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Global attractors for non-linear viscoelastic equation
with strong damping∗
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Abstract. In this paper, we consider the long-time dynamical behavior of the viscoelastic equations
with strong damping and further prove the existence of global attractors for this system.
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1 Introduction

In this paper, we discuss the long-time dynamical behavior for the nonlinear viscoelastic
problem:

|ut|ρutt −∆u−∆utt +

t∫
0

g(t− τ)∆u(τ) dτ − γ∆ut = 0, x ∈ Ω, (1)

together with initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x)

and boundary conditions
u(x, t) = 0, x ∈ ∂Ω,

where Ω is a bounded domain in Rn, n > 1, with a smooth boundary and ρ, γ > 0 are
real numbers. Here, u(x, t) represent displacement and g is a positive decaying function
representing the kernel of memory term that will be specified below.

Problems relate to the equation

f(ut)utt −∆u−∆utt = 0 (2)
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are interesting not only from the point of view of PDE general theory, but also due to its
applications in mechanics. For instance, when the material density, f(ut), is equal to 1,
Eq. (2) describes the extensional vibrations of thin rods, see [1] for the physical details.
When the material density f(ut) is not constant, we are dealing with a thin rod which
possesses a rigid surface and whose interior is somehow permissive to slight deformations
such that the material density varies according to the velocity. On the other hand, it is
important to observe that similar equations to the one given in (2) arise in the study of
viscoelastic plates with memory, more precisely

utt + ∆2u−∆utt −
t∫

0

g(t− τ)∆2u(τ) dτ = 0.

More recently, Cavalcanti et al. [2] considered this problem by assuming 0<ρ 62/(n−2)
when n > 3, ρ > 0 when n = 1, 2 and g decays exponentially. They obtained the global
existence result for γ > 0 and the uniform exponential decay of energy for γ > 0. Later,
the decay result has been extended by Messaoudi and Tatar in [3] to the case γ = 0. Han
and Wang [4] considered the following viscoelastic equation:

|ut|ρutt −∆u−∆utt +

t∫
0

g(t− τ)∆u(τ) dτ + |ut|mut = 0, x ∈ Ω,

more recently, Ma [5] considered the attractors of this problem.
When there is no dispersion term, the related problems have been extensively stud-

ied and several results about existence, decay and blow-up been obtained. For instance,
Cavalcanti et al. [6] deal with the equation

utt −∆u+

t∫
0

g(t− τ)∆u(τ) dτ + a(x)ut + |u|γu = 0, x ∈ Ω, t > 0, (3)

with same boundary and initial conditions as that of system (1). Assuming that a(x) is
a nonnegative function that may vanish outside of a subset Ω0 ⊂ Ω of positive measure
and g decays exponentially, they proved an exponential decay result of energy of (3). This
result was later extended by Berrimi and Messaoudi [7] to the nonlinear damping case

utt −∆u+

t∫
0

g(t− τ)∆u(τ) dτ + a(x)|ut|mut + b|u|γu = 0, x ∈ Ω, t > 0.

By introducing a new functional, they weakened the conditions on a(x) and g and ob-
tained the decay result. Motivated by the ideas of Messaoudi [8], the authors established
the general uniform decay of the energy for this model.

The aim of this paper is to prove the existence of the global attractor for system (1).
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2 Preliminaries

Assume that ρ satisfies

0 < ρ 6
2

n− 2
if n > 3, ρ > 0 if n = 1, 2. (4)

For the kernel function g, we assume that it verifies:
(A1) g : [0,∞)→ (0,∞) is a bounded C1 function such that

1−
∞∫
0

g(s) ds = l > 0.

(A2) There exists a positive function ξ(t) verifying

g′(t) 6 −ξ(t)g(t), t > 0,

and

ξ(t) > 0, ξ′(t) 6 0,

∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ 6 k, t > 0,

∞∫
0

ξ(s) ds = +∞,

where k is a positive constant.

The energy associated with problem (1) can be written as

E(t) =
1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

2

(
1−

t∫
0

g(s) ds

)
‖∇u‖22

+
1

2
‖∇ut‖22 +

1

2
(g ◦ ∇u)(t),

where

(g ◦ v)(t) =

t∫
0

g(t− s)
∥∥v(t)− v(s)

∥∥2
2

ds.

Let us denote by H the Hilbert space with inner product 〈·, ·〉H and denote by ‖·‖H
the induced norm ofH. Let us introduce the history space

M = L2
g

(
0,+∞;H1

0 (Ω)
)

which is a Hilbert space. Let us denote by F :M→M the operator given by

Fη = −ηs η ∈ D(F) =
{
η ∈M; ηs ∈M and η(0) = 0

}
,

with

〈η, η1〉M =

∞∫
0

g(s)
〈
η(s), η1(s)

〉
∀η, η1 ∈ D(F).
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Let us introduce the summed past history as

ηt(s) =

s∫
0

u(t− y) dy, (t, s) ∈ R+ ×R+.

It is not difficult to see that η satisfies

ηtt + ηts = u, t ∈ R+.

Moreover

η0(s) =

s∫
0

ψ(y) dy, s ∈ R+, ηt(0) = 0 ∀t > 0.

Denoting by Φ = (u, v, ηt)T, Φ0 = (u0, v0, η
0)T, v = ut, the semigroup formulation of

the system (1) is given by
dΦ

dt
= AΦ, Φ(0) = Φ0,

where A : D(A) ⊂ H → H is defied as

A

(
u,

1

ρ+ 1
vρ+1, η

)
=

(
v, ∆u+ ∆vt −

t∫
0

g(t− τ)∆u(τ) dτ + γ∆v, ηs

)

with domain

D(A) =
{
Φ ∈ H; v ∈ H1

0 ∩H2, g ∗∆η ∈ L2, η ∈ D(F)
}
,

whereH = H1
0 ∩H2 ×H1

0 ×M.
Firstly, we have the following result:

Lemma 1. The operator A is the infinitesimal generator of the C0-semigroup of contrac-
tions onH that we denote as S(t).

Proof. See, e.g., [9].

Lemma 2. Let u0, u1 ∈ H1
0 and γ > 0. Assume that the kernel g satisfies assumptions

(A1), (A2). Then, problem (1) possesses at least a weak solution u : Ω × (0,∞)→ R in
the class

u ∈ L∞
(
0,∞;H1

0 (Ω)
)
, u′ ∈ L∞

(
0,∞;H1

0 (Ω)
)
, u′′ ∈ L2

(
0,∞;H1

0 (Ω)
)
.

Moreover, assuming that γ > 0, the energy determined by the solution u possesses the
following decay:

E(t) 6 3l−1E(0)e−(ε/2)C2t, t > 0, ε ∈ (0, ε0],

where C2 = C2(ρ,E(0), ‖g‖L1
(0,∞)

) and ε0 = ε0(ρ,E(0), ‖g‖L1
(0,∞)

) are positive con-
stants.

Proof. See, e.g., [2].
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3 Proof of the main result

In this section we prove our main result. Eqs. (1) can be transformed into the system

ut = v, (5)

|v|ρvt − l∆u−∆vt +

t∫
0

g(t− τ)∆η(τ) dτ − γ∆v = 0, (6)

ηtt = u− ηts (7)

in Ω × (0,∞).
We shall consider the problem (5)–(7) in the following Hilbert space

H = H1
0 ∩H2 ×H1

0 ×M.

Recall that the global attractor of S(t) acting on H is a compact set A ⊂ H enjoying
the following properties:

(i) A is fully invariant for S(t), that is, S(t)A = A for every t > 0;
(ii) A is an attracting set, namely, for any bounded setR ⊂ H,

lim
t→∞

δH
(
S(t)R,A

)
= 0,

where δH denotes the Hausdorff semi-distance onH.

More details on the subject of global attractors can be found in the books [10, 11].

Remark 1. Lemma 2 implies that the existence of a bounded absorbing set R∗ ⊂ H for
the C0-semigroup S(t). Indeed, if R∗ is any absorbing ball of H, then for any bounded
setR ⊂ H, it is immediate to see that there exists t(R) > 0 such that

S(t)R ⊂ R∗

for every t > t(R).
Moreover, if we define

R0 =
⋃
t>0

S(t)R∗,

it is clear that R0 is still a bounded absorbing set which is also invariant for S(t), that is,
S(t)R0 ⊂ R0 for every t > 0.

In the sequel, we define the operator A as Af = −∆f . It is well known that A is
a positive operator on L2 with domain D(A) = H2 ∩H1

0 . Moreover, we can define the
powers As of A for s ∈ R. The space V2s = D(As) turns out to be a Hilbert space with
the inner product

〈u, v〉V2s
=
〈
Asu,Asv

〉
,

where 〈·〉 stands for L2-inner product on L2.
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In particular, V−1 = H−1, V0 = L2, V1 = H1
0 . The injection Vs1 ↪→ Vs2 is compact

whenever s1 > s2. For further convenience, for s ∈ R, introduce the Hilbert space

Hs = V1+s ∩ V2+s × V1+s × L2
g

(
R+, V1+s

)
.

Clearly,H0 = H.
Now, let Φ0 = (u0, 1/(ρ+ 1)vρ+1

0 , η0) ∈ R0, where R0 is the invariant, bounded
absorbing set of S(t) given by Remark 1, take the inner product in H0 of (5)–(7) and
(Aσu,Aσv,Aσηt) to get

d

dt

(
1

ρ+ 2
‖ut‖ρ+2

σ +
1

2

(
1−

t∫
0

g(s) ds

)
‖u‖21+σ +

1

2
‖v‖21+σ +

1

2
‖ηt‖1+σ,g

)

=
1

2

∞∫
0

g′(s)
∥∥ηt(s)∥∥2

1+σ
dsdx− γ‖v‖21+σ 6 0.

Here, the boundary term of integration by parts is neglected since we are working with
more regular functions, similar application, please refer to [12].

Next, let

E1(t) =
1

ρ+ 2
‖ut‖ρ+2

σ +
1

2

∥∥∥∥∥
(

1−
t∫

0

g(s) ds

)
u

∥∥∥∥∥
2

1+σ

+
1

2
‖v‖21+σ +

1

2

∥∥ηt∥∥
1+σ,g

,

Φ(t) = ξ(t)

{
1

ρ+ 1

∫
Ω

Aσ|ut|ρutudx+

∫
Ω

Aσ∇ut∇udx

}
,

Ψ(t) = ξ(t)

∫
Ω

Aσ

(
∆ut −

1

ρ+ 1
|ut|ρut

) t∫
0

g(t− s)
(
u(t)− u(s)

)
dsdx,

and
F (t) = ME1(t) + εΦ(t) + Ψ(t),

where M and ε are positive constants to be determined later.
By assumption (A2), we find that ξ(t) is a positive non-increasing function, then

ξ(t) 6 ξ(0) = L for every t > 0. Repeating the similar arguments to those of the
proof of Theorem 2.1 of Cavalcanti et al. [2], choosing our constants very carefully and
properly, we get

F (t) 6 3l−1F (0)e−(ε/2)C2t, t > 0, ε ∈ (0, ε0]. (8)

Finally (see Lemma 5.5 in [13]), we have the compact embedding

B(t) =
⋃

Φ0∈R0

ηt ↪→ L2
µ

(
R+, H1

0

)
, (9)
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where ηt is defined in (4). Denote the closure of B in L2
g(R

+, H1
0 ) by B̄. With reference

to (8) and (9) for t > 0, letR(t) be the ball of V5/2 × V3/2 and introduce the set

G(t) = R(t)× B̄ ⊂ H.

From the compact embedding V5/2 × V1/2 ↪→ H1
0 ∩H2 ×H1

0 and (9), G(t) is compact
in H. Then, due to the compactness of G(t) for every fixed t > 0 and every d >
3l−1F (0)e−(ε/2)C2t, there exist finitely many balls of H of radius d such that Φ(t)
belongs to the union of such balls for every Φ0 ∈ R0. This implies that

αH(S(t)R0) 6 3l−1F (0)e−(ε/2)C2t ∀t > 0, (10)

where αH is the Kuratowski measure of non-compactness, defined by

αH(R) = inf{d: R has a finite cover of balls ofH of diameter less than d}.

Since the invariant, connected, bounded absorbing set R0 fulfills (10), exploiting a clas-
sical result of the theory of attractors of semigroups (see, e.g., [14]), we conclude that the
ω-limit set ofR0, that is,

A ≡ ω(R0) =
⋂
t>t0

⋃
s>t

S(s)R0,

is a connected and compact global attractor of S(t). Therefore we have proved the fol-
lowing result.

Theorem 1. Under assumptions of (A1)–(A2), problem (5)–(7) possesses a unique global
attractor A.
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