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Abstract. In this paper, we establish exact solutions for nonlinear evolution equations in
mathematical physics. The exp-transform method is proposed to seek solitary solutions, periodic
solutions and compaction-like solutions of nonlinear differential equations. The generalized KdV
equation and the system of the shallow water wave equation are chosen to illustrate the effectiveness
and convenience of the method.
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1 Introduction

Many phenomena in physics and other fields are often described by non-linear partial
differential equations (PDE’s), such as fluid dynamics, plasma physics, mathematical bi-
ology, solid-state physics and chemical kinetics. When we want to understand the physical
mechanism of natural phenomenon described by non-linear PDE, exact solutions for the
nonlinear PDE have to be explored, thus the methods for deriving exact solutions for the
governing equations have to be developed. Exploring exact solutions of nonlinear PDE’s
has become one of most important topics in mathematical physics.

Up to now, there exist many powerful methods to construct exact solutions of non-
linear PDE’s. For example, the Wadati trace method [1–3], tanh-function method [4–7],
F -expansion method [8–10], Lie group theory [11–13], Hirota’s bilinear forms [14, 15],
the inverse scattering method [16] and exp-function method [17–20], etc.

The rest of the paper is organized as follows. In Section 2, we describe the exp-trans-
form method for finding travelling wave solutions of nonlinear evolution equations and
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give the main steps of the method here. In the subsequent sections, in Section 3 and Sec-
tion 4, we illustrate the method in detail with the generalized KdV equation and the system
of the shallow water wave equations. Finally, conclusions and discussion are given.

2 Exp-transform method

We consider a general nonlinear PDE in the form

P (u, ut, ux, uxx, utt, . . .) = 0, (1)

using a transformation
η = x− λt,

where λ is constant, we can rewrite Eq. (1) in the following nonlinear ODE:

Q(u, u′, u′′, u′′′, . . .) = 0. (2)

The exp-transform method is based on the assumption that travelling wave solutions
can be expressed in the following form [17–24]:

f(η) = f
(
ω(η)

)
=

∑n
i=−n aie

iω(η)∑m
i=−m bie

iω(η)
, (3)

where ai, bi are unknown constants. To determined values of m and n, we balance the
linear term of highest order in Eq. (2) with the highest order nonlinear term.

ω(η) is a solution of the following first-order ordinary differential equations contain-
ing exponential functions (SET means set of exact solutions) in various combinations:

ODE A:
dω

dη
= ω′ = ceω + ade−ω,

SET A: ωA,1 = ln

[√
d

c
tan
[√
cd(η − c1)

]]
if a = 1,

ωA,2 = ln

[
−
√
d

c
tanh

[√
cd(η − c1)

]]
if a = −1,

ODE B:
dω

dη
= ω′ = a

√
ad2e2ω(η) − acd,

SET B: ωB,1 = ln

[
−
√
c

d
sec
[√
cd(η − c1)

]]
if a = 1,

ωB,2 = ln

[
−
√
c

d
sech

[√
cd(η − c1)

]]
if a = −1,

ODE C:
dω

dη
= ω′ =

√
ad2e−2ω(η) − acd,
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SET C: ωC,1 = ln

[√
d

c
sin
[√
cd(η − c1)

]]
if a = 1,

ωC,2 = ln

[√
d

c
cosh

[√
cd(η − c1)

]]
if a = −1,

where cd > 0.
Substituting (3) into Eq. (2) along with their derivations relating to the given ODEs

A to C and yields a set of algebraic equations for eiω(η). Setting the coefficients of eiω(η)

to zero yields a set of over-determined algebraic equations with respect to the parameters
c, d, ai, bi, λ

3 The generalized Korteweg–de Vries equation (GKdV)

We next examine the GKdV equation:

ut − 30u2ux + 20uxuxx + 10uuxxx − uxxxxx = 0. (4)

The wave variable u(x, t) = u(η), where η = x− λt, carries the GKdV equation (4)
into a system of ODEs

λu′(η) + 30u(η)2u′(η)− 20u′(η)u′′(η)− 10u(3)(η)u(η) + u(5)(η) = 0. (5)

Case 1. We suppose that the solution of Eq. (5) can be expressed as

u(η) =

∑n
i=−n aie

iω(η)∑m
i=−m bie

iω(η)
, (6)

where ω′(η) = ceω + ade−ω . Eq. (6) can be re-written in an alternative form as follows:

u(η) =
ane

nµ + · · ·+ a−ne
−nµ

bmemµ + · · ·+ b−me−mµ

to determined values of m and n, we balance the linear term of highest order in Eq. (5)
with the highest order nonlinear term. By simple calculation, we have

u(5) =
c1e

(n+5m+5)µ + · · ·
c2e6mµ + · · ·

and

u2u′ =
c3e

(3n+m+1)µ + · · ·
c4e4mµ + · · ·

=
c3e

(3n+3m+1)µ + · · ·
c4e6mµ + · · ·

.

It is easy to find that n = m+ 2 by balancing u2u′ with u(5).
Solutions for m = 0 and ω′(η) = ceω + ade−ω:

u(η) = a−2e
−2ω(η) + a−1e

−ω(η) + a0 + a1e
ω(η) + a2e

2ω(η). (7)
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Substituting (7) into (5) and collecting the coefficients of eiω(η) we obtain a system
of algebraic equations for ai and λ. By solving this system, we obtain the following
solutions:

u1 = 2cd
(
3 coth2

[√
cd
(
x+ 896c2d2t− c1

)]
+ 3 tanh2

[√
cd
(
x+ 896c2d2t− c1

)]
− 2
)
,

u2 = 2cd
(
3 cot2

[√
cd
(
x+ 896c2d2t− c1

)]
+ 3 tan2

[√
cd
(
x+ 896c2d2t− c1

)]
+ 2
)
.

Solutions for m = 1 and ω′(η) = ceω + ade−ω:

u(η) =
a−3e

−3ω(η) + a−2e
−2ω(η) + · · ·+ a2e

2ω(η) + a3e
3ω(η)

b−1e−ω(η) + b0 + b1eω(η)
. (8)

Substituting (8) into (5) and collecting the coefficients of eiω(η) we obtain a system
of algebraic equations for ai, bj and λ. By solving this system, we obtain the following
solutions:

u3 = 2cd
(
1 + 3 cosech2

[√
cd
(
x+ 336c2d2t− c1

)]
+ tanh2

[√
cd
(
x+ 336c2d2t− c1

)])
,

u4 = 2cd
(
−2 + 3 cosec2

[√
cd(x+ 336c2d2t− c1)

]
+ sec2

[√
cd
(
x+ 336c2d2t− c1

)])
,

u5 = 2cd
(
2 + cosech2

[√
cd(x+ 336c2d2t− c1)

]
− 3 sech2

[√
cd
(
x+ 336c2d2t− c1

)])
.

Case 2. We suppose that the solution of Eq. (5) can be expressed as

u(η) =

∑n
i=−n aie

iω(η)∑m
i=−m bie

iω(η)
,

where ω′(η) = a
√
ad2e2ω(η) − acd. By balancing u2u′ with u(5):

n = m+ 2.

Solution for m = 0 and ω′(η) = a
√
ad2e2ω(η) − acd:

u(η) = a−2e
−2ω(η) + a−1e

−ω(η) + a0 + a1e
ω(η) + a2e

2ω(η). (9)

Substituting (9) into (5), and collecting the coefficients of eiω(η) we obtain a system
of algebraic equations for ai and λ. By solving this system, we obtain the following
solutions:

u6 = 2cd
(
tan2

[√
cd
(
x+ 2

(
8c2d2 + 20cda0 + 15a20

)
t− c1

)
]
)
.

www.mii.lt/NA



Some exact solutions to the generalized Korteweg–de Vries equation 31

Solutions for m = 1 and ω′(η) = a
√
ad2e2ω(η) − acd:

u(η) =
a−3e

−3ω(η) + a−2e
−2ω(η) + · · ·+ a2e

2ω(η) + a3e
3ω(η)

b−1e−ω(η) + b0 + b1eω(η)
. (10)

Substituting (10) into (5) and collecting the coefficients of eiω(η) we obtain a system
of algebraic equations for ai, bi and λ. By solving this system, we obtain the following
solutions:

u7 =
a−1
b−1

(
1− 3 sech2

[
1√
2

a−1
b−1

(
x+

14a2−1
b2−1

t− c1
)])

,

u8 =
4c2b1
b−1

(
cosech2

[
4c

√
b1
b−1

(
x+

896c4b21
b2−1

t− c1
)]
− 5

)

× sech2
[
2c

√
b1
b−1

(
x+

896c4b21
b2−1

t− c1
)]
,

where b1b−1 > 0, a−1b−1 > 0 and b−1 6= 0.

Case 3. We suppose that the solution of Eq. (5) can be expressed as

u(η) =

∑n
i=−n aie

iω(η)∑m
i=−m bie

iω(η)
,

where ω′(η) =
√
ad2e−2ω(η) − acd. It is easy to find that n = m+ 2 by balancing u2u′

with u(5).
Solutions for m = 1 and ω′(η) =

√
ad2e−2ω(η) − acd:

u(η) =
a−1e

−ω(η) + a0 + a1e
ω(η)

b−1e−ω(η) + b0 + b1eω(η)
. (11)

Substituting (11) into (5) and collecting the coefficients of eiω(η) we obtain a system
of algebraic equations for ai, bi and λ. By solving this system, we obtain the following
solutions:

u9 =
cb2−1(7− sin[ cb−1

b0
(x+

7c4b4−1

32b40
t− c1)])

8b20(1 + sin[ cb−1

b0
(x+

7c4b4−1

32b40
t− c1)])

, b0 6= 0,

u10 =
c2b2−1(1− 7 sech[ b−1c

b0
(x+

7c4b4−1

32b40
t− c1)])

8b20(1 + sech[ b−1c
b0

(x+
7c4b4−1

32b40
t− c1)])

, b0 6= 0.
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4 The system of the shallow water wave equation

We first consider the system of the shallow water wave equation in order to demonstrate
the exponential transform method

ut + (uv)x + vxxx = 0,

vt + ux + vvx = 0.
(12)

The wave variable η = x− λt carries Eq. (12) into the ODE

−λu′ + vu′ + uv′ + v(3) = 0,

u′ − λv′ + vv′ = 0,
(13)

where by integrating once the second equation and the constant integrations is zero, we
find

u = λv − v2

2
. (14)

Substituting Eq. (14) into the first equation of Eq. (13) we obtain

v(3)(η) +

(
3λv(η)− 3v(η)2

2
− λ2

)
v′(η) = 0. (15)

Case 1. We suppose that the solution of Eq. (15) can be expressed as

v(η) =

∑n
i=−n aie

iω(η)∑m
i=−m bie

iω(η)
, (16)

where ω′(η) = ceω+ade−ω . Eq. (16) can be re-written in an alternative form as follows:

v(η) =
ane

nµ + · · ·+ a−ne
−nµ

bmemµ + · · ·+ b−me−mµ
.

To determine values of m and n, we balance the linear term of higest order in Eq. (15)
with the highest order nonlinear term. By simple calculation, we have

v(3) =
c1e

(n+3m+3)µ + · · ·
c2e4mµ + · · ·

, v2v′ =
c3e

(3n+m+1)µ + · · ·
c4e4mµ + · · ·

.

By balancing v(3) with v2v′:
n = m+ 1.

Solutions for m = 0 and ω′(η) = ceω + ade−ω:

v(η) = a−1e
−ω(η) + a0 + a1e

ω(η). (17)
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Substituting (17) into (15) and collecting the coefficients of eiω(η) we obtain a system
of algebraic equations for ai and λ. By solving this system, we obtain the following
solutions:

u1 = −8cd cosech2
[
2
√
cd
(
x− 4

√
cdt− c1

)]
,

v1 = 2
√
cd
(
2− coth

[√
cd
(
x− 4

√
cdt− c1

)]
− tanh

[√
cd
(
x− 4

√
cdt− c1

)])
,

u2 = −2cd
(
tan2

[√
cd
(
x− 2

√
2cdt− c1

)]
+ cot2

[√
cd
(
x− 2

√
2cdt− c1

)])
,

v2 = 2
√
cd
(
2 csc

[
2
√
cd
(
x− 2

√
2cdt− c1

)]
+
√
2
)
.

Solutions for m = 1 and ω′(η) = ceω + ade−ω:

v(η) =
a−2e

−2ω(η) + a−1e
−ω(η) + a0 + a1e

ω(η) + a2e
2ω(η)

b−1e−ω(η) + b0 + b1eω(η)
. (18)

Substituting (18) into (15) and collecting the coefficients of eiω(η) we obtain a system
of algebraic equations for ai, bi and λ. By solving this system, we obtain the following
solutions:

u3 = −8ca0
3b1

cosech2
[
2
√
a0c(x− 8

√
cdt− c1)√

3b1

]
,

v3 = −
4
√
a0c (coth[

√
a0c(x−8

√
cdt−c1)√

3b1
]− 1)2

√
3b1[tanh[

√
a0c (x−8

√
cdt−c1)

2
√
3b1

] + coth[
√
a0c(x−8

√
cdt−c1)

2
√
3b1

]]
,

where b1 6= 0,

u4 = −a
2
0

b20

(
cosh

[a0(x+ 8db0
b−1

t− c1)
b0

]
− 1

)−1
,

v4 = −a0
b0

(
coth

[a0(x+ 8db0
b−1

t− c1)
b0

]
+ 1

)
,

where λ = 8cdb0/(a0 − 2db1), b0 6= 0, M = 2 +
√
3 +

√
3 + 2

√
3 and N = 1 +

√
3.

Case 2. We suppose that the solution of Eq. (15) can be expressed as

v(η) =

∑n
i=−n aie

iω(η)∑m
i=−m bie

iω(η)
,

where ω′(η) = a
√
ad2e2ω(η) − acd. By balancing v(3) with v2v′:

n = m+ 1.

Solution for m = 0 and ω′(η) = a
√
ad2e2ω(η) − acd:

u(η) = a−1e
−ω(η) + a0 + a1e

ω(η). (19)
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Substituting (19) into (15) and collecting the coefficients of eiω(η) we obtain a system
of algebraic equations for ai and λ. By solving this system, we obtain the following
solutions:

u5 =
a20
2

(
1− 2 sec2

[
a0(x− a0t− c1)√

2

])
,

v5 = a0

(
1 +
√
2 sec2

[
a0(x− a0t− c1)√

2

])
.

Case 3. We suppose that the solution of Eq. (15) can be expressed as

v(η) =

∑n
i=−n aie

iω(η)∑m
i=−m bie

iω(η)
,

where ω′(η) =
√
ad2e−2ω(η) − acd. By balancing v(3) with v2v′:

n = m.

Solutions for m = 1 and ω′(η) =
√
ad2e−2ω(η) − acd:

u(η) =
a−1e

−ω(η) + a0 + a1e
ω(η)

b−1e−ω(η) + b0 + b1eω(η)
. (20)

Substituting (20) into (15) and collecting the coefficients of eiω(η) we obtain a system
of algebraic equations for ai, bi and λ. By solving this system, we obtain the following
solutions:

u6 = −a−1c
4b0

(
csc2

[√
a−1c (x− a1

b1
t− c1)

2
√
2
√
b0

]
+ sec2

[√
a−1c (x− a1

b1
t− c1)

2
√
2
√
b0

]
− 2

)
,

v6 =

(
√
a−1c b1

(√
2 sin

[√
a−1c (x− a1

b1
t− c1)√

2
√
b0

]
+ 2

)
+ 2b

3/2
0 c

(√
2 csc

[√
a−1c (x− a1

b1
t− c1)√

2
√
b0

]
+ 1

))
×
(√

2b1
√
b0 sin

[√
a−1c (x− a1

b1
t− c1)√

2
√
b0

]
+ 2b20

√
a−1c

)−1
,

where a−1c > 0, b0 > 0.

5 Conclusions

The exp-transform method is proposed to obtain more general solutions of nonlinear evo-
lution equations in mathematical physics. The generalized KdV equation and the system
of the shallow water wave equation was used as a vehicle to achieve our goal. These exact
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solutions include hyperbolic function solution, trigonometric solution and exponential
function solution. It was formally derived that the solutions leads to both solitary solutions
and periodic solutions for the first case. The performance of the exp-transform method is
reliable, effective. The applied method, with the aid of MATHEMATCA or MATLAB,
can be easily extended to all kinds of nonlinear evolution equations in mathematical
physics.
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