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Abstract. The contribution is focused on detection of multiple changes in the mean in a one-
dimensional stochastic process by sparse parameter estimation from an overparametrized model.
The authors’ approach to change point detection differs entirely from standard statistical techniques.
A stochastic process residing in a bounded interval with changes in the mean is estimated using
dictionary (a family of functions, the so-called atoms, which are overcomplete in the sense
of being nearly linearly dependent) and consisting of Heaviside functions. Among all possible
representations of the process we want to find a sparse one utilizing a significantly reduced number
of atoms. This problem can be solved by `1-minimization. The basis pursuit algorithm is used to
get sparse parameter estimates. In this contribution the authors calculate empirical probability of
successful change point detection as a function depending on the number of change points and
the level of standard deviation of additive white noise of the stochastic process. The empirical
probability was computed by simulations where locations of change points were chosen randomly
from uniform distribution. The authors’ approach is compared with LASSO algorithm, `1 trend
filtering and selected statistical methods. Such probability decreases with increasing number of
change points and/or standard deviation of white noise. The proposed method was applied on the
time series of nuclear magnetic response during the drilling of a well.

Keywords: multiple change point detection, sparse parameter estimation, basis pursuit denoising,
LASSO, `1 trend filtering.

1 Introduction

Detection of changes in the mean helps us to discover time points at which some intrinsic
properties of a stochastic process change. This covers a broad range of real-world prob-
lems and has been actively discussed. The standard statistical approach to this problem
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is described, for example, in [1]. The article is focused on detection of multiple changes
in the mean in a one-dimensional stochastic process using sparse parameter estimation
from an overparametrized model. Sparse modeling is a quickly developing area on the
intersection of statistics, machine-learning and signal processing. It can be effectively
used in the case of large data sets fitting when standard numerical methods are unsta-
ble. Several methods of large-scale data analysis can be found, for example, in [2].
Detection of changes has originally arisen in the context of quality control. Nowadays,
we can find a wide range of fields where change point problem is applied, such as epi-
demiology, medicine (rhythm analysis), ecology, signal processing etc. When analyzing
measurements coming from real problems often some events or anomalies are manifested
by abrupt changes which may not be quite apparent in their early stage, detection of
hearing loss in audiological frequencies [3] being an example out of many illustrating
such a situation. Detection of changes in processes need not involve only changes in the
mean, but also changes in the variance or other characteristics. For example, the article [4]
deals with detection of changed segment in a binomial sequence.

The authors’ approach to change point detection is quite different from the standard
statistical techniques. The statistical approaches usually use for change point estimation
the maximum likelihood method or non-parametric methods, such as methods based on
M and R estimates (see [1,5]). In the case of uncorrelated white noise in the model and one
change in the mean, the authors Neubauer and Veselý [6] showed that there is no signifi-
cant difference among these methods. The proposed method of the change point detection
is based on entirely different methods, built on a completely different approach. It is a very
versatile approach to signal modeling, assuming that the signal is sparse; therefore, it can
be described by a small number of suitable functions. A stochastic process residing in
a bounded interval with changes in the mean is estimated using dictionary (a family of
functions, the so-called atoms) and consisting of Heaviside functions. Among all the pos-
sible representations of the process we want to find a sparse one utilizing a significantly
reduced number of atoms. This problem can be solved by `1-minimization (see [8, 9]) or
by some of the greedy algorithms which are compared to the `1-minimization in [10].
The basis pursuit algorithm is used to get sparse parameter estimates. Basic properties
of this approach to one change point detection were studied in [6] by simulations and
included a performance comparative study with standard statistical procedures as well.
The impact of serial correlation of noise on change point detection is described in [7].
The contribution [11] deals primarily with detection of two change points. According to
these results, the basis pursuit approach proposes an alternative technique of the change
point detection. In this article the authors calculate empirical probability of successful
change point detection as a function depending on the number of change points and
the level of standard deviation of additive white noise of the stochastic process. The
empirical probability was computed by simulations where locations of change points
were chosen randomly from uniform distribution. As an alternative to the basis pursuit
algorithm, LASSO method [12], `1 trend filtering [13] and selected statistical method
were taken to judge the proposed method. The last part of the article demonstrates how
the aforementioned methods can automate the change point detection in the time series of
nuclear magnetic response during the drilling of a well.
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Detection of multiple changes in mean by sparse parameter estimation 179

2 Basis pursuit and change point detection

In this paragraph we briefly describe the method based on basis pursuit algorithm (BPA)
for the detection of the change point in the sample path {yt} in one-dimensional stochas-
tic process {Yt}. We assume a deterministic functional model on a bounded interval I
described by the dictionary G = {Gj}j∈J with atoms Gj ∈ L2(I) and with additive
white noise e on a suitable finite discrete mesh T ⊂ I:

Yt = xt + et, t ∈ T ,

where x ∈ sp({Gj}j∈J), et ∼ WN (0, σ2), t ∈ T , σ > 0, and J is a big finite indexing
set. Smoothed function x̂ =

∑
j∈J ξ̂jGj =: Gξ̂ minimizes on T `1-penalized optimality

measure (1/2)‖y −Gξ‖22 as follows:

ξ̂ = argmin
ξ∈`2(J)

1

2
‖y −Gξ‖22 + λ‖ξ‖1, ‖ξ‖1 :=

∑
j∈J
‖Gj‖2|ξj |,

where λ = σ
√
2 ln (cardJ) is a smoothing parameter chosen according to the soft-

thresholding rule commonly used in wavelet theory. This choice is natural because one
can prove that with any orthonormal basis G = {Gj}j∈J the shrinkage via soft-threshol-
ding produces the same smoothing result x̂ (see [9]). Such approaches are also known as
basis pursuit denoising (BPDN).

Solution of this minimization problem with λ close to zero may not be sparse enough:
we are searching small F ⊂ J such that x̂ ≈

∑
j∈F ξ̂jGj is a good approximation. The

procedure of BPDN is described in [6].
We build our dictionary from heaviside-shaped atoms on L2(R) derived from a fixed

“mother function” via shifting and scaling following the analogy with the construction of
wavelet bases.

We construct an oversized shift-scale dictionary G = {Ga,b}a∈A,b∈B derived from
the “mother function” by varying the shift parameter a and the scale (width) parameter b
between values from big finite sets A ⊂ R and B ⊂ R+, respectively (J = A× B), on a
bounded interval I ⊂ R spanning the space H = sp({Ga,b})a∈A,b∈B, where

Ga,b(t) =


1 for t− a > b/2,

2(t− a)/b for |t− a| 6 b/2, b > 0,

0 for t = a, b = 0,

−1 otherwise.

In the simulations below I = [0, 1], T = {t/T} (typically with mesh size T = 100),
A = {t/T}T−t0t=t0 (t0 is a boundary trimming, t0 = 5 was used in the simulations) and
scale b fixed to zero (B = {0}). Clearly the atoms of such Heaviside dictionary are
normalized on I, i.e. ‖Ga,0‖2 = 1. Some examples of Heaviside functions are displayed
in Fig. 1.
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Fig. 1. Heaviside atoms with parameters a = 0, b = 0 and a = 0, b = 0.5.

Neubauer and Veselý [6] proposed the method of change point detection if there is
just one change point in a one-dimensional stochastic process (or in its sample path). We
briefly describe this method. We would like to find a change point in a stochastic process

Yt =

{
µ+ εt for t = 1, 2, . . . , c,

µ+ δ + εt for t = c+ 1, . . . , T,
(1)

where µ, δ 6= 0, t0 6 c < T − t0 are unknown parameters and εt are independent
identically distributed random variables with zero mean and variance σ2. The parameter
c indicates the change point in the process. Using the basis pursuit algorithm we obtain
some significant atoms, we calculate the correlation between the significant atoms and
the analyzed process. As a BPDN estimator of the change point c we take the shift
parameter of the significant atom matching one of three alternative rules: the atom is
the most significant one, it exhibits the highest correlation with the data or it produces
the highest value of geometric mean of the correlation coefficient and its contribution to
the total `1 norm. In the case of one change point, the estimator based on the highest
correlation performed slightly better.

Now let us assume the model with p change points

Yt =


µ+ εt for t = 1, 2, . . . , c1,

µ+ δ1 + εt for t = c1 + 1, . . . , c2,

· · ·
µ+ δp + εt for t = cp + 1, . . . , T,

(2)

where µ, δ1, . . . , δp 6= 0, t0 6 c1 < · · · < cp < T − t0 are unknown parameters and εt
are independent identically distributed random variables with zero mean and variance σ2.

We use the method of change point estimation described above for detection of p
change points c1, . . . , cp in model (2). Instead of finding only one significant atom we
identify either p most significant atoms, or p significant atoms exhibiting the highest
correlation, or p significant atoms having the highest value of geometric mean of the
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Detection of multiple changes in mean by sparse parameter estimation 181

correlation coefficient and the contribution to the total `1 norm. The shift parameters of
such atoms determine direct BPDN estimators for the change points c1, . . . , cp. Another
possibility is to apply the procedure of one change point detection p-times in sequence
(sequential BPDN estimator). In the first step we identify one change point in the process
Yt, then we subtract the contribution of such a significant atom from the process (by linear
regression)

Yt = γG0,ĉ1 + et,

Y ′t = Yt − γ̂G0,ĉ1 ,

and we apply the same method to the new process Y ′t . This sequence is repeated until we
get p change point estimates. The shift parameters of selected atoms are again identifiers
of the change points c1, . . . , cp.

Regarding the theoretical background, we consider three well-known criteria.
The so-called spark of a matrix (dictionary) G is the minimum number of columns

of G which are linearly dependent. It can be shown (see [14]) that if a solution x of our
inverse problem is found which satisfies ‖x‖0 < spark(G)/2 then x is the sparsest and
unique solution to this problem. However, in general, establishing spark is an NP-hard
problem so in practice this is intractable. Nevertheless, due to a clear structure of our
dictionary G, we know that its spark is full, i.e. 101 in our case. Thus, if a solution x
would be found with ‖x‖0 6 45 then we have the true solution. This actually motivates
to exploit the sparsity-seeking approach. However, one must be aware of two major facts:
First, this result only holds in case without noise and the noisy case is not solved in the
literature yet. Second, the statement does not tell anything about how the solution should
be obtained!

Another measure of goodness of the dictionary is the mutual coherence (see [8, 14])
which is defined pairwise as µ(G) = maxi6=j g

T
i gj for `2-normalized columns. This

value can be determined computationally – in our case it is 0.99 which means that the
atoms are very close to each other. The relationship between µ and spark is known and
thanks to that there exists a theorem saying that if a solution x is found satisfying ‖x‖0 <
(1/2)(1 + 1/µ(G)) then it is the unique one. But in our case the value of the right side
only 1.0051 which means that this would be true only if the sparsity of the solution would
be 1 (without noise, again). In our case of multiple change-points this is contradictory, so
the coherence does not help much here.

The third property of a dictionary is the RIP (restricted isometry property, see [15])
which is again not possible to compute in polynomial time, but can be used to specify
a condition under which the solution can be found via `1-minimization (which we use).
We found numerically that the RIP constant δk which could be found in a combinatorial
way even for such low values as k = 2 and k = 3 is in the order of 101; RIP requires
δk < 1. However this is not a surprise, since the only matrices which are known to obey
the RIP are certain classes of random matrices, see [8, 15].

To conclude, no one of the state-of-the art quantities measuring the goodness of
the dictionary really helps, so we rely on the simulation results (which is in fact not
uncommon in the sparse-land publications area), see [16, 17].
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3 The LASSO

The LASSO (least absolute selection and shrinkage operator) is a shrinkage and selection
method for linear regression. It minimizes the sum of squared errors, with a bound on the
sum of the absolute values of the coefficients. Using the usual linear regression notation
the LASSO estimate is defined in [12] as follows:

β̂LASSO = argmin
β

T∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

subject to
p∑
j=1

|βj | 6 t.

Rewriting this in terms of operators and language of atoms and dictionaries, we obtain
a denoising approach similar to basis pursuit.

4 `1 trend filtering

In [13] the authors propose a variation on Hodrick–Prescott filtering, which they call `1
trend filtering. The trend is estimated as the minimizer of the objective function

1

2

T∑
t=1

(yt − xt)2 + χ

T−1∑
t=2

|xt−1 − 2xt + xt+1|, (3)

which can be written in the matrix form as

1

2
‖y − x‖22 + χ‖Dx‖1,

where χ > 0 is a smoothing parameter, x = (x1, . . . , xT )
′∈ RT , y = (y1, . . . , yn)

′∈ RT
and D ∈ R(T−2)×T is the matrix

D =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 1

 .

The `1 trend estimate is piecewise linear in t. The points where the slope of the estimated
trend is changed can be interpreted as abrupt changes (change points) in the process.
Model (2) describes only changes in the mean. We adapt the proposed method for de-
tection change point of this kind. The argument appearing in the second term of (3),
xt−1 − 2xt + xt+1, is the second difference of {xt}. It is zero when and only when three
points xt−1, 2xt and xt+1 are on the line. In the case of the piecewise constant trend, we
replace the second difference with the first difference xt − xt−1. We will minimize the
function

1

2

T∑
t=1

(yt − xt)2 + χ

T∑
t=2

|xt − xt−1|, (4)

www.mii.lt/NA



Detection of multiple changes in mean by sparse parameter estimation 183

in the matrix form (1/2)‖y − x‖22 + χ‖Dx‖1, where D ∈ R(T−1)×T is the matrix

D =


1 −1

1 −1
. . . . . .

1 −1
1 −1

 .

The estimated trend is piecewise constant. The points where the estimated trend is changed
can be taken as estimates of change points.

5 Statistical methods

Consider model (1). Assuming σ2 given, the unknown parameters c, µ and δ may be
estimated by the least-squares method. The least-squares estimators ĉ, µ̂ and δ̂ of the
parameters c, µ and δ are defined as solutions of the minimization problem

min

{ k∑
t=1

(Yt − µ)2 +
T∑

t=k+1

(Yt − µ− δ)2; k ∈ {1, . . . , T − 1}, µ ∈ R, δ ∈ R
}
.

In other words, the unknown parameters are estimated in such a way that the sum of
squares of residuals is minimal. The estimates of the parameters µ and δ are (see [5] etc.)

µ̂ = Y ĉ and δ̂ = Y
0

ĉ − Y ĉ,

where ĉ is a solution of the maximization problem

ĉ = argmax

{√
T

k(T − k)
|Sk|; k ∈ {1, . . . , T − 1}

}
, (5)

where we denote Sk =
∑k
t=1(Yt − Y T ), Y T = (1/T )

∑T
t=1 Yt, Y ĉ = (1/ĉ)

∑ĉ
t=1 Yt

and Y
0

ĉ = 1/(T − ĉ)
∑T
t=ĉ+1 Yt.

In the case of multiple change points, we can use the described statistical method of
one change point detection via the following procedure. At first, find ĉ(1) by solving (5).
Secondly, divide observations into two groups Y1, . . . , Yĉ(1) and Yĉ(1)+1, . . . YT and find
the estimator in each group. The whole procedure is repeated until a “constant mean is
obtained”. This procedure is called “binary segmentation”.

The statistical computing environment R, package “changepoint”, offers several meth-
ods for multiple change point detection. For the purpose of comparison, we will employ
two basic approaches: detection of multiple change points using binary segmentation for
normally distributed data and the method based on cumulative sums with the use of binary
segmentation (see [1, 18–20]).
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6 Simulation study

For the purpose of performance study of the proposed method of multiple change point
detection we use simulations of process (2). We put T = 100, µ = 0, the error terms
are independent normally distributed with zero mean and the standard deviations σ =
0.1, 0.2, 0.5 and 1. Locations of change points were chosen at random uniformly in the
interval [5, 95], jumps δi (i = 1, . . . , p) taking heights ±1 (+ or − at random with equal
probability). The minimum distance between neighboring change points is 5. For each
number of change points out of p = 1, . . . , 15 we calculated 500 simulations of pro-
cess (2). A uniform distribution was used in the simulations to generate random position
of change points. In terms of change point detection, the change points are distributed
within intervals of equal length with the same probability. Thus, there is no preferred
position of change points. If we choose, for example, a normal distribution with the mean
in the middle of the interval, position change points are more likely close to this center.
As was shown in [6], detection of change points located in the middle of the process is
more successful than in the case that this jump is near the beginning or end of the process.
From this perspective, the choice of the uniform distribution is the most appropriate.

We applied ten methods to detect change points:

• the direct BPDN estimator based on p most significant atoms;

• the direct BPDN estimator based on p significant atoms exhibiting the highest
correlation with the data;

• the direct BPDN estimator based on the highest geometric mean of the correlation
coefficient and the contribution to the total `1 norm;

• the sequential BPDN estimator based on the most significant atom;

• the sequential BPDN estimator based on the significant atom with the highest cor-
relation;

• the sequential BPDN estimator based on the highest geometric mean of correlation
coefficient and the contribution to the total `1 norm;

• the LASSO algorithm;

• the adapted `1 trend filtering;

• the estimator for normally distributed data using the binary segmentation method;

• the cumulative sums estimator using the binary segmentation method.

We calculate empirical probability of successful change point detection as

empirical probability =
number of successful detections

number of simulations
.

The detection was a success provided that all p change points could be correctly
identified. The results are summarized by plots in Fig. 2.
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(a) (b)

(c) (d)

Fig. 2. Empirical probability of successful change point detection for: (a) σ = 0.1,
(b) σ = 0.2, (c) σ = 0.5, (d) σ = 1. BPDN – black solid, BPDN (the highest correlation)
– blue solid, BPDN (geometric mean) – red solid, sequential BPDN – black dashed,
sequential BPDN (the highest correlation) – blue dashed, sequential BPDN (geometric
mean) – red dashed, LASSO – green, adapted `1 trend filtering – black dotted, normal
data with binary segmentation – blue dotted, cumulative sums with binary segmentation –

red dotted. (Online version in colour.)

The empirical probability of the sequential methods is generally higher than the prob-
ability of the direct detection methods. We assumed that the difference between two
neighbouring atoms is at least 5. In the case of sequential methods we exclude all atoms
detected in preceding iterations.

Basis pursuit denoising estimates were computed in Matlab utilizing [21] and four-
step modification of BPDN (BPA4) from the toolbox [22]. A detailed description of
the BPA4 algorithm can be found in [23]. The LASSO estimates were calculated in R
using the package “lars”. The algorithm of least angle regression is used to get LASSO
estimates [24]. For the purpose of `1 trend filtering, the Matlab code written by Koh et
al. [25] was employed. The smoothing parameter χ was for σ = 0.1 and 0.2 set to 1,
for σ = 0.5 to 2 and for σ = 1 to 5. The package “changepoint” in the statistical
environment R was used to obtain the last two estimators.
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Fig. 3. Nuclear magnetic response during the drilling of a well.

7 Real data example

In this part of the article we will apply all of the aforementioned methods of change point
detection to time series comprising measurements of nuclear magnetic response made
during the drilling of a well (see [26,27]). The changes should correspond to the transition
between the different strata of rock. We will analyze a subset of this dataset containing
1200 measurements (from the index 1551 to 2750). Table 1 contains the results obtained

Table 1. The results of change point detection for time series of nuclear magnetic response
during the drilling of a well.

Method Change points estimates
BPDN 135 859 1041 919 982 316 498 59
(sorted) 59 135 316 498 859 919 982 1041

BPDN – corr. 134 59 1041 498 920 984 316 856
(sorted) 59 134 316 498 856 920 984 1041

BPDN – geom. mean 135 1041 919 982 59 498 316 859
(sorted) 59 135 316 498 859 919 982 1041

BPDN – seq. 135 859 141 1041 918 316 498 981
(sorted) 135 141 316 498 859 918 981 1041

BPDN – corr seq. 134 316 1041 498 858 919 981 126
(sorted) 126 134 316 498 858 919 981 1041

BPDN – geom. mean seq. 135 1041 316 859 498 920 981 145
(sorted) 135 145 316 498 859 920 981 1041

LASSO 135 1043 317 499 859 921 504 1061
(sorted) 135 317 499 504 859 921 1043 1061

adapted `1 trend filtering 1041 859 316 134 919 981 498 322
(sorted) 134 316 322 498 859 919 981 1041

Normal data 134 316 496 1042 858 919 981 676
(sorted) 134 316 496 676 858 919 981 1042

CUSUM 135 316 498 1041 858 919 981 676
(sorted) 135 316 498 676 858 919 981 1041
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by 10 described methods, where 8 change points were estimated. For each method there
is listed a sequence of change point estimates in the order they were detected, then these
estimates are sorted in ascending order for clarity. Seven possible position of change
points were detected (in the range 134–135, 316–317, 496–499, 919–920, 981–982 and
1041–1042). Only the method based on the LASSO algorithm did not find the change in
981–982. The estimates of the eighth change point whose position is not apparent differs
for each method. Similarly to the simulation study, we assumed that the difference be-
tween two neighboring change point estimates was at least 5. The smoothing parameter χ
in adapted `1 trend filtering was set to 105.

8 Conclusion

According to the simulation results the basis pursuit approach proposes a reasonable
detection method of change points in one-dimensional process. In the case of one change
point, the method based on significant atoms with the highest correlation with the process
yields better results than the method based on pure `1 minimization when the standard
deviation of the white noise is large. This is not valid for more than one change point
which can be drawn from the graphs of the empirical probability of successful change
point detection. It is apparent from the graphs that the sequential methods performed
better than the direct ones. The LASSO algorithm gives similar results for one or two
change points compared to non-sequential approaches when the level of the noise is
small. For more than two change points the LASSO algorithm offers lower empirical
probability of successful change point detection. For larger standard deviation of the
noise and small number of change points the LASSO gives a comparable result as the
method based on the correlation coefficient. As we can deduce from the simulations, the
adapted `1 filtering gives almost comparable results with the sequential methods (except
the method based on the highest correlation). However, for the standard deviation 0.2 and
high number of change points the empirical probability of successful detection of the two
proposed methods is higher than for adapted `1 filtering. If one wants to compare the
aforementioned statistical methods, it can be said according to the calculated empirical
probability, the estimators using the cumulative sums perform worse than the other one.
The sequential methods give, in most cases, better results than the statistical approaches.
In the case of large standard deviation and higher number of change points the differences
among the proposed methods nearly vanish.

In general, with the increasing number of change points the empirical probability
decreases as one can expect. The standard deviation of an additive white noise of the
process also affects the probability of successful detection. Higher values of the standard
deviation cause lower probability of successful detection.

As to the computational speed it should be noted that the LASSO algorithm, the
adapted `1 trend filtering and the algorithms for statistical estimates are significantly faster
than the algorithm BPA4 used for the basis pursuit denoising. In addition to the problem
of change point detection, the described four-step procedure using basis pursuit algorithm
can solve a number of problems of various types, such as signal processing [9], kernel
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smoothing [23], and ARMA models fitting [28]. This 4-step version of basis pursuit
algorithm usually gives better results than pure basis pursuit approach. The price for
this refinement is the increase in computation time. The aim of the article was not to
monitor the speed of algorithms but to focus on the ability of each method to correctly
detect potential changes. The dictionary created from Heaviside functions (atoms) can
be merged with another set of functions, i.e. Fourier dictionary (see [9]) or Gaussian
functions. The resulting dictionary can be applied to smooth the signal (the process)
containing abrupt changes (jumps).

The change point detection techniques may be useful in a broad range of real-world
problems, for instance in the modeling of economical or environmental time series where
jumps can occur.

In general, the scope of sparse modeling based on basis pursuit or other related algo-
rithms [29] goes far beyond the change-point problem.

It is because two factors are crucial for successful modeling: choice of an adequate
model and a numerically stable estimation procedure yielding reliable parameter esti-
mates. Unfortunately the ideas about a choice of an appropriate model are often very
vague and produce models where it is hard to balance the requirement on sufficient
regularity of the model (as few parameters as possible to guarantee numerical stabil-
ity) and feasible precision which forces the analyst to increase the number of model
components typically leading to overparameterization accompanied with non-uniqueness
and numerical instability of solutions. Then the obtained numerical solution (parameter
estimates) may strongly depend on the algorithm applied and consequently many of them
may accidentally produce instable solutions corrupted by round-off error propagation.

Thus there is a danger that statistical analysis on parameters is partially or fully inad-
equate because the results of numerical computations may be far from the theoretically
exact ones (the random effects are buried in round-off errors and cannot be separated).

For example, the papers [28, 30] may illustrate the above reasoning quite well.
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