. Estimated mean square error of estimators of g1(·)

We do not present the results for the case of the function g2(·,·), because the pattern
for the expectation and mean square error of the estimators of this function remains very
similar as in the case of the function g1(·).

3.2 Estimation of variance of the L-statistic and parameters α and κ

High quality estimators of the variance σ2
L are preferable in solving many practical sta-

tistical problems. When constructing empirical Edgeworth expansions, one prefers to use
estimators of the parameters α and κ with a smaller variance. Naturally, we consider
here empirical statistical properties of the estimators of variance of the L-statistic and
parameters α and κ.

Table 1 shows the estimated bias and mean square error of the estimators σ̂2
LJ , σ̂2

LB ,
σ̂2
LBw, σ̂2

LHT and σ̂2
Lw. In the second column, the true values of variance of the statistics

Lloc and M0.25;0.75 are also given. As expected, the calibrated and calibrated bootstrap
estimators outperform all the other ones. They are almost unbiased and have the lowest
mean square error. For Case 1, the jackknife estimator σ̂2

LJ is a little more efficient
than the bootstrap estimator σ̂2

LB and the Horvitz–Thompson type estimator σ̂2
LHT (see

MSE), but this implication cannot be obtained in Case 2, where the bootstrap estimator
is much more efficient. The quality of the Horvitz–Thompson type estimator σ̂2

LHT is
lower as compared to that of the bootstrap estimator σ̂2

LB , but the calibration of weights
of ĝ1HT (k;X,Z) and ĝ2HT (k, l;X,Z) leads to the estimator σ̂2

Lw of quite a high quality
which is similar to that of σ̂2

LBw. A more significant gain in reduction of the bias and
mean square error (when calibrating the weights of bootstrap and Horvitz–Thompson
type estimators of g1(·) and g2(·,·)) is observed for Case 1, but the results of additional
computation show that the relative root mean square error (=

√
MSE(·)

/
σ2
L) of all esti-

mators is lower for Case 2.
In Tables 2 and 3, we present the estimated bias and mean square error of the estima-

tors of parameters α and κ as well as their true values. Again, the calibrated estimators are
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Table 1. Characteristics of accuracy of the estimators of σ2
L.

σ2
L×103 σ̂2

LJ σ̂2
LB σ̂2

LBw σ̂2
LHT σ̂2

Lw

Case 1 52.686 Bias×103 −3.046 1.095 −0.245 9.902 0.176
MSE×104 3.971 5.070 1.107 6.748 1.027

σ2
L×10−2 σ̂2

LJ σ̂2
LB σ̂2

LBw σ̂2
LHT σ̂2

Lw

Case 2 155.993 Bias×10−2 −5.665 8.810 3.956 −1.900 −0.031
MSE×10−6 20.727 7.861 6.538 18.899 8.523

Table 2. Characteristics of accuracy of the estimators of parameters α and κ for Case 1.

α α̂B α̂Bw α̂HT α̂w

1.140 Bias −0.099 −0.094 −0.020 −0.096
MSE 0.169 0.058 0.161 0.054

κ κ̂B κ̂Bw κ̂HT κ̂w

0.4184 Bias 0.012 0.010 0.060 0.009
MSE 0.016 0.005 0.023 0.006

Table 3. Characteristics of accuracy of the estimators of parameters α and κ for Case 2.

α α̂B α̂Bw α̂HT α̂w

0.335 Bias −0.010 −0.007 −0.003 0.002
MSE 0.014 0.008 0.009 0.009

κ κ̂B κ̂Bw κ̂HT κ̂w

0.471 Bias 0.041 0.014 0.024 0.030
MSE 0.064 0.038 0.055 0.054

of the highest quality. Especially in Case 1 (see Table 2), we observe the biggest difference
between the simple estimators α̂B , α̂HT , κ̂B , κ̂HT , and the corresponding calibrated
estimators α̂Bw, α̂w, κ̂Bw, κ̂w, whose mean square error is lower about 3 times. For the
estimator α̂w, this improvement is followed by an increased absolute bias. In Case 2 (see
Table 3), we see not so great gain in reduction of MSE. The calibration approach slightly
improves α̂HT and κ̂HT . It is of interest to note that for both cases, all the estimators of
κ overestimate this parameter, whereas α̂B , α̂Bw and α̂HT underestimate α.

In opposition to the case of estimation of the variance σ2
L, the Horvitz–Thompson type

estimator of the parameter α outperforms the bootstrap estimator α̂B . Only in Case 2, the
estimator κ̂HT is more efficient than κ̂B . The calibrated estimators α̂Bw and α̂w are of a
similar quality. The statistical properties of κ̂Bw are similar to that of κ̂w, only in Case 1.
In the exponential population, when the L-statistic is the trimmed mean M0.25;0.75, the
estimator κ̂Bw is more successful as compared to κ̂w.

We note that a number of other simulation experiments (with different populations
and L-statistics) give results similar to that of Cases 1 and 2.

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 3, 327–343



340 D. Pumputis, A. Čiginas

3.3 Estimation of distributions

In the tables below, we compare the distributions F̃ (x), Φ(x), G(x), GB(x), GBw(x),
GHT (x), Gw(x) and F̃S(x), Φ(x), GS(x), GSB(x), GSBw(x), GSHT (x), GSw(x) by
taking their q-quantiles, q = 0.01, 0.05, 0.10, 0.90, 0.95, 0.99. Here F̃ (x) and F̃S(x)
are Monte–Carlo approximations to the exact distributions F (x) and FS(x), respectively.
The quantiles of empirical Edgeworth expansions are estimators of quantiles of the corre-
sponding true distributions, to which we give the estimated expectation (Ê) and standard
error (Ŝ) (see Tables 4–7), based on the same set of simple random samples mentioned at
the beginning of Section 3.

At first, we discuss the simulation results for Case 1 which show (see Table 4) that
the one-term Edgeworth expansionG(x) is much more better approximation of F̃ (x) than
the normal approximation Φ(x). The inverses of empirical Edgeworth expansionsGB(x),

Table 4. Approximations to F−1(q) for Case 1.

q = 0.01 0.05 0.10 0.90 0.95 0.99

F̃−1(q) −2.069 −1.549 −1.242 1.321 1.739 2.541
Φ−1(q) −2.326 −1.645 −1.282 1.282 1.645 2.326
G−1(q) −2.099 −1.564 −1.252 1.319 1.743 2.544

ÊG−1
B (q) −2.101 −1.565 −1.252 1.320 1.744 2.542

ÊG−1
Bw(q) −2.100 −1.564 −1.252 1.319 1.743 2.543

ÊG−1
HT (q) −2.080 −1.557 −1.249 1.324 1.755 2.562

ÊG−1
w (q) −2.100 −1.564 −1.252 1.319 1.743 2.543

ŜG−1
B (q) 0.064 0.022 0.008 0.013 0.033 0.059

ŜG−1
Bw(q) 0.034 0.012 0.004 0.007 0.017 0.032

ŜG−1
HT (q) 0.066 0.023 0.009 0.016 0.037 0.061

ŜG−1
w (q) 0.037 0.013 0.005 0.008 0.019 0.034

Table 5. Approximations to F−1
S (q) for Case 1.

q = 0.01 0.05 0.10 0.90 0.95 0.99

F̃−1
S (q) −3.239 −2.119 −1.594 1.119 1.408 1.936
Φ−1(q) −2.326 −1.645 −1.282 1.282 1.645 2.326
G−1

S (q) −2.770 −1.972 −1.524 1.088 1.351 1.728

ÊG−1
SB(q) −2.747 −1.957 −1.516 1.095 1.364 1.760

ÊG−1
SBw(q) −2.755 −1.960 −1.515 1.093 1.361 1.749

ÊG−1
SHT (q) −2.775 −1.983 −1.538 1.079 1.341 1.717

ÊG−1
Sw(q) −2.754 −1.959 −1.515 1.093 1.361 1.750

ŜG−1
SB(q) 0.098 0.095 0.081 0.053 0.079 0.153

ŜG−1
SBw(q) 0.053 0.051 0.043 0.028 0.043 0.083

ŜG−1
SHT (q) 0.092 0.095 0.085 0.053 0.079 0.146

ŜG−1
Sw(q) 0.054 0.053 0.044 0.029 0.044 0.085
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Table 6. Approximations to F−1(q) for Case 2.

q = 0.01 0.05 0.10 0.90 0.95 0.99

F̃−1(q) −2.098 −1.571 −1.263 1.316 1.722 2.492
Φ−1(q) −2.326 −1.645 −1.282 1.282 1.645 2.326
G−1(q) −2.135 −1.576 −1.256 1.312 1.726 2.511

ÊG−1
B (q) −2.124 −1.573 −1.255 1.316 1.734 2.520

ÊG−1
Bw(q) −2.132 −1.576 −1.256 1.314 1.729 2.513

ÊG−1
HT (q) −2.130 −1.575 −1.256 1.315 1.731 2.515

ÊG−1
w (q) −2.127 −1.574 −1.255 1.315 1.732 2.517

ŜG−1
B (q) 0.089 0.031 0.012 0.019 0.046 0.083

ŜG−1
Bw(q) 0.069 0.024 0.009 0.014 0.035 0.065

ŜG−1
HT (q) 0.084 0.029 0.011 0.017 0.042 0.078

ŜG−1
w (q) 0.082 0.029 0.011 0.017 0.042 0.077

Table 7. Approximations to F−1
S (q) for Case 2.

q = 0.01 0.05 0.10 0.90 0.95 0.99

F̃−1
S (q) −3.260 −2.091 −1.532 1.203 1.556 2.202
Φ−1(q) −2.326 −1.645 −1.282 1.282 1.645 2.326
G−1

S (q) −2.621 −1.844 −1.427 1.152 1.455 1.951

ÊG−1
SB(q) −2.623 −1.852 −1.436 1.146 1.447 1.938

ÊG−1
SBw(q) −2.618 −1.846 −1.430 1.151 1.453 1.949

ÊG−1
SHT (q) −2.620 −1.849 −1.433 1.149 1.451 1.944

ÊG−1
Sw(q) −2.624 −1.851 −1.435 1.147 1.448 1.939

ŜG−1
SB(q) 0.104 0.088 0.071 0.056 0.082 0.161

ŜG−1
SBw(q) 0.080 0.067 0.054 0.043 0.062 0.124

ŜG−1
SHT (q) 0.096 0.081 0.065 0.052 0.075 0.149

ŜG−1
Sw(q) 0.095 0.080 0.064 0.051 0.074 0.146

GBw(x) and Gw(x) have a similar bias, but the lowest variance belongs to the inverses
of calibrated Edgeworth expansions GBw(x) and Gw(x), which are more efficient than
GB(x), GHT (x) and Φ(x). The inverse G−1HT (·) is the most biased estimator of G−1(·).
It seems that GB(x) is a slightly better approximation of F̃ (x) than GHT (x).

Table 5 shows that GS(x) outperforms Φ(x), but the approximation accuracy is lower
than it is in the case of a standardized L-statistic (see Table 4). In the case of the Studen-
tized statistic, one can see that the inverses of calibrated empirical Edgeworth expansions
are similarly biased. G−1SHT (·) has the lowest bias on the average, whereas G−1SB(·) is
most biased. The inverses of calibrated empirical Edgeworth expansions GSBw(x) and
GSw(x) have a significantly lower variance which guarantees thatGSBw(x) andGSw(x)
are more efficient than GSB(x) and GSHT (x).

Tables 6 and 7 present the approximation results of Case 2, i.e., in the case of popu-
lation UE and L-statistic M0.25;0.75. Here the Edgeworth expansion G(x) approximates
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F̃ (x) similarly as in the previous case (see Table 6), but GS(x) fails on the right tail
(see Table 7). Now, not only G−1SB(·) is the most biased estimator for G−1S (·), but also
G−1B (·) for G−1(·). The calibrated estimators are differently biased in both standardized
and Studentized cases.

Taking a variability into account (compare standard errors), we conclude that approx-
imations GHT (x) and Gw(x), GSHT (x) and GSw(x) can be of a similar quality for
some quantiles. It can be explained by similar statistical properties of α̂HT and α̂w, κ̂HT
and κ̂w (see Table 3). The calibrated approximations GBw(x) and GSBw(x) outperform
GB(x) and GSB(x), respectively.

4 Conclusions

This article expands the range of applications of the calibration technique that was first
time proposed for estimating the finite population totals in [14]. As it has been expected,
the auxiliary information, highly correlated with the corresponding study variable, and
calibration methods lead to improved estimates of the values of functions g1(·) and g2(·,·)
(in some cases, significantly). The estimators of parameters σ2

L, α and κ, based on the
calibrated estimates of g1(·) and g2(·,·), are the best ones among the others considered
in this paper. Because of complicated expressions of the estimators, it is difficult to
derive conditions using which one can compare them, or to check their consistency. The
simulation results show that, in most cases, the bootstrap type estimators are slightly more
accurate than the Horvitz–Thompson type estimators, whereas the calibrated bootstrap
estimators outperform the calibrated ones.
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valuable comments which helped to improve the quality of the paper.
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