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Abstract. For a given graph G = (V,E) the maximum independent set problem is to find the
largest subset of pairwise nonadjacent vertices. We propose a new model which is a reformulation
of the maximum independent set problem as an unconstrained quadratic binary programming, and
we resolve it afterward by means of a genetic algorithm. The efficiency of the approach is confirmed
by results of numerical experiments on DIMACS benchmarks.
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1 Introduction

The maximum independent set problem (MIS) is one of the central combinatorial op-
timization problems and shown to be NP-hard [1]. This problem is relevant for many
practical applications in computer science and operation research, and engineering [2],
such as register allocation in a compiler, assigning channels to radio station, scheduling
exam, graph coloring, and the reader collision problem [3]. Some studies were made
on the basis of the greedy algorithms and tabu search [4, 5], or using the intersection
graph of an axis-parallel rectangles [6]. In [7] the authors proposed a method based on an
improvement of the maximum independent set algorithm given by F. Glover in [8]. Other
studies based on a method that utilizes the polynomially solvable critical independent set
problem [9]. The unconstrained binary quadratic programming problem is to maximize
(or minimize) the function:

f(x) = xTQx,

where Q = (qij) is an n× n matrix of constants and x is an n-vector of binary variables.
This formulation has an ability to model a wide range of different problems on many
areas as traffic management [10], machine scheduling [11], UBQP gives evidence to
its relevance and effectiveness in the face of known problems by their complexity such
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as the set-partitioning problem [12], the set packing problem [13], the vertex coloring
problem [14], and the linear ordering problem [15]. Given its NP-hard nature [1], various
approaches have been proposed for solving this model using exact methods [16, 17] and
metaheuristic methods as memetic algorithms [18, 19], scatter search [20], simulated
annealing [21], adaptive memory approaches based on tabu search [22–24], and recently
combination of GRASP and tabu search [25].

This paper presents an efficient method for solving the maximum independent set
problem (MIS) via its modeling as a unconstrained binary quadratic programming
(UBQP).

This paper is organized as follows: we define the maximum independent set prob-
lem in Section 2. Section 3 presents the transformation of linear programming to un-
constrained binary quadratic programming associated to the maximum independent set
problem. In Section 4 the ingredients of our algorithm are described, including an adapted
genetic algorithm, and Section 5 draws some conclusions.

2 Problem definition

The maximum independent set problem (MIS) may be written in a form of a linear
problem with binary variables as follows:

(LPMIS)


maxx0 =

∑n
i=1 xi,

xi + xj ≤ 1, {i, j} ∈ E,

x binary,
(1)

where x2
i = xi and xi ∈ (0, 1).

The problem (LPMIS) is constituted of a linear objective function with one types of
constraints xi+xj ≤ 1 and the number of these inequality constraints is equal to card(E).
Our purpose is to reformulate the problem (LPMIS) in a binary quadratic problem without
constraints in the form:

(UBQPMIS)

{
maxx0 = xTQx,

x binary,

where Q is a square symmetric matrix of dimension card(V ). For this we apply a trans-
formation on the constraints set.

3 Transformation

We introduce the constraints in the objective function in the following way. The objective
is transformed under shape xTDx by (1), then the constraints xi + xj ≤ 1 are introduced
by the product xixj . The problem (LPMIS) is thus replaced by the quadratic problem
without constraint:

(UBQPMIS)

{
maxx0 =

∑n
i=1 xi −

∑
(i,j)∈E xixj ,

x binary.
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Example. We consider the undirected graph in Fig. 1, on this graph we obtain three
independent sets: C1 = (2, 4, 5, 7, 9), C2 = (1, 6, 8) and C3 = (3).

Fig. 1. Independent sets of a graph.

We reformulate it into an unconstrained binary quadratic programming problem. The
example satisfies the following linear programming:

(LPMIS)



maxx0 =
∑9

i=1 xi, x3 + x6 ≤ 1,

x1 + x2 ≤ 1, x3 + x7 ≤ 1,

x1 + x9 ≤ 1, x3 + x8 ≤ 1,

x2 + x3 ≤ 1, x5 + x6 ≤ 1,

x3 + x4 ≤ 1, x8 + x9 ≤ 1,

x3 + x5 ≤ 1, x binary.

We apply the transformation and obtain:

Q =



1 −1 0 0 0 0 0 0 −1
−1 1 −1 0 0 0 0 0 0
0 −1 1 −1 −1 −1 −1 −1 0
0 0 −1 1 0 0 0 0 0
0 0 −1 0 1 −1 0 0 0
0 0 −1 0 −1 1 0 0 0
0 0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 0 1 −1
−1 0 0 0 0 0 0 −1 1


.

The independent set C1 = (2, 4, 5, 7, 9), i.e., x = (010110101) gives an optimal solution
for UQPMIS with x0 = 5, if we add or remove one or more vertex to C1 the value of
UQPMIS will be inferior, for example if we add to C1 the vertex 3, i.e., x = (011110101)
we find x0 = −2.

4 Solving UBQPMIS

After having transformed our MIS problem in an unconstrained binary quadratic form,
we try to solve it using an adapted genetic algorithm well by choosing aptly the operators
which will be ideal to the MIS problem.
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4.1 Genetic algorithm

Our resolution approach of UBQPMIS problem is based on genetic algorithm (GA). The
GA is a research process based on the laws of natural selection and genetics. Generally,
a GA consists of three simple operations. Their functioning is extremely simple, we start
with an initial population, we evaluate the performance of each individual, and we create
a new population of potential solutions using evolutionary operators: selection, crossover
and mutation, GA cycle is repeated until a desired stopping criterion is reached.

The individuals of initial population are generated randomly with equal probability
such as the genes are assigned a value of 0 or 1. To build a diversified initial population,
each individual added to the population must be different to all the existing solutions of
the population. Using the best known lower bound based on degrees of vertices di given
by Caro and Tuza [26]: ∑

i∈V

1

di + 1
≤ card(MIS(G))

During the initialization of the population we fix the size of the independent set to p =
b
∑

i∈V 1/(di + 1)c that is, the number of 1 in each individual of the population.
We consider the objective function xTQx as evaluation function (fitness) of each

individual in the population.
For the selection, first, we randomly choose two individuals, then we apply the tour-

nament selection operator in order to keep the best individual. The comparison between
two individuals is carried out according to their fitness.

Crossover is a recombination operator that combines parts of two individual parents to
produce offspring that contain some genetic information from both parents. A probability
parameter pc, is set to determine the crossover rate. We opt for a special crossing, we
choose two random integers r, s in each parents P1 and P1 such as r, s ∈ [1, n] who
represent points inter-genes. We opt for a crossing which aims to permute two blocks of
genes of each parents pair. The two selected blocks have the same number of genes which
are worth one and the same size. By this crossing we always keep the number of 1 on
each new individual obtained.

C1(i) =

{
P1(i) if i /∈ [r1, s1],

P2(j) if i ∈ [r1, s1] and j ∈ [r2, s2],

C2(i) =

{
P2(i) if i /∈ [r2, s2],

P1(j) if i ∈ [r2, s2] and j ∈ [r1, s1].

Table 1 presents a comparison between the results obtained using a 1-point crossover,
a 2-point crossover and the proposed crossover for 25 tests. The tests were performed
for a crossover rate equal to pc = 0.8 and a mutation rate equal to pm = 0.2. The
average values (Xavg) solutions obtained with the proposed crossover are clearly superior
compared to the two types of crossover.

The mutation is used with the aim to further explore the search space and reaching
solutions that the crossing cannot touch them. We choose randomly two distinct genes
that we permute them after, usually with small probability pm.
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Figure 2: Used crossover operator.

Table 1: Comparison of solution quality for different type of crossover
operations.

One point crossover Two point crossover Proposed crossover

Graph XAvg XAvg XAvg

anna 77.84 76.53 79.04

david 33.71 33.60 34.18

huck 27 26.14 27

fpsol2.i.1 301.28 303.59 306.47

inithx.i.1 563.06 561.25 564.80

zeroin.i.3 118.72 120.55 122.36

myciel4 11 11 11

myciel5 20.61 18.27 23

myciel6 47 45.93 47

myciel7 93.65 93.12 94.07

mug100-25 32.19 31.45 31.86

mulsol.i.5 86.04 84.27 86.73

Table 1 presents a comparison between the results obtained using a
1-point crossover, a 2-point crossover and the proposed crossover for 25
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Fig. 2. Used crossover operator.

Table 1. Comparison of solution quality for different type of crossover operations.

One point crossover Two point crossover Proposed crossover
Graph Xavg Xavg Xavg

anna 77.84 76.53 79.04
david 33.71 33.60 34.18
huck 27 26.14 27
fpsol2.i.1 301.28 303.59 306.47
inithx.i.1 563.06 561.25 564.80
zeroin.i.3 118.72 120.55 122.36
myciel4 11 11 11
myciel5 20.61 18.27 23
myciel6 47 45.93 47
myciel7 93.65 93.12 94.07
mug100-25 32.19 31.45 31.86
mulsol.i.5 86.04 84.27 86.73

Remark. We fix p = b
∑

i∈V 1/(di + 1)c, then we apply the transformation to obtain
UBQPMIS problem, after we run the genetic algorithm, and each time we find a maximum
independent set we increment the number p by one in order to find an independent set
larger.

Algorithm 1. UBQPMIS algorithm.
1. Give the problem UBQPMIS.
2. Put p = b

∑
i∈V 1/(di + 1)c.

3. While T ≤ Tmax.
4. Evaluate each individual by calculating its fitness x0 = xTQx.
5. Make a selection by tournament.
6. Apply the crossing.
7. Apply the mutation with a very low probability.
8. Evaluate the individuals.
9. If we find a feasible solution x0 then p← p+ 1.

10. End while.
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4.2 Obtained results

In this section, we present the experimental results after running our algorithm on in-
stances available in the literature (see the web page http://mat.gsia.cmu.edu/
COLOR03/ for a complete description of the instances) and compare them with those
given by [7,9]. The platform of our experiments is a personal computer windows 7, AMD
Athlon(tm) X2 dual-core QL-65 (2cpus) 2. GHz with 4 GB RAM. The results obtained
by our algorithm are reported in the Table 2. For each instance, we indicate the number
of vertices n, the number of edges d0, the values XS, XDBG and XUBQP respectively
denote the cardinal of the maximal independent set given by S. Butenko et al. [9], DBG
algorithm [7], and UBQPMIS algorithm, the symbol ‘–’ means that the information is not
available. The parameters of the GA for the UBQPMIS problem are: population size= 100,
crossover rate pc = 0.8, mutation rate pm = 0.2, and the maximum iterations number
Tmax = 200.

Table 2. Computational results.

Graph n d0 XS XDBG XUBQP Time UBQP (s)
anna 138 493 80 80 80 0.87
david 87 406 36 36 36 0.49
fpsol2.i.1 496 11654 307 307 307 12.39
fpsol2.i.2 451 8691 261 261 261 10.77
fpsol2.i.3 425 8688 238 238 238 9.18
huck 74 301 27 27 27 0.51
inithx.i.1 864 18707 566 566 566 15.26
inithx.i.2 645 13979 365 365 365 10.94
inithx.i.3 621 13969 360 360 360 7.89
jean 80 254 38 38 38 0.60
zeroin.i.1 211 4100 120 120 120 4.22
zeroin.i.2 211 3541 127 127 127 4.05
zeroin.i.3 206 3540 123 123 123 5.13
1-FullIns5 282 3247 – 138 138 6.67
3-FullIns4 405 3524 – 193 193 8.42
2-Inser4 149 541 – 74 74 1.05
3-Inser3 56 110 – 27 27 0.38
4-Inser3 79 156 – 39 39 0.96
games120 120 638 – 22 22 1.20
mulsol.i.1 197 3925 – 100 100 5.26
mulsol.i.5 186 3973 – 88 88 4.81
mug88-1 88 146 – – 29 1.17
mug88-25 88 146 – – 29 0.95
mug100-1 100 166 – – 33 1.78
mug100-25 100 166 – – 33 2.34
myciel3 11 20 – – 5 0.21
myciel4 23 71 – – 11 0.33
myciel5 47 236 – – 23 0.57
myciel6 95 755 – – 47 0.84
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Graph n d0 XS XDBG XUBQP Time UBQP (s)
myciel7 191 2360 – – 95 3.96
dsjc125.1 125 736 – – 32 2.03
dsjc250.1 250 3218 – – 39 5.49
le450_15a 450 8168 – – 71 9.41
le450_15d 450 16750 – – 37 12.16
le450_25a 450 8260 – – 85 11.07
le450_25d 450 17425 – – 40 13.22

5 Conclusion

In this paper we have presented a method to reformulate the linear program of maximum
independent set problem as an unconstrained binary quadratic problem, the proposed
algorithm proves to be highly effective in solving a range of benchmark instances from the
literature. Most of these instances have been easily resolved with a reasonable execution
time. For the first 13 instances we obtained identical results than those in [9], our results
are also identical to the first 21 instances given in [7], to show the effectiveness of our
algorithm we tested 15 other instances.
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