Blow-up of the solution of a nonlinear Schrödinger equation system with periodic boundary conditions

Feliksas Ivanauskas, Gintaras Puriuškis

Faculty of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania
feliksas.ivanauskas@mif.vu.lt; gintaras.puriuskis@maf.vu.lt

Received: 22 March 2012 / Revised: 29 June 2012 / Published online: 25 January 2013
Abstract. We consider a system of nonlinear Schrödinger equations with periodic boundary conditions of the form

$$
\begin{aligned}
& \mathrm{i} \frac{\partial u_{j}}{\partial t}+D^{2} u_{j}=-f_{j}(u, \bar{u}), \quad t \geqslant 0, \quad x \in(-2,2), \\
& u_{j}(0, x)=u_{j 0}(x), \quad x \in(-2,2), \\
& D^{k} u_{j}(t,-2)=D^{k} u_{j}(t, 2), \quad t \geqslant 0, \quad k=0,1,
\end{aligned}
$$

where $D=\partial / \partial x, j=1, \ldots, m, f_{j}(u, \bar{u})=\partial g(u, \bar{u}) / \partial \bar{u}$, and $\partial g / \partial u_{j}=\bar{f}_{j}$ for some homogenous function $g(u, \bar{u})$ such that $g(\lambda u, \lambda \bar{u})=\lambda^{6} g(u, \bar{u})$. We obtain sufficient conditions for blow-up of solutions of this system in $C^{1}\left(\left[0, t_{0}\right) ; H^{2}(-2,2)\right)$.

Keywords: Schrödinger equations, blow-up, periodic boundary condition.

1 Introduction

In this paper, we consider a following system of nonlinear Schrödinger equations with periodic boundary conditions of the form

$$
\begin{align*}
& \mathrm{i} \frac{\partial u_{j}}{\partial t}+D^{2} u_{j}=-f_{j}(u, \bar{u}), \quad t \geqslant 0, \quad x \in I \tag{1}\\
& u_{j}(0, x)=u_{j 0}(x), \quad x \in I, \tag{2}\\
& D^{k} u_{j}(t,-2)=D^{k} u_{j}(t, 2), \quad t \geqslant 0, \quad k=0,1, \tag{3}
\end{align*}
$$

where $D=\partial / \partial x, j=1, \ldots, m, I=(-2,2), u=\left(u_{1}, \ldots, u_{m}\right)$ is a vector function, $\bar{u}=\left(\bar{u}_{1}, \ldots, \bar{u}_{m}\right), \bar{u}_{j}$ is complex conjugate to u_{j}, and $f_{j}(u, \bar{u})$ are functions of $2 m$ variables. We assume that the functions $f_{j}(u, \bar{u})$ satisfy the following conditions:
1)

$$
\begin{equation*}
\operatorname{Im} \sum_{j=1}^{m} f_{j}(u, \bar{u}) \bar{u}_{j}=0, \tag{4}
\end{equation*}
$$

2) there exists a differentiable function $g(u, \bar{u})$ of $2 m$ variables such that
(a)

$$
\begin{equation*}
\frac{\partial g}{\partial \bar{u}_{j}}=f_{j}, \quad \frac{\partial g}{\partial u_{j}}=\bar{f}_{j}, \quad j=1, \ldots, m \tag{5}
\end{equation*}
$$

(b) $g(u, \bar{u})$ is a sixth-order homogeneous function, i.e.,

$$
\begin{equation*}
g(\lambda u, \lambda \bar{u})=\lambda^{6} g(u, \bar{u}), \quad \lambda \in \mathbb{R}, \tag{6}
\end{equation*}
$$

(c) the real part of $g(u, \bar{u})$ is nonnegative for all u, i.e.,

$$
\begin{equation*}
\operatorname{Re} g(u, \bar{u}) \geqslant 0 \tag{7}
\end{equation*}
$$

We suppose that the solution u of $(1)-(3)$ is in $C^{1}\left(\left[0, t_{0}\right) ; H^{2}(-2,2)\right)$. An example of system (1) satisfying conditions (4)-(7) is the following system:

$$
\begin{align*}
& \mathrm{i} \frac{\partial u_{1}}{\partial t}+D^{2} u_{1}=-\left|u_{2}\right|^{2}\left|u_{3}\right|^{2} u_{1} \\
& \mathrm{i} \frac{\partial u_{2}}{\partial t}+D^{2} u_{2}=-\left|u_{1}\right|^{2}\left|u_{3}\right|^{2} u_{2} \tag{8}\\
& \mathrm{i} \frac{\partial u_{3}}{\partial t}+D^{2} u_{3}=-\left|u_{1}\right|^{2}\left|u_{2}\right|^{2} u_{3}
\end{align*}
$$

where $g(u, \bar{u})=\left|u_{1}\right|^{2}\left|u_{2}\right|^{2}\left|u_{3}\right|^{2}$. For $m=1$, system (1) generalizes the one-dimensional Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \frac{\partial u}{\partial t}+D^{2} u=-|u|^{4} u \tag{9}
\end{equation*}
$$

where $g(u, \bar{u})=|u|^{6} / 3$.
In this paper, we obtain a sufficient condition for the blow-up of solutions (1)-(3): the solution of (1)-(3) blows up if

$$
\sum_{j=1}^{m}\left\|D u_{j}\right\|_{L^{2}(I)} \rightarrow \infty \quad \text { as } t \rightarrow t_{0}
$$

for some finite number $t_{0}>0$.
The problems concerning blow-up and stabilization for nonlinear Schrödinger equations and systems of nonlinear Schrödinger equations were considered in [1-20]. The blow-up problem of (9) in the whole real line \mathbb{R} was considered by many authors, see $[6,7,11,16,19]$. System (1) of Schrödinger equations for $I=\mathbb{R}^{n}$ is considered in [3, 4]. The periodic solutions of Schrödinger equation are considered in [5, 9, 15]. Ogawa and Tsutsumi [15] found a sufficient condition for the blow-up of the periodic solution of the Schrödinger equation (9) for $I=(-2,2)$. We set

$$
E(u(t))=\int_{I} \sum_{j=1}^{m}\left|D u_{j}\right|^{2} \mathrm{~d} x-\operatorname{Re} \int_{I} g(u, \bar{u}) \mathrm{d} x
$$

and $E\left(u_{0}\right)=E_{0}$. In the case $I=\mathbb{R}$, the inequality $E\left(u_{0}\right)<0$ is a sufficient condition for the solution of (1) and (2) to blow up in finite time $t_{0}>0$ (see [3]). However, in general, the condition $E\left(u_{0}\right)<0$ is not sufficient for the blow-up of (1)-(3). For example, let us consider the initial-value problem of the following system of ordinary differential equations:

$$
\begin{equation*}
\mathrm{i} \frac{\partial z_{j}(t)}{\partial t}=-f_{j}(z, \bar{z}), \quad z(0)=z_{0 j}, \quad j=1, \ldots, m \tag{10}
\end{equation*}
$$

For any fixed $z_{0 j} \in \mathbb{C}$, problem (10) has a unique global solution. This solution is also a solution of problem (1)-(3), although the condition $E\left(u_{0}\right)<0$ is satisfied.

Before stating our result, let us first give some notation. Let $K C^{3}(a, b)$ be the class of all functions $h:[a, b] \rightarrow \mathbb{R}$ satisfying the following conditions: $D^{j} h \in C(a, b) \cap$ $L^{\infty}(a, b)$ for $j=0,1,2, D^{3} h$ may have a finite number of discontinuities in the interval $(a, b), D^{3} h \in L^{\infty}(a, b)$. Let $\phi \in K C^{3}(\mathbb{R})$ be defined by

$$
\phi(x)= \begin{cases}x, & 0 \leqslant x<1 \\ x-(x-1)^{3}, & 1 \leqslant x<1+1 / \sqrt{3} \\ h(x), & 1+1 / \sqrt{3} \leqslant x<2 \\ 0, & 2 \leqslant x\end{cases}
$$

where $D h(x) \leqslant 0$ for $x \geqslant 1+1 / \sqrt{3}, D^{k} h(2)=0, k=0,1,2$, and $\phi(-x)=\phi(-x)$. Set

$$
\begin{gather*}
\Phi(x)=\int_{0}^{x} \phi(y) \mathrm{d} y \\
M_{k}=\left\|D^{k} \phi\right\|_{L^{\infty}}, \quad k=1,3, \quad M_{2}=\max \left(\sqrt{3}, \frac{\left\|D^{2} \phi\right\|_{L^{\infty}}}{2}\right), \tag{11}\\
c=\max _{|u|=1}|g(u, \bar{u})| . \tag{12}
\end{gather*}
$$

There it is known that $M_{k} \leqslant 537+297 \sqrt{3}=1051.419 \ldots$ if $h(x)$ is the sixth order polynomial, see [17]. Note that the maximum (12) always exists because the unit sphere $|u|=1$ is a compact set and g is a continuous function. For example, $c=1 / 27$ for system (8), and $c=1 / 3$ for (9). For a positive integer k, we define

$$
H_{p r d}^{k}=\left\{v \in H^{k}(I) ; D^{j} v(-2)=D^{j} v(2), j=0,1, \ldots, k-1\right\}
$$

The sufficient conditions of blow up solution is the following theorem in [15].
Theorem 1. Let $u_{0} \in H^{1}(I), u_{0}(-2)=u_{0}(2)$ and $E\left(u_{0}\right)<0$. In addition we assume that

$$
\begin{aligned}
\eta= & -2 E\left(u_{0}\right)-80(1+M)^{2}\left\|u_{0}\right\|_{L^{2}(I)}^{6}-\frac{M}{2}\left\|u_{0}\right\|_{L^{2}(I)}^{2}>0, \\
& \left(\int_{I} \Phi(x)\left|u_{0}(x)\right|^{2} \mathrm{~d} x\right)\left(\frac{2}{\eta}\left\|D u_{0}\right\|_{L^{2}(I)}^{2}+1\right) \leqslant \frac{1}{16},
\end{aligned}
$$

where $M=\sum_{j=1}^{3}\left\|D^{j} \phi\right\|_{L^{\infty}(I)}$. Then the solution $u(t)$ in $H^{1}(\mathbb{R})$ of (1), (3), $u_{j}(t,-2)=$ $u_{j}(t, 2)$ blows up in a finite time.

Our main result is the following theorem.
Theorem 2. Let $u_{j 0} \in H_{p r d}^{2}, u(t)$ be a solution of (1)-(3) in $C^{1}\left(\left[0, t_{0}\right) ; H^{2}(-2,2)\right)$, and let $f_{j}, j=1, \ldots, m$, satisfy conditions (4)-(7). In addition, assume that

$$
\begin{align*}
\eta= & -2 E\left(u_{0}\right)-\left(16 M_{2}^{2}+32\left(1+M_{1}\right)\right) \frac{1}{32 c \sqrt{32 c}}-\frac{M_{3}}{2} \frac{1}{\sqrt{32 c}}>0, \tag{13}\\
& \sum_{j=1}^{m} \int_{I} \Phi(x)\left|u_{j 0}(x)\right|^{2} \mathrm{~d} x\left(\frac{2}{\eta}\left\|D u_{j 0}\right\|_{L^{2}(I)}^{2}+1\right) \leqslant \frac{1}{4 \sqrt{32 c}} . \tag{14}
\end{align*}
$$

Then the solution $u(t)$ blows up in finite time, i.e., $\sum_{j=1}^{m}\left\|D u_{j}\right\|_{L^{2}(I)} \rightarrow \infty$ as $t \rightarrow t_{0}$.
Note that the inequalities in Theorem 1 are satisfied if are satisfied the corresponding inequalities (13) and (14) in Theorem 2 for $m=1$.

2 Proof of Theorem 2

In this section, we state several lemmas and prove Theorem 2.
Lemma 1. Let $u_{j 0} \in H_{p r d}^{2}, u_{j}(t)$ be a solution of (1)-(3), $u_{j}(t) \in C^{1}\left(\left[0, t_{0}\right) ; H_{p r d}^{2}(I)\right)$, and f_{j} satisfy (4)-(7), $j=1, \ldots, m$. Then the following two conservation laws hold for $0<t<t_{0}$:

$$
\begin{gather*}
\sum_{j=1}^{m}\left\|u_{j}(t)\right\|_{L^{2}(I)}=\sum_{j=1}^{m}\left\|u_{j 0}\right\|_{L^{2}(I)}, \tag{15}\\
E(u(t))=E_{0} \tag{16}
\end{gather*}
$$

Proof. We multiply the j th equation of (1) by \bar{u}_{j}, integrate over I, take the sum over $j=1, \ldots, m$, and take the imaginary part. Integrating by parts, we get that conditions (3) and (4) yield (15).

Now we prove (16). Equalities (5) imply

$$
\begin{equation*}
\operatorname{Re} \frac{\partial g}{\partial \bar{u}_{j}}=\operatorname{Re} \frac{\partial g}{\partial u_{j}}, \quad \operatorname{Im} \frac{\partial g}{\partial \bar{u}_{j}}=-\operatorname{Im} \frac{\partial g}{\partial u_{j}}, \tag{17}
\end{equation*}
$$

and

$$
\operatorname{Re} \frac{\partial g}{\partial u_{j}} \frac{\partial u_{j}}{\partial t}=\operatorname{Re} \frac{\partial g}{\partial \bar{u}_{j}} \frac{\partial \bar{u}_{j}}{\partial t} .
$$

Hence,

$$
\begin{align*}
\sum_{j=1}^{m} \operatorname{Re} f_{j} \frac{\partial \bar{u}_{j}}{\partial t} & =\sum_{j=1}^{m} \operatorname{Re} \frac{\partial g}{\partial \bar{u}_{j}} \frac{\partial \bar{u}_{j}}{\partial t}=\frac{1}{2} \operatorname{Re}\left(\sum_{j=1}^{m} \frac{\partial g}{\partial \bar{u}_{j}} \frac{\partial \bar{u}_{j}}{\partial t}+\sum_{j=1}^{m} \frac{\partial g}{\partial u_{j}} \frac{\partial u_{j}}{\partial t}\right) \\
& =\frac{1}{2} \operatorname{Re} \frac{\partial g}{\partial t} \tag{18}
\end{align*}
$$

We multiply the j th equation of (1) by $\partial \bar{u}_{j} / \partial t$, integrate over I, take the sum over $j=$ $1, \ldots, m$, take the real part, and use (18) to obtain (16).

The following lemma is Lemma 2.1 in [15].
Lemma 2. Let $v \in H^{1}(I), v(-2)=v(2)$, and ρ be a real-valued function such that $D \rho \in L^{\infty}$ and $\rho(-2)=\rho(2)$. Then we have

$$
\begin{align*}
& \|\rho v\|_{L^{\infty}(1<|x|<2)} \\
& \quad \leqslant \sqrt{2}\|v\|_{L^{2}(1<|x|<2)}^{1 / 2}\left[2\left\|\rho^{2} D v\right\|_{L^{2}(1<|x|<2)}\right. \\
& \left.\quad+\sqrt{2}\left\|\rho^{2} v\right\|_{L^{2}(1<|x|<2)}^{1 / 2}+\left\|v D \rho^{2}\right\|_{L^{2}(1<|x|<2)}\right]^{1 / 2} \tag{19}
\end{align*}
$$

Lemma 3. Let $0<t<t_{0}$, and $u_{j}(t)$ be a solution of (1)-(3) in $C^{1}\left(\left[0, t_{0}\right) ; H_{p r d}^{2}\right)$, $j=1, \ldots, m$. Then we have

$$
\begin{align*}
& -\sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j}(t) D \bar{u}_{j}(t) \mathrm{d} x+\sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j 0} D \bar{u}_{j 0} \mathrm{~d} x \\
& =\int_{0}^{t}\left(2 \sum_{j=1}^{m} \int_{I} D \phi\left|D u_{j}(s)\right|^{2} \mathrm{~d} x-2 \operatorname{Re} \int_{I} D \phi g\left(u_{j}(s), \bar{u}_{j}(s)\right) \mathrm{d} x\right. \\
& \left.\quad-\frac{1}{2} \sum_{j=1}^{m} \int_{I} D^{3} \phi\left|u_{j}(s)\right|^{2} \mathrm{~d} x\right) \mathrm{d} s \tag{20}\\
& \quad=\int_{I} \Phi\left|u_{j 0}\right|^{2} \mathrm{~d} x-2 \int_{0}^{t}\left(\operatorname{Im} \int_{I} \phi u_{j}(s) D \bar{u}_{j}(s) \mathrm{d} x\right) \mathrm{d} s, \quad j=1, \ldots, m
\end{align*}
$$

for $0 \leqslant t<t_{0}$.
Proof. We multiply the j th equation of (1) by $\phi D \bar{u}_{j}$, integrate over I, take the sum over $j=1, \ldots, m$, and take the real part. We use (17) and integrate by parts to obtain

$$
\begin{align*}
- & \sum_{j=1}^{m} \frac{\partial}{\partial t} \operatorname{Im} \int_{I} \phi u_{j}(t) D \bar{u}_{j}(t) \mathrm{d} x-\sum_{j=1}^{m} \operatorname{Im} \int_{I} D \phi u_{j}(t) \frac{\partial \bar{u}_{j}}{\partial t} \mathrm{~d} x \\
& =\sum_{j=1}^{m} \int_{I} D \phi\left|D u_{j}(t)\right|^{2} \mathrm{~d} x+\operatorname{Re} \int_{I} D \phi g(u(t), \bar{u}(t)) \mathrm{d} x . \tag{22}
\end{align*}
$$

The homogenous function $g(u, \bar{u})$ satisfies the following Euler equality:

$$
\begin{equation*}
\sum_{j=1}^{m} \frac{\partial g}{\partial u_{j}} u_{j}+\sum_{j=1}^{m} \frac{\partial g}{\partial \bar{u}_{j}} \bar{u}_{j}=6 g . \tag{23}
\end{equation*}
$$

Equalities (17) and (23) give

$$
\begin{equation*}
\sum_{j=1}^{m} \operatorname{Re} \bar{f}_{j} u_{j}=\sum_{j=1}^{m} \operatorname{Re} \frac{\partial g}{\partial u_{j}} u_{j}=\frac{1}{2} \operatorname{Re} \sum_{j=1}^{m}\left(\frac{\partial g}{\partial \bar{u}_{j}} u_{j}+\frac{\partial g}{\partial \bar{u}_{j}} \bar{u}_{j}\right)=3 \operatorname{Re} g . \tag{24}
\end{equation*}
$$

We next multiply the complex conjugate of (1) by $D \phi u_{j}$, integrate both sides over I, take the sum over $j=1, \ldots, m$, and take the real part. We use (24) and integrate by parts to obtain

$$
\begin{align*}
\sum_{j=1}^{m} & \operatorname{Im} \int_{I} D \phi u_{j}(t) \frac{\partial \bar{u}_{j}}{\partial t} \mathrm{~d} x \\
= & \sum_{j=1}^{m} \int_{I} D \phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x-3 \operatorname{Re} \int_{I} D \phi g(u(t), \bar{u}(t)) \mathrm{d} x \\
& -\frac{1}{2} \sum_{j=1}^{m} \int_{I} D^{3} \phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x . \tag{25}
\end{align*}
$$

Substituting (25) into (22) and integrating the both sides of (22) over ($0, t$), we obtain (20).
We next multiply the complex conjugate of (1) by Φu_{j}, integrate both sides over I, take the sum over $j=1, \ldots, m$, and take the imaginary part. We integrate by parts and use the the equality $\Phi(-2)=\Phi(2)$ to obtain (21).

Lemma 4. Let $u_{j}(t) \in H^{1}(I), j=1, \ldots, m,|u|^{2}=\sum_{j=1}^{m}\left|u_{j}\right|^{2}$, and $I=(-2,2)$. Then $D|u| \in L^{2}(I)$ and

$$
\begin{align*}
& \int_{1<|x|<2}(1-D \phi)|u|^{6} \mathrm{~d} x \\
& \leqslant 32\|u\|_{L^{2}(1<|x|<2)}^{4} \sum_{j=1}^{m} \int_{1<|x|<2}(1-D \phi)\left|D u_{j}\right|^{2} \mathrm{~d} x \\
& \quad+\left(32+32 M_{1}+16 M_{2}^{2}\right)\|u\|_{L^{2}(1<|x|<2)}^{6} \tag{26}
\end{align*}
$$

Proof. The inequality

$$
\begin{align*}
& \int_{I}|(D|u|)|^{2} \mathrm{~d} x \\
& \quad=\int_{I} \frac{\left|\sum_{j=1}^{m} D\left(\left|u_{j}\right|^{2}\right)\right|^{2}}{4|u|^{2}} \mathrm{~d} x=\int_{I} \frac{\left|\sum_{j=1}^{m} u_{j} D \bar{u}_{j}\right|^{2}}{|u|^{2}} \mathrm{~d} x \\
& \quad \leqslant \int_{I} \frac{\sum_{j=1}^{m}\left|u_{j}\right|^{2} \sum_{j=1}^{m}\left|D \bar{u}_{j}\right|^{2}}{|u|^{2}} \mathrm{~d} x=\int_{I} \sum_{j=1}^{m}\left|D u_{j}\right|^{2} \mathrm{~d} x<\infty \tag{27}
\end{align*}
$$

gives $D|u| \in L^{2}(I)$.

We next estimate the integral $\int_{1<|x|<2}(1-D \phi) g \mathrm{~d} x$. Set $\rho(x)=(1-D \phi(x))^{1 / 4}$. We use inequalities (19) and

$$
\left(a_{1}+a_{2}+a_{3}\right)^{2} \leqslant 2 a_{1}^{2}+4 a_{2}^{2}+4 a_{3}^{2}, \quad a_{k} \in \mathbb{R}, \quad k=1,2,3,
$$

for the estimate

$$
\begin{align*}
& \int_{1<|x|<2} \rho^{4}|u|^{6} \mathrm{~d} x \leqslant\|u\|_{1<|x|<1}^{2}\|\rho u\|_{L^{\infty}(1<|x|<1)}^{4} \\
& \leqslant 4\|u\|_{L^{2}(1<|x|<2)}^{4}\left(2\left\|\rho^{2} D|u|\right\|_{L^{2}(1<|x|<2)}+\sqrt{2}\left\|\rho^{2} u\right\|_{L^{2}(1<|x|<2)}\right. \\
& \left.\quad+\left\|u D \rho^{2}\right\|_{L^{2}(1<|x|<2)}\right)^{2} \\
& \leqslant \\
& \quad 32\|u\|_{L^{2}(1<|x|<2)}^{4}\left\|\rho^{2} D|u|\right\|_{L^{2}(1<|x|<2)}^{2}+32\|u\|_{L^{2}(1<|x|<2)}^{4}\left\|\rho^{2} u\right\|_{L^{2}(1<|x|<2)}^{2} \tag{28}\\
& \quad+16\|u\|_{L^{2}(1<|x|<2)}^{6}\left\|D \rho^{2}\right\|_{L^{\infty}(1<|x|<2)}^{2} .
\end{align*}
$$

We have (see the proof of Lemma 2.3 in [15])

$$
\begin{equation*}
\left\|D \rho^{2}\right\|_{L^{\infty}(1<|x|<2)} \leqslant M_{2} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\rho^{2} D|u|\right\|_{L^{2}(1<|x|<2)}^{2} \leqslant \sum_{j=1}^{m} \int_{1<|x|<2}(1-D \phi)\left|D u_{j}\right|^{2} \mathrm{~d} x \tag{30}
\end{equation*}
$$

The proof of (30) is similar to that of (27). Inequalities (28), (29), and (30) yield (26).
Lemma 5. Let $0<t_{0} \leqslant \infty$, and $u_{j}(t)$ be a solution of (1)-(3) in $C^{1}\left(\left[0, t_{0}\right) ; H_{p r d}^{2}\right)$, $j=1, \ldots, m$. If $u_{j}(t)$ satisfy

$$
\begin{equation*}
\sum_{j=1}^{m}\left\|u_{j}(t)\right\|_{L^{2}(1<|x|<2)}^{2}<\frac{1}{\sqrt{32 c}} \tag{31}
\end{equation*}
$$

for $0 \leqslant t<t_{0}$, then we have

$$
\begin{aligned}
& -\sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j}(t) D \bar{u}_{j}(t) \mathrm{d} x+\sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j 0} D \bar{u}_{j 0} \mathrm{~d} x \\
& \quad \leqslant\left(2 E\left(u_{0}\right)+\left(16 M_{2}^{2}+32\left(1+M_{1}\right)\right) \frac{1}{32 c \sqrt{32 c}}+\frac{M_{3}}{2} \frac{1}{\sqrt{32 c}}\right) t, \quad 0 \leqslant t<t_{0}
\end{aligned}
$$

where $M_{k}, k=1,2,3$, and c are defined in (11)-(12).
Proof. From the conservation law (16) we have

$$
\begin{equation*}
\sum_{j=1}^{m} \int_{|x|<1}\left|D u_{j}\right|^{2} \mathrm{~d} x=E_{0}-\sum_{j=1}^{m} \int_{1<|x|<2}\left|D u_{j}\right|^{2} \mathrm{~d} x+\operatorname{Re} \int_{I} g(u(t), \bar{u}(t)) \mathrm{d} x . \tag{32}
\end{equation*}
$$

Combining the equality $D \phi=1$ for $|x|<1$ and (20) with (32), we obtain

$$
\begin{align*}
& -\sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j}(t) D \bar{u}_{j}(t) \mathrm{d} x+\sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j 0} D \bar{u}_{j 0} \mathrm{~d} x \\
& =\int_{0}^{t}\left(2 E_{0}-2 \sum_{j=1}^{m} \int_{1<|x|<2}\left|D u_{j}(t)\right|^{2} \mathrm{~d} x+2 \operatorname{Re} \int_{I} g(u(t), \bar{u}(t)) \mathrm{d} x\right. \\
& \quad+2 \sum_{j=1}^{m} \int_{1<|x|<2} D \phi\left|D u_{j}(t)\right|^{2} \mathrm{~d} x-2 \operatorname{Re} \int_{I} D \phi g(u(t), \bar{u}(t)) \mathrm{d} x \\
& \left.\quad-\frac{1}{2} \sum_{j=1}^{m} \int_{I} D^{3} \phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x\right) \mathrm{d} t \\
& =\int_{0}^{t}\left(2 E_{0}-2 \sum_{j=1}^{m} \int_{1<|x|<2}(1-D \phi)\left|D u_{j}(t)\right|^{2} \mathrm{~d} x\right. \\
& \left.\quad+2 \operatorname{Re} \int_{(1-D \phi)} \quad 1-2(u(t), \bar{u}(t)) \mathrm{d} x-\frac{1}{2} \sum_{j=1}^{m} \int_{I} D^{3} \phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x\right) \mathrm{d} t . \tag{33}
\end{align*}
$$

We use (12) to estimate the integral

$$
\begin{equation*}
\operatorname{Re} \int_{1<|x|<2}(1-D \phi) g(u(t), \bar{u}(t)) \mathrm{d} x \leqslant c \int_{1<|x|<2}(1-D \phi)|u|^{6} \mathrm{~d} x . \tag{34}
\end{equation*}
$$

The inequalities $D \phi \leqslant 1$ and (7) give us that the left-hand side of inequality (34) is nonnegative. Inequalities (26), (31), and (34) imply

$$
\begin{align*}
& \operatorname{Re} \int_{1<|x|<2}(1-D \phi) g(u(t), \bar{u}(t)) \mathrm{d} x \\
& \quad \leqslant 32 c\|u\|_{L^{2}(1<|x|<2)}^{4} \sum_{j=1}^{m} \int_{1<|x|<2}(1-D \phi)\left|D u_{j}\right|^{2} \mathrm{~d} x \\
& \quad+\left(32+32 M_{1}+16 M_{2}\right) \frac{1}{32 \sqrt{32 c}} . \tag{35}
\end{align*}
$$

Inequalities (31) and (35) and Eq. (33) yield

$$
-\sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j}(t) D \bar{u}_{j}(t) \mathrm{d} x+\sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j 0} D \bar{u}_{j 0} \mathrm{~d} x
$$

$$
\begin{aligned}
\leqslant & \int_{0}^{t}\left(2 E_{0}-2\left(1-32 c\|u\|_{L^{2}(1<|x|<2)}^{4}\right) \sum_{j=1}^{m} \int_{1<|x|<2}\left|D u_{j}(t)\right|^{2} \mathrm{~d} x\right. \\
& \left.\quad+\left(32+32 M_{1}+16 M_{2}\right) \frac{1}{32 \sqrt{32 c}}+\frac{M_{3}}{2 \sqrt{32 c}}\right) \mathrm{d} t \\
\leqslant & \int_{0}^{t}\left(2 E_{0}+\left(32+32 M_{1}+16 M_{2}\right) \frac{1}{32 \sqrt{32 c}}+\frac{M_{3}}{2 \sqrt{32 c}}\right) \mathrm{d} t \\
= & \left(2 E_{0}+\left(32+32 M_{1}+16 M_{2}\right) \frac{1}{32 \sqrt{32 c}}+\frac{M_{3}}{2 \sqrt{32 c}}\right) t .
\end{aligned}
$$

Proof of Theorem 2. Suppose, on the contrary, that the solution of (1)-(3) does not blow up for all $t \geqslant 0$. We first prove that condition (31) holds for all $t \geqslant 0$, while the solution $u(t)$ exists (does not blow up) if (14) is satisfied. Inequalities (14) and $1 \leqslant 2 \Phi$ for $1<|x|<2$ yield

$$
\sum_{j=1}^{m}\left\|u_{j 0}\right\|_{L^{2}(1<|x|<2)}^{2}<\frac{1}{2 \sqrt{32 c}}
$$

The continuity of $\left\|u_{j}(t)\right\|_{L^{2}(1<|x|<2)}$ gives us that inequality (31) holds in the interval $\left[0, t_{0}\right)$ for some $t_{0}>0$. Suppose, on the contrary, that

$$
\begin{equation*}
\sum_{j=1}^{m}\left\|u_{j}\left(t_{0}\right)\right\|_{L^{2}(1<|x|<2)}^{2}=\frac{1}{\sqrt{32 c}} \tag{36}
\end{equation*}
$$

The assumptions of Lemma 5 are satisfied for $t \in\left[0, t_{0}\right)$. Inequalities (13), (20), and (21) and Lemma 5 imply

$$
\begin{align*}
& \sum_{j=1}^{m} \int_{I} \Phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x \\
& \quad=\sum_{j=1}^{m} \int_{I} \Phi\left|u_{j 0}\right|^{2} \mathrm{~d} x-2 t \sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j 0} D \bar{u}_{j 0} \mathrm{~d} x-\eta t^{2} \\
& =-\eta\left(t+\frac{1}{\eta} \sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j 0} D \bar{u}_{j 0} \mathrm{~d} x\right)^{2}+\frac{1}{\eta}\left(\sum_{j=1}^{m} \operatorname{Im} \int_{I} \phi u_{j 0} D \bar{u}_{j 0} \mathrm{~d} x\right)^{2} \\
& \quad+\sum_{j=1}^{m} \int_{I} \Phi\left|u_{j 0}\right|^{2} \mathrm{~d} x \\
& \leqslant \tag{37}
\end{align*}
$$

We use the inequalities $\phi^{2} \leqslant 2 \Phi$ and (37) to obtain

$$
\begin{align*}
& \sum_{j=1}^{m} \int_{I} \Phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x \\
& \quad \leqslant \sum_{j=1}^{m} \int_{I} \Phi(x)\left|u_{j 0}(x)\right|^{2} \mathrm{~d} x\left(\frac{2}{\eta}\left\|D u_{j 0}\right\|_{L^{2}(I)}^{2}+1\right), \quad 0 \leqslant t<t_{0} . \tag{38}
\end{align*}
$$

Inequalities (14), (38), and $1 \leqslant 2 \Phi$ for $1<|x|<2$ yield

$$
\sum_{j=1}^{m}\left\|u_{j}(t)\right\|_{L^{2}(1<|x|<2)}^{2} \leqslant 2 \sum_{j=1}^{m} \int_{I} \Phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x<\frac{1}{2 \sqrt{32 c}}
$$

for $0 \leqslant t<t_{0}$. The continuity of $\left\|u_{j}(t)\right\|_{L^{2}(1<|x|<2)}$ gives that

$$
\sum_{j=1}^{m}\left\|u_{j}\left(t_{0}\right)\right\|_{L^{2}(1<|x|<2)}^{2} \leqslant \frac{1}{2 \sqrt{32 c}}
$$

It is a contradiction to (36). Hence, inequality (31) is satisfied for $t \geqslant 0$, while the solution $u(t)$ exists.

Finally, we prove that the solution $u(t)$ blows up. Inequality (37) implies that

$$
\sum_{j=1}^{m} \int_{I} \Phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x
$$

becomes negative in finite time. Hence,

$$
\begin{equation*}
\sum_{j=1}^{m} \int_{I} \Phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x \rightarrow 0, \quad t \rightarrow t_{0} \tag{39}
\end{equation*}
$$

for some $t_{0}>0$. The inequality $1<2 \Phi$ for $1<|x|<2$ and the limit (39) give

$$
\begin{equation*}
\lim _{t \rightarrow t_{0}} \int_{1<|x|<2}\left|u_{j}(t)\right|^{2} \mathrm{~d} x \leqslant \lim _{t \rightarrow t_{0}} \int_{1<|x|<2} 2 \Phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x=0 \tag{40}
\end{equation*}
$$

and

$$
\begin{align*}
& \lim _{t \rightarrow t_{0}} \int_{1<|x|<2}|D \phi|\left|u_{j}(t)\right|^{2} \mathrm{~d} x \\
& \quad \leqslant M_{1} \lim _{t \rightarrow t_{0}} \int_{1<|x|<2}\left|u_{j}(t)\right|^{2} \mathrm{~d} x=0, \quad j=1, \ldots, m . \tag{41}
\end{align*}
$$

The equality

$$
\int_{I} D \phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x=-2 \operatorname{Re} \int_{I} \phi u_{j}(t) D \bar{u}_{j}(t) \mathrm{d} x
$$

yields

$$
\begin{align*}
& \left.\left|\int_{I} D \phi\right| u_{j}(t)\right|^{2} \mathrm{~d} x \mid \\
& \quad \leqslant 2\left(\int_{I} \phi^{2}\left|u_{j}(t)\right|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{I}\left|D u_{j}(t)\right|^{2} \mathrm{~d} x\right)^{1 / 2}, \quad j=1, \ldots, m . \tag{42}
\end{align*}
$$

The conservation law (15) and inequalities (40), (41), and (42) imply

$$
\begin{align*}
& \sum_{j=1}^{m} \int_{I}\left|u_{j 0}\right|^{2} \mathrm{~d} x \\
& \quad=\sum_{j=1}^{m} \lim _{t \rightarrow t_{0}} \int_{|x|<1}\left|u_{j}(t)\right|^{2} \mathrm{~d} x=\sum_{j=1}^{m} \lim _{t \rightarrow t_{0}} \int_{|x|<1} D \phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x \\
& \quad=\sum_{j=1}^{m} \lim _{t \rightarrow t_{0}} \int_{I} D \phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x \\
& \quad \leqslant \sum_{j=1}^{m} \lim _{t \rightarrow t_{0}} 2\left(\int_{I} \phi^{2}\left|u_{j}(t)\right|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{I}\left|D u_{j}(t)\right|^{2} \mathrm{~d} x\right)^{1 / 2} \tag{43}
\end{align*}
$$

The inequalities $\phi^{2} \leqslant 2 \Phi$ and (43) give

$$
\begin{equation*}
\sum_{j=1}^{m} \int_{I}\left|u_{j 0}\right|^{2} \mathrm{~d} x \leqslant \sum_{j=1}^{m} \lim _{t \rightarrow t_{0}} 2\left(\int_{I} 2 \Phi\left|u_{j}(t)\right|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{I}\left|D u_{j}(t)\right|^{2} \mathrm{~d} x\right)^{1 / 2} \tag{44}
\end{equation*}
$$

Note that (13) yields $\sum_{j=1}^{m} \int_{I}\left|u_{j 0}\right|^{2} \mathrm{~d} x>0$. From (39) and (44) we have

$$
\int_{I}\left|D u_{j}(t)\right|^{2} \mathrm{~d} x \rightarrow \infty, \quad t \rightarrow t_{0}
$$

for some $j=1, \ldots, m$, i.e., the solution blows up.

References

1. T. Akahori, S. Ibrahim, H. Kikuchi, H. Nawa, Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth, Diff. Integral Equ., 25, pp. 383-402, 2012.
2. C. Besse, R. Carles, N.J. Mauser, H.P. Stimming, Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence, Discrete Contin. Dyn. Syst., Ser. B, 9(1), pp. 11-36, 2008.
3. A. Domarkas, Collapse of solutions of a system of nonlinear Schrödinger equations, Lith. Math. J., 31(4), pp. 412-417, 1991.
4. A. Domarkas, F. Ivanauskas, Solvability of a mixed problem for a nonlinear system of equations of Schrödinger type, Lith. Math. J., 27(3), pp. 217-224, 1987.
5. M.B. Erdoğan, V. Zharnitsky, Quasi-linear dynamics in nonlinear Schrödinger equation with periodic boundary conditions, Commun. Math. Phys., 281(3), pp. 655-673, 2008.
6. R.T. Glassey, On the blowing up of solutions to the Cauchy problem for the nonlinear Schrödinger equations, J. Math. Phys., 18, pp. 1794-1797, 1977.
7. O. Kavian, A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Am. Math. Soc., 299, pp. 193-203, 1987.
8. P.G. Kevrekidis, D.E. Pelinovsky, A. Stefanov, Nonlinearity management in higher dimensions, J. Phys. A, Math. Gen., 39(3), pp. 479-488, 2006.
9. Z. Liang, Quasi-periodic solutions for 1D Schrödinger equation with the nonlinearity $|u|^{2 p} u$, J. Differ. Equations, 244, pp. 2185-2225, 2008.
10. Z. Lü, Z. Liu, L^{2}-concentration of blow-up solutions for two-coupled nonlinear Schrödinger equations, J. Math. Anal. Appl., 380(2), pp. 531-539, 2011.
11. F. Merle, Limit of the solution of the nonlinear Schrödinger equation at the blow-up time, J. Funct. Anal., 84, pp. 201-214, 1989.
12. C. Miao, G. Xu, L. Zhao, Global well-posedness and scattering for the defocusing energycritical nonlinear Schrödinger equations of fourth order in dimensions $d \geqslant 9$, J. Differ. Equations, 251(2), pp. 3381-3402, 2011.
13. D. Mohamad, Blow up for the damped L^{2}-critical nonlinear Schrödinger equation, Adv. Differ. Equ., 17(3-4), pp. 337-367, 2012.
14. G.D. Montesinos, D. Gaspar, V.M. Pérez-García, P.J. Torres, Stabilization of solitons of the multidimensional nonlinear Schrödinger equation: Matter-wave breathers, Physica D, 191(34), pp. 193-210, 2004.
15. T. Ogawa, Y. Tsutsumi, Blow-up of solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary condition, in: Functional-Analytic Methods for Partial Differential Equations, Proceedings of a Conference and a Symposium held in Tokyo, Japan, July 3-9, 1989, Lect. Notes Math., Vol. 1450, Springer, Berlin, Heidelberg, 1990, pp. 236-251.
16. T. Ogawa, Y. Tsutsumi, Blow-up of H^{1} solution for the nonlinear Schrödinger equation, J. Differ. Equations, 92, pp. 317-330, 1991.
17. G. Puriuškis, An estimate for certain functional and its application, Šiauliai Math. Semin., 6(14), pp. 47-52, 2011.
18. T. Tao, M. Visan, X. Zhang, Global well-posedness and scattering for the defocusing masscritical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140(1), pp. 165-202, 2007.
19. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87, pp. 567-576, 1983.
20. S. Zhu, H. Yang, J. Zhang, Blow-up of rough solutions to the fourth-order nonlinear Schrödinger equation, Nonlinear Anal., Theory Methods Appl., Ser. A, 74(17), pp. 6186-6201, 2011.
