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Abstract. In this paper, we analyze a stochastic model representing batch fermentation in the
process of glycerol bio-dissimilation to 1,3-propanediol by klebsiella pneumoniae. The stochasticity
in the model is introduced by parameter perturbation which is a standard technique in stochastic
population modelling. Thus, based on the nonlinear deterministic dynamical system of glycerol
bioconversion to 1,3-propanediol in batch culture, we present the stochastic version of the batch
fermentation process driven by a five-dimensional Brownian motion and Lipschitz coefficients,
which is suitable for the factual fermentation. Subsequently, we study the existence and uniqueness
of solutions for the stochastic system as well as the boundedness and Markov property of solutions.
Moveover a stochastic optimal control model is constructed and the sufficient and necessary
conditions for optimality are proved via dynamic programming principle. Finally we present
computer simulation for the stochastic system by using Stochastic Euler–Maruyama scheme.
Compared with the results from the deterministic system, numerical results reveal the peculiar role
of stochasticity in the dynamical responses of the batch culture.

Keywords: nonlinear stochastic system, stochastic optimal control, stochastic simulation, batch
culture, bioconversion.

1 Introduction

Over the past several years, 1,3-propanediol (1,3-PD) has attracted much attention in
microbial production throughout the world because of its lower cost, higher production
and no pollution [1, 2]. Many researches have been carried out including the quantitative
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description of the cell growth kinetics of multiple inhibitions, the metabolic overflow
kinetics of substrate consumption and product formation [3–5], existence of equilibrium
points and stability [6], transport mechanism [7] and impulsive control [8] for the models
of the continuous cultures, feeding strategy of glycerol [9, 10], optimal control [11, 12]
and multistage modeling [13, 14] in fed-batch culture and so on.

Compared with continuous and fed-batch cultures, glycerol fermentation in batch
culture can obtain the highest production concentration and molar yield 1,3-PD to glycerol
[15]. So nonlinear dynamical systems in this culture have been extensively considered in
recent years [16, 17]. The typical cell growth in batch culture includes several growth
phases, which are defined as the lag, exponential growth, decreased growth and death
phases. Modelling, parameter identification and optimal control of the multi-stage dy-
namic system in batch culture are discussed in [18–20]

However, the dynamics of the system are not deterministic, but intrinsically stochastic,
and consideration of inherent stochasticity of microorganism is necessary to uncover the
precise nature of stochastic differential equation governing the system dynamics [21]. In
this paper, the stochasticity in the model is introduced by parameter perturbation which
is a standard technique in stochastic population modelling [22]. The process is modeled
by a stochastic ordinary differential system driven by five dimensional Brownian motion,
which is time independent and suitable for the factual fermentation. Suitable conditions
on the coefficients of the stochastic system are proposed to assure the existence and
uniqueness of solution of the stochastic system. Furthermore, based on the theory of
stochastic integration and stochastic differential equations, several important properties
of the solution of the stochastic system are proved, including boundedness and Markov
property.

Stochastic control is a subfield of control theory which deals with the existence of
uncertainty. Stochastic control aims to design the optimal controller that performs the
desired control task. In this paper, we study the stochastic optimal control problem of
the stochastic system, the volumetric productivity of 1,3-PD and dilution rate are used
as the optimization target and manipulated variable, respectively. Our main concern is
to derive some tractable characteristics of the value function and optimal control. This
article is intended to prove the sufficient and necessary conditions of optimal solution and
that the optimal solution depends in a continuous way on the parameters (perturbations).
Finally stochastic simulation is carried out under the Stochastic Euler–Maruyama scheme.
Numerical examples confirm that the proposed stochastic system is more suitable to
formulate the dynamics of batch culture.

This paper is organized as follows. In Section 2, we present a nonlinear stochastic
kinetic system of batch fermentation process. In Section 3, we prove the properties of
the stochastic dynamic system as well as the existence and uniqueness of solutions to
the stochastic dynamic system. Furthermore the boundedness and Markov property of
solutions to the system are discussed. Section 4 gives the key results on the characteriza-
tion of optimality. Numerical examples are provided to simulate the nonlinear stochastic
dynamical system of batch culture in Section 5. In Section 6, we draw the conclusions
and trace the direction for future works.
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Stochastic optimal control in batch culture 101

2 Modeling nonlinear stochastic kinetic system of batch culture

Mass balances of biomass, substrate and products in batch microbial culture are written
as follows (see [16]):

ẋ1(t) = µx1(t),

ẋ2(t) = −q2x1(t),

ẋi(t) = qix1(t), i = 3, 4, 5,

t ∈ (0, T ),

x(0) = x0,

(1)

where the specific growth rate of cells µ, specific consumption rate of substrate q2 and
specific formation rate of product qi are expressed by Eqs. (2)–(5), respectively.

µ = µm

(
x2(t)

x2(t) + ks

) 5∏
i=2

(
1− xi(t)

x∗i

)
, (2)

q2 = m2 +
µ

Y2
, (3)

qi = mi + µYi, i = 3, 4, 5, (4)

where x1(t), x2(t), x3(t), x4(t), x5(t) are the concentration of biomass, glycerol, 1,3-PD,
acetic acid and ethanol at time t in reactor, respectively. x0 ∈ R5

+ denotes the initial
state. Under anaerobic conditions at 37 ◦C and pH = 7.0, µm is the maximal specific
growth rate of cells, and ks is Monod saturation constant. The critical concentrations
of biomass, glycerol, 1,3-PD, acetic acid and ethanol for cell growth are x∗1 = 10 g/L,
x∗2 = 2039 mmol/L, x∗3 = 939.5 mmol/L, x∗4 = 1026 mmol/L and x∗5 = 360.9 mmol/L,
respectively. T ∈ (0,+∞) is the terminal time of batch fermentation. As a result of fact,
the following assumption can be made:

Assumption 1. Medium is adequately intermixed. No medium is pumped inside and
outside the bio-reactor in the process of batch fermentation.

In this paper, let I = [0, T ] be the time interval of batch fermentation, we choose
a probability space (R5,B(R5), P ), as well as a 5-dimensional vector Brownian mo-
tion W = {Wt(·),FW

t : t ∈ I} defined on the probability space, where the FW
t =

H(Ws(·): 0 6 s 6 t) denotes the σ-algebra generated by {Ws(·): 0 6 s 6 t}, i.e.,
the smallest σ-algebra containing the family of {Ws(·): 0 6 s 6 t}. We also assume
that this space is rich enough to accommodate a random vector ξ taking values in R5,
independent of FW

∞ = H(∪t>0FW
t ), i.e., FW

∞ contains all null subsets N of R5 with

P ∗(N) := inf
{
P (F ), F ∈ FW

∞ , N ⊂ F
}
.

Let X = {X(t) = (X1(t), X2(t), X3(t), X4(t), X5(t))T ∈ R5: t ∈ I} be a stochas-
tic process whose componentsXi(t) (i = 1, 2, 3, 4, 5) denote the scalar stochastic process
on biomass, glycerol, 1,3-PD, acetic acid and ethanol on I , respectively. The state variable
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corresponding to the stochastic process X is x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))T.
S0 = {x ∈ R5 | x1 ∈ [0.001, x∗1], x2 ∈ [100, x∗2], xi ∈ [0, x∗i ], i = 3, 4, 5} be the state
domain of the stochastic process X = {X(t): t ∈ I}.

Equation (1) can be rewritten in the matrix form

Ẋ(t) = AX(t), t ∈ I, (5)

where A = (aij)5×5 and from Eq. (1) we can see that
a11 = µ,

a21 = −q2,
ai1 = qi, i = 3, 4, 5,

aij = 0, i = 1, 2, 3, 4, 5, j 6= 1.

Now let us stochastically perturb each parameter aij as follows:

aij → aij + σijẆ
j
t ,

where Ẇ j
t is a Gaussian white noise, σ = (σij)5×5 satisfies the following condition:{

σij > 0 if 1 6 i 6 5,

σij > 0 if i 6= j.

Thus, under Assumption 1, the course of the batch culture with uncertain perturbations
can be formulated as the following nonlinear stochastic dynamical system:{

dX(t) = F
(
X(t)

)
dt+ σ

(
X(t)

)
dW(t), t ∈ I,

X(0) = ξ.
(6)

Here:

(i) The drift vector

F
(
X(t)

)
= AX(t)

=
(
F1

(
x(t)

)
, F2

(
x(t)

)
, F3

(
x(t)

)
, F4

(
x(t)

)
, F5

(
x(t)

))T
=
(
µx1(t),−q2x1(t), q3x1(t), q4x1(t), q5x1(t)

)T
(7)

is continuous on S0.

(ii) The dispersion vector
σ
(
X(t)

)
= σX(t). (8)

Here X ∈ R5 and σ is the given R5×5 diffusion matrix.

(iii) Let W = (W 1, . . . ,W 5)T ∈ R5, where W i = {W i
t (·): t ∈ I} denotes one-di-

mensional Brownian motion defined on the given probability space (R5,B(R5), P )
and adapted to Ft in B(R5) and they are independent of each other.
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3 Properties of solutions to stochastic system

Firstly, let’s review some basic concepts about the stochastic dynamic system. Most of
them can be found in [25].

Definition 1. If (Ω,F , P ) is a given probability space, then a function Y : Ω → Rn is
called F-measurable if

Y −1(U) :=
{
ω ∈ Ω; Y (ω) ∈ U

}
∈ F

for all open sets U ∈ Rn (or, equivalently, for all Borel sets U ⊂ Rn).

Definition 2. A filtration (on (Ω,F)) is a family F = {Ft}t>0 of σ-algebras Ft ⊂ F
such that

0 6 s < t =⇒ Fs ⊂ Ft.

Definition 3. Suppose that F (x) and σ(x) are given by Eqs. (7)–(8). Then, stochastic
process X is said to be a solution of the stochastic differential equation (6) on the prob-
ability space (Ω,F , P ) with respect to the Brownian motion W and initial condition ξ
provided:

(i) X(t) is adapted to the filtration Ft of (5), i.e., X is a mapping: ω ∈ Ω 7→ X(ω) ∈
W such that, for each t ∈ I , it is Ft-measurable,

(ii) P (X(0) = ξ) = 1,

(iii) with probability one, the solution X of (6) and the Brownian motion W satisfy

X(t) = ξ +

t∫
0

F
(
X(s)

)
ds+

t∫
0

σ
(
X(s)

)
dW(s). (9)

Definition 4. If X1(t) and X2(t) are arbitrary two solutions of (6) with respect to W
with the same initial condition ξ, and

P
{

sup
t∈I

∣∣X1(t)−X2(t)
∣∣ = 0

}
= 1.

Then a solution X(t) of (6) is called unique.

Let E = C(I,R5) be the space of all continuous functions x defined on I with values
in R5, equipped with the max norm topology ‖x‖E = maxt∈I ‖x(t)‖. For x1, x2 ∈ E,
let

ρ(x1, x2) =

∞∑
k=1

2−k
(

max
06t6k

∥∥x1(t)− x2(t)
∥∥ ∧ 1

)
,

where ‖·‖ denotes the Euclidean norm in R5 and ∧ means min{max06t6k ‖x1(t) −
x2(t)‖, 1}. It is well known that E is a complete separable metric space with respect to
this metric ρ.
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Theorem 1. The vector-valued function F (x) and the matrix-valued function σ(x) de-
fined in (7) and (8) are measurable for t ∈ I , x ∈ E.

Proof. It is clear from the continuity of the function F (x) and σ(x) on I .

Theorem 2. For the vector-valued function F (x) and the matrix-valued function σ(x)
defined in (7) and (8), there exist positive constants K and K ′ such that, for t ∈ I , the
following conditions hold:

(i) uniform Lipschitz condition∥∥F (x2)− F (x1)∥∥+
∥∥σ(x2)− σ(x1)∥∥ 6 K

∥∥x2 − x1∥∥
E
∀x1, x2 ∈ E,

(ii) growth condition ∥∥F (x)
∥∥+

∥∥σ(x)
∥∥ 6 K ′

(
1 + ‖x‖E

)
∀x ∈ E.

Proof. We begin with the uniform Lipschitz condition. By Quasi-differential Mean Value
theorem, we now obtain∥∥F (x2)− F (x1)∥∥ 6

∥∥JF (x1 + θ
(
x2 − x1

))∥∥∥∥x2 − x1∥∥
E
,

where θ ∈ (0, 1) and JF (x1+θ(x2−x1)) denotes Jacobian of F at x1+θ(x2−x1). Since
F (x) is differentiable on S0 and S0 is a compact set, so Let M = maxx∈S0 ‖JF (x1 +
θ(x2 − x1))‖, we can rewrite the above inequality∥∥F (x2)− F

(
x1
)∥∥ 6M

∥∥x2 − x1∥∥
E
, (10)

and by the definition of the function σ and let L = 25 max16i,j65{σij}, we have

∥∥σ(x2)− σ(x1)
∥∥ =

√√√√ 5∑
i=1

5∑
j=1

σ2
ij

(
x2j − x1j

)2
6 L

∥∥x2 − x1∥∥
E
. (11)

Thus it follows from (10) and (11) that∥∥F (x2)− F (x1)∥∥+
∥∥σ(x2)− σ(x1)∥∥ 6 (M + L)

∥∥x2 − x1∥∥
E
.

Let K = M + L, then we have the following equality:∥∥F (x2)− F (x1)∥∥+
∥∥σ(x2)− σ(x1)∥∥ 6 K

∥∥x2 − x1∥∥
E
.

Next, we will show the growth condition of the function F and σ. Note that, because
of (8), we see that∥∥F (x)

∥∥ =
√

(µx1)2 + (−q2x1)2 + (q3x1)2 + (q4x1)2 + (q5x1)2

=
√
µ2 + (−q2)2 + (q3)2 + (q4)2 + (q5)2x1. (12)
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From Eqs. (2)–(5), we can conclude that there exist positive constants C1, C2, C3,
C4, C5 such that

|µ| =
∣∣∣∣µm( x2(t)

x2(t) + ks

) 5∏
i=2

(
1− xi(t)

x∗i

)∣∣∣∣ 6 |µm| 6 C1,

|−q2| =
∣∣∣∣m2 +

µ

Y2
+ ∆2

x2(t)

x2(t) + k2

∣∣∣∣ 6 C2

|q3| =
∣∣∣∣m3 + µY3 + ∆3

x2(t)

x2(t) + k3

∣∣∣∣ 6 C3,

|q4| =
∣∣∣∣m4 + µY4 + ∆4

x2(t)

x2(t) + k4

∣∣∣∣ 6 C4,

|q5| =
∣∣∣∣q2(b1c1 +

b2
c2

)∣∣∣∣ 6 C5.

letting C = maxi∈I5{|Ci|}, referring to (12), we see that∥∥F (x)
∥∥ 6

√
C2

1 + C2
2 + C2

3 + C2
4 + C2

5 ‖x‖E 6 C‖x‖E .

It is clear from the definition of the function σ

∥∥σ(x)
∥∥ =

√√√√ 5∑
i=1

5∑
j=1

σ2
ij(x) 6 L‖x‖E .

Therefore, letting K ′ = L+ C, we can complete the proof by∥∥F (x)
∥∥+

∥∥σ(x)
∥∥ 6 (L+ C)‖x‖E 6 K ′

(
1 + ‖x‖E

)
.

Based on the Theorem 5.2.1 in [25] and Theorem 2, we can prove the following
theorem.

Theorem 3 (Existence and uniqueness). Given the vector-valued function F (x) and the
matrix valued function σ(x) defined by (7) and (8), the system (6) has a unique solution
X(t) satisfying the initial condition ξ on I .

According to the proof in Theorem 2, Theorem 7.1.2 in [25] and Theorem 5.2 in [26],
we can prove the following theorem.

Theorem 4 (Markov property and boundedness). Suppose Assumption 1 holds. The
unique solution X(t) is a Markov process on the interval I whose initial probability
distribution at t = 0 is the distribution of ξ and X(t) has continuous paths. Moreover(

sup
06t6T

E
∥∥X(t)

∥∥)2 < B
(
1 + E‖ξ‖2

)
,

where constant B depends only on K, σ and T .

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 1, 99–111
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4 Optimal control problem and Bellman’s optimality principle

When the concentration of glycerol was declined to 150 mmol/L, we terminate the pro-
cess of batch culture, that is EcT2X(τ) = 150, where c2 = (0, 1, 0, 0, 0)T and τ =
inf{t: EcT2X(t) = 150}. In the process of batch culture, we can choose the initial con-
centration of biomass and glycerol as the control variables and we define the admissible
control set Uad = [0.01, 10]× [100, 2100].

Define the solution set of system (6) relative to Uad, i.e.,

Vx(Uad) =
{
X(t, u) ∈ R5

∣∣ X(t, u) is the solution of (6) corresponding to u ∈ Uad

}
.

The aim of the microbial fermentation in batch culture is to maximize the yield of
the 1,3-PD, so we establish the stochastic optimal control model of the batch culture as
follows:

OCP: inf J(u) := −EcT3X(τ, u), c3 = (0, 0, 1, 0, 0)T,

s.t. X(s, u) ∈ Vx(Uad), s ∈ [0, τ ]. (13)

From the theory on continuous dependence of solutions on parameters, we know
that X(s, u) is continuous on u, so J(u) is continuous on u ∈ Uad. Moreover Uad is
a closed bounded convex subset ofR2

+. Hence we know the optimal control must exist by
Theorem V.6.3 in [27], namely, exists u∗ ∈ Uad such that J(u∗) 6 J(u) for all u ∈ Uad.

For any time s ∈ [0, τ ], define the value function

V (s,X) := inf
u∈Uad

[
−Ec3X(s, u)

]
and the operator LuX(s) takes the form

LuX(s) =
1

2

∑
i,j∈I5

∂2

∂Xi∂Xj
+
∑
i∈I5

Fi(X,u)
∂

∂Xi
.

Theorem 5. Assume that V (s,X) is a solution of the dynamic programming equation

∂V

∂s
= − inf

u∈Uad

LuX(s)V, (s,X) ∈ [0, τ ]× S0

with the boundary data
V (τ,X) = −Ec3X(τ, u).

If u∗ is an admissible feedback control, then u∗ is optimal if and only if

Lu
∗

X (s)V = inf
u∈Uad

LuX(s)V.

Proof. Sufficiency. For each v ∈ Uad (s,X) ∈ [0, τ ]× S0,

∂V

∂s
+ LvX(s)V > 0.
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Let us replace s,X , v by t,X(t), u(t) = u(t,X(t)), s 6 t 6 τ . We apply Theorem V.5.1
in [27] with M = 0, ψ = V .

It is obvious that E
∫ τ
s
|M(t,X(t))|dt = 0 <∞. we get

V (s,X) 6
[
−Ec3X(s, u)

]
= J(u).

We have equality in (14) for u = u∗. Therefore, V (s,X) = J(u∗) using Theorem V.5.2
in [27]. Thus u∗ is optimal.

Necessity. Applying the principle of optimality in dynamic programming we get

V (s,X) = inf
u∈Uad

[
−Ec3X(s, u)

]
6 V

(
s+ h,X(s+ h)

)
,

that is
V
(
s+ h,X(s+ h)

)
− V (s,X) > 0. (14)

Multiplying h−1 on both sides of above formula and letting h → 0+, we noticed that X
is controlled by Itô differential equation (6), we can deduce by Itô differential formula

lim
h→0+

1

h

[
V
(
s+ h,X(s+ h)

)
− V (s,X)

]
=

1

ds
lim
h→0+

s+h∫
s

{
∂V (τ,X)

∂s
+ LuX(s)V (τ,X)

}
dτ =

∂V

∂s
+ LuX(s)V,

So we can get
∂V

∂s
+ LuX(s)V > 0. (15)

On the other hand, assume the optimal control u∗ can be achieved on [s, s+ h], then

∂V

∂s
+ LuX(s)V = 0. (16)

From (15) and (16), we get

∂V

∂s
= − inf

u∈Uad

LuX(s)V = −Lu
∗

X (s)V.

Thus the proof is completed.

5 Numerical simulation

To illustrate the stochastic nature of batch fermentation process sufficiently, a numerical
example is given. In the example, we let σii = 0.02, σij = 0.0004, i 6= j, and
use Monte Carlo method to generate five thousand random inputs, which consist of the
infinitesimal increment of standard Brownian motion dW (t). Afterwards, we solve the
proposed stochastic model using the following Stochastic Euler–Maruyama scheme and

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 1, 99–111
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obtain five thousand solution paths of the model. Our numerical approximation to X(τj)
will be denoted by Xj .

Stochastic Euler–Maruyama method [28]:

Xk
j = Xk

j−1 + F
(
Xk
j−1
)
∆t

+
∑
l∈I5

σkl
(
Xk
j−1
)(
W l
t (τj)−W l

t (τj−1)
)
, j = 1, 2, . . . , L, (17)

where ∆t = T/L, for some positive integer L, Xk, denotes the kth component of the
X(t) and τj = j∆t.

ξ = (0.405 g/L, 441.37 mmol/L, 0, 0, 0)T, the components of which are the initial
concentrations of biomass, substrate, 1,3-PD, acetic acid and ethanol, respectively. All
the parameters of the stochastic system are given in Table 1.

Table 1. Parameters values of each reactant in the stochastic system.

Reactant µm ks mi Yi

Biomass 0.67 0.28 − −
Glycerol − − 2.20 0.0082
1,3-PD − − −2.69 67.69
Acetic acid − − −0.97 33.07
Ethanol − − −0.97 33.07

In this simulation, we let T = 6.5 h and L = 1000 in Eq. (17), it had been shown that
EM has strong order of convergence γ = 1/2 [28], i.e., the error between the true solution
and the numerical solution is a constant multiply ∆t1/2. Figures 1–5 shows the compari-
son of biomass, substrate and product concentrations between experimental and simulated
results, where the points denote the experimental values, written as y(τi) = (y1(τi),
y2(τi), y3(τi), y4(τi), y5(τi))

T, i ∈ I5, and the real lines denote the computational
curves EXk(t), k ∈ I5.

Fig. 1 Fig. 2
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Fig. 3 Fig. 4

Fig. 5

Define errors as follows:

ek =

∑5
i=1 |EXk(τi)− yk(τi)|∑5

i=1 y
k(τi)

, k ∈ I5.

We obtain the errors e1 = 18.39%, e2 = 24.19%, e3 = 26.68%, e4 = 67.25%, e5 =
29.97%. The large errors e4 and e5 might due to the intermittent feeding of alkali into the
reactor to maintain the pH value at 7. Comparing the errors in this paper with the reported
results [16] and the stochastic nature of the bioprocess, we conclude that the stochastic
system is more fit for modeling actual batch fermentation under investigation.

6 Conclusions

In this paper we have proposed a nonlinear stochastic kinetic system of batch culture.
Then we proved the existence and uniqueness of solutions to the stochastic system and
the stochastic optimal control of the nonlinear stochastic system.

Our current tasks accommodate the stochastic modeling and some properties of the
nonlinear stochastic system as well as the stochastic optimal control. In a future work, the
objective of our efforts is to develop into the parameter estimation and numerical result of
the stochastic optimal control problem for the stochastic system of batch culture. Further

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 1, 99–111
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we will pursue the verification and validation of the proposed stochastic system and make
detailed comparison between deterministic and stochastic models of batch culture.
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