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Abstract. In this work we describe the theory and 2D simulation of ion separation and focusing
in a new concept of microfluidic separation device. The principle of the method of ion focusing
is classical in the sense that it consists in opposing a hydrodynamic transport ensured by the
solution flow to an electrophoretic driving force so that any ionic sample results poised within
the microchannel at the point where the two forces equilibrate. The originality of the concept
investigated here relies on the fact that thanks to the use of an ion-conducting membrane of variable
thickness in electrical contact with the channel the electrophoretic force is varied continuously all
along the channel length. Similarly, changing the geometric shape of the membrane allows a facile
optimization of the device separation and focusing properties.
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1 Introduction

The development and the present facile access to microfabrication devices has led to
great improvements in analytical separative devices [1–11] in particular concerning those
involving a wide range of electrically driven applications, e.g., capillary electrophore-
sis [12–17], electrokinetic chromatography [18–22], gel electrophoresis [23–29], etc.
Implementation of these techniques within microfluidic channels has allowed spectacular
progress in biological and chemical analyses (see, for example, [30,31]). However, albeit
many advantages have been demonstrated over conventional methods, the shorter lengths
of microchannel separative devices create intrinsic difficulties concerning absolute separa-
tion efficiencies. Indeed, due to the small cross-sections of electrically driven microfluidic
separative microchannels the current densities are high and must be limited when the mi-
crochip material cannot radiate easily the important Joule effect [1]. This in turn limits the
magnitude of the separation electrical voltage, hence the absolute separation efficiency.
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A second limitation, valid for any separative microdevice, is related to the fact that
characterization of the targeted analyte generally requires that sophisticated detection
means (e.g., mass spectrometry) [32–37] are connected to the exit of the separation mi-
crochannel, thus reproducing the same constraints as in classical separation methods but
with a higher difficulty since the amount of analyte is minute.

Recent experiments have demonstrated that another strategy may be implemented
with success when the analyte is charged [38–46]. This amounts to focusing a targeted
analyte by opposing two means of transport within the separative microchannel: a con-
stant one-direction solution flow of average velocity vavg which carries the analyte and
a counter-direction electrokinetic force [47–58] (which depends on the analyte charge,
q = z|e|, and its diffusion coefficient, D) whose intensity increases continuously along
the microchannel separation length. Under such conditions, analytes with given product
zD result poised within the microchannel at a distance, x0, such as zD = (RT/F )vavg/
(dϕ/dx)x0

where (dϕ/dx) is the electrical potential gradient imposed at any point x of
a channel.

To obtain a constant flow rate the microchannel must have a constant cross-section.
Therefore, in order to create and adjust at will the gradient (dϕ/dx) one needs to divert
part of the current flow along the microchannel length [59, 60]. This may be performed
in a continuous mode by carrying out the separation in the presence of an excess of
supporting electrolyte and implementing an ion-conducting membrane with nanopores
(e.g., Nafion R©) with variable thickness into one of the channel walls as represented
schematically in Fig. 1(a). Note that a conceptually analogous approach in which the
electrical field experiences a continuous gradient within the microchannel has been re-
cently proposed [61–64]. However, both approaches differ essentially in the sense that in
this previous work the variable electrophoretic driving force results from paired electro-
chemical reactions occurring at each end of a bipolar electrode inserted in the channel.
This imposes a strong localization of the electrophoretic force gradient near each end of
the bipolar electrode while in the present concept the gradient variations are spread at will
over the whole channel length.

Under the conditions of Fig. 1(a), at any given position within the microchannel, the
current flow faces two parallel resistances representative of each ionic transport mode, one
through the solution and the other through the membrane as sketched in Fig. 1(b) for an
element dx of the channel length. If the membrane nanopores are too small for allowing
the analytes of interest to be carried through the membrane, they will be transported within
the solution while experiencing a gradient of the electrical force which may then oppose
more and more efficiently to the counter-transport by the solution flow. The ensuing
decrease in transport rate along the electrical gradient proceeds up to the point when
the selected analyte necessarily stops and may then be detected by any imaging technique
such as fluorescence.

The main goal of this work is to investigate the theoretical aspects of this separation
method and evidence by a series of 2D-simulations how such devices perform in particular
when two analytes need to be focused at two different points along the microchannel
length. For this purpose we will consider that the ion-conducting membrane has been
deposited so that its thickness varies linearly along the channel length (Fig. 1a) but evi-
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(a) (b)

Fig. 1. (a) Schematic description of the focusing microchannel system geometry; (b) equiva-
lent electrical circuit of a vertical slice of thickness dx of the microchannel shown in (a).

dently other shapes may be implemented experimentally or in the simulations to test and
predict if this would lead to better separation efficiencies under particular circumstances.
Indeed, the present model involving a combination between analytical formulations and
simulations is sufficiently versatile to test any configuration, hence to allow optimization
of the device towards a particular case of interest.

A computer program written by the authors allows performing 2D simulations for
different experimental situations in order to optimize the focusing properties. The simu-
lation can readily account for both parabolic and constant (electroosmotic) flows and can
be easily modified to cover more complicated situations.

2 Theory

2.1 Physico-chemical model

Consider a flow channel as depicted in Fig. 1(a) of height h and lateral width w (in the
direction perpendicular to the cross-section in Fig. 1(a); w � h). The solution within
the channel is supposed to flow due to an external pressure gradient. In order to create
conditions for separating charged particles according to their effective charge an electric
field is generated within the channel using two electrodes located at a distance l from each
other in the direction of the flow (l � h and l � w). The potential difference between
these electrodes is U = V (x = L) − V (x = 0) and it is assumed that the electrical
equipotential planes are vertical within the part of interest of the channel, viz. the field
is planar and parallel to the channel length. Finally, for simplification we consider here
that the electroosmotic drive due to the electrical field is negligible and that the main
drive of electrochemical origin is by electrophoresis (note that in the experiments shown
here the solution hydrodynamic flow is ensured only by electroosmotic forces due to the
configuration of the experimental set-up). The theory developed below may easily be
expanded to consider electroosmotic forces [65–67] and streaming potential [68] if this
revealed of importance.

This electric field induces an electric current due to the movement of charged analytes
and inert ions of supporting electrolyte with respect to the flowing solution. Additionally,
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the ionic current may also pass through a layer of ion-conducting membrane which is in
electrical contact with one of the channel walls and has a varying thickness described by
a function f(x). Thus the overall conductance of the solution and the membrane layer as
a function of the coordinate x may be adjusted to achieve the required potential (field)
distribution. Note that the exact positioning of the membrane vis-a-vis the microchannel
is irrelevant within the level of approximation used in this work provided that at least one
wall of the channel is electrically connected to the membrane.

Consider a vertical slice (of thickness dx) of the channel together with the ion-con-
ducting wall (see Fig. 1(a)). The overall electric current I flowing through the system
is distributed between the solution and ion-conducting film according to their relative
resistances. The channel slice can thus be represented by an equivalent circuit shown
in Fig. 1(b) where dRs(x) represents the resistance of the elementary solution slice and
dRm(x) is the elementary resistance of the ion-conducting membrane slice at a lateral
position x.

Denoting the ionic conductivities of the solution and membrane as γs and γm (which
we assume for now to be constant), respectively, the elementary resistances may be
expressed as [69]:

dRs(x) =
1

γs

dx

hw
, (1)

dRm(x) =
1

γm

dx

wf(x)
. (2)

The overall resistance of the channel slice is then:

dR(x) =
dx

w(γsh+ γmf(x))
. (3)

From the Ohm’s law the potential drop at this elementary channel slice is dϕ = IdR, so
that the potential distribution along the channel is described by the following integral:

ϕ(x) = I

x∫
0

dx

w(γsh+ γmf(x))
. (4)

Noting that the potential drop along the whole distance between the electrodes is ϕ(l) =
U , one can eliminate the current I and channel width w from (4) to obtain:

ϕ(x) =
U
∫ x
0

dx
w(γsh+γmf(x))∫ l

0
dx

w(γsh+γmf(x))

. (5)

For example, in the case of a wedge-shaped ion-conducting layer (i.e. with f(x)
varying linearly with a wedge-slope k and from a zero value at x = l as shown in Fig. 1(a)
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the ensuing potential distribution along the channel is logarithmic:

f(x) = k(l − x), (6)

ϕ(x) = U
ln(γsh+γmk(l−x)γsh+γmkl

)

ln( γsh
γsh+γmf(x)

)
. (7)

This is represented in Fig. 2 for different values of the wedge-slope k and shows that
the potential variations and those of electrical field may be adjusted at will simply by
changing the wedge-slope of the membrane. This evidences the great versatility of the
present concept.

(a) (b)

Fig. 2. Dimensionless electric potential Φ (a) and field dΦ/dX (b) variations along the
channel length for three different wedge slopes as indicated by the values of k on the curves.
X = x/h, Φ = Fϕ/RT . Variations are shown for γs = 10−3 Ohm−1cm−1, γm =

10−4 Ohm−1cm−1 and L = l/h = 50.

Equation (5) was obtained under the assumption of constant conductivities of the
solution and membrane. However, when this is not the case (viz., when there is a non-
uniform distribution of ionic species throughout the solution and membrane due to ion
exchange between them) this expression needs to be modified only slightly. Indeed, the
resistances (1) and (2) of elementary vertical slices of the solution and membrane layer in
this case become:

dRs(x) =
dx

w
∫ h
0
γs(x, y) dy

, (8)

dRm(x) =
dx

w
∫ f(x)
0

γm(x, y) dy
, (9)

where γs(x, y) and γm(x, y) are location-dependent conductivities of the solution and
membrane layer, respectively. Therefore the integrand in both the numerator and denom-
inator of (5) becomes:

w dR(x) =
dx∫ h

0
γs(x, y) dy +

∫ f(x)
0

γm(x, y) dy
, (10)
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and the potential distribution (5) may be rewritten as:

ϕ(x) = U

∫ x
0

dR(x)∫ l
0

dR(x)
. (11)

If the solution contains a target molecule (or particle) with the effective charge q the
electric field within the channel will exert a force on it equal to:

F (x) = −qdϕ(x)

dx
. (12)

When this force is opposite in direction to the hydrodynamic force pushing the molecule
in the direction of the flow, and provided that the channel is long enough, there is neces-
sarily a position, x0, along the channel where these two forces equilibrate each other,
which corresponds to the point where the analyte will accumulate. Equivalently, the
analyte will stop when its hydrodynamic velocity is exactly compensated by the velocity
imposed by the electric field. Then from the definition of mobility (u = v/E, where v is
the speed of the molecule and E is the field) and the Einstein–Smoluchowski relation
(u = |z|FD/RT , where z = q/|e| and D is the diffusion coefficient of the molecule)
one readily obtains the relative speed of the charged analyte imposed within the flowing
solution by the electrical field [70]:

v(x) =
zFD

RT

dϕ(x)

dx
. (13)

If for simplification we consider that the whole solution flows hydrodynamically at its
average velocity, vavg, the charged analyte has an absolute velocity (i.e., vs. the channel
walls) given by vavg − v(x) (note that this is essentially correct for an electroosmotic
solution flow). This shows that any charged analyte will stop at the position x0 such that

zFD

RT

[
dϕ(x)

dx

]
x0

= vavg. (14)

A more exact determination of the position of the focused species sample and its width
requires implementing the exact shape of the flow velocity. This will be performed below
on the basis of the full analysis of mass transport conditions within the channel and of
simulations for the solutions of the ensuing equations.

2.2 Mathematical model

The actual distribution of the molecules is described by the following mass-transport
equation [13]:

∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
+
zFD

RT
c
d2ϕ

dx2
−
(
vx −

zFD

RT

dϕ

dx

)
∂c

∂x
, (15)

where vx(y) is the flow profile function (e.g., parabolic Poiseuille flow) and the formu-
lation of Eq. (15) takes into account that the potential distribution is independent of the
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coordinate y. Note that the consideration of a constant flow profile (viz., corresponding to
electroosmotic drive) simplifies the problem at hand by practically reducing it to a single
spatial dimension along the channel axis. Therefore we do not consider this situation here
and focus below on the parabolic hydrodynamic flow.

It is assumed that initially a plug sample of analyte is injected at some axial position
xs (which lies either within the separation device or upstream of it) and has a width ws.
Hence, at t = 0 the concentration c = c0 for xs−ws/2 ≤ x ≤ xs +ws/2 and 0 ≤ y ≤ h
and is zero elsewhere.

There is no interaction of the target species with the channel walls, so

∂c

∂y
= 0 for y = 0 and y = h. (16)

Since the sample has a finite size, at large distances from the separation device the con-
centration remains zero at all times:

c = 0 for x = ±∞, 0 ≤ y ≤ h. (17)

Let us introduce the following dimensionless variables and parameters:

τ =
Dt

h2
, X =

x

h
, Y =

y

h
, C =

c

c0
,

Φ =
F

RT
ϕ, VX =

vxh

D
, Pe =

vavgh

D
.

(18)

Then the mass transport equation (15) rewrites as

∂C

∂τ
=
∂2C

∂X2
+
∂2C

∂Y 2
+ zC

d2Φ

dX2
−
(
VX − z

dΦ

dX

)
∂C

∂X
, (19)

and the initial condition becomes

C = 1 for Xs −
Ws

2
≤ X ≤ Xs +

Ws

2
, 0 ≤ Y ≤ 1, (20)

where the upper-case symbols represent the normalized parameters corresponding to lower-
case ones. Boundary conditions (16), (17) retain their form in the normalized terms and
therefore are not repeated here.

Note that the species is theoretically “focused” only at large times, i.e., when τ →∞,
which corresponds to steady state conditions, though the plots shown in Fig. 3(e) establish
that this is met asymptotically within reasonable times. In this case the initial position of
the sample injection is not important and the resulting concentration distribution depends
only on five dimensionless parameters: the charge of the species q = z|e|, the normalized
channel length L, the normalized initial sample width Ws at the point of injection, the
Peclet number of the carrier flow, Pe , and the normalized potential distribution along the
channel Φ(X) (compare with Fig. 2).
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(a) (b)

(c) (d)

(e)

Fig. 3. Electrophoretic focusing of a single species for Pe = 30 and Ψ = FU/RT =
1194.66 (real parameter values: U = 30 V, vavg = 0.03 cm s−1). Simulated normalized
concentrations shown in 3D after different durations: (a) τ = 0; (b) τ = 0.1; (c) τ = 1.5
(corresponds to maximum sample width); (d) τ = 7.5. See text for other parameter values.
In (e) are shown the variations of the maximum and half-width of the sample distribution at

the centre of the channel or near its floor.

3 Simulation results

3.1 Time-evolution of a single species containing sample

Figures 3–6 show normalized concentration distributions for a sample containing a single
charged molecule simulated for a linear ion-conducting layer with a wedge-slope (unless
otherwise stated) k = 1 (see Eq. (7)) and the following dimensioned parameter values:
h = 0.01 cm, l = 0.5 cm, D = 10−5 cm2s−1, z = 1, γs = 10−3 Ohm−1cm−1,
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(a)

(b)

(c)

Fig. 4. Simulated focused normalized concentrations in 3D for three different combinations
of the Peclet number: (a) Pe = 10 (vavg = 0.01 cm s−1); (b) Pe = 50 (vavg =
0.05 cm s−1) and (c) Pe = 100 (vavg = 0.1 cm s−1), and the voltage applied between
the two electrodes: (a) Ψ = 389.2 (U = 10 V); (b) Ψ = 1946.1 (U = 50 V) and

(c) Ψ = 3892.2 (U = 100 V). See text for other parameter values.

γm = 10−4 Ohm−1cm−1, T = 298.15 K, ws = 0.02 cm (dimensionless channel length
L = 50, dimensionless initial sample width Ws = 2). In each case simulated hereafter
the centre of the sample injection is arbitrarily set at the dimensionless positionXs = 2.5.
The values of applied potential U and average flow velocity vavg are given in each figure
caption together with corresponding dimensionless parameters.

All the geometrical and physicochemical parameter values correspond to real experi-
ments performed by the Xiamen group.

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 4, 431–447
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(a)

(b)

(c)

Fig. 5. Simulated normalized concentration distributions for Pe = 100 and Ψ = 3892.2
for different slopes of the wedge-shaped ion-conducting layer: (a) k = 0.2; (b) k = 1;

(c) k = 5. See text for other parameter values.

The plots in Figs. 3–6 show that at short times the concentration distribution spreads
diffusionally and moves downstream (i.e., to the right in all figures) being almost unaf-
fected by the electrophoretic forces.

This is evidenced in Fig. 3(e) where one observes that the sample concentration
moves initially linearly with time. At long times (Fig. 3(e)) the sample approaches the
point where the electrophoretic velocity becomes roughly equal to the average hydrody-
namic velocity so that the sample displacement is gradually slowed down and eventually
stopped. Note that since the solution hydrodynamic flow varies across y, the point at
which the analyte concentration distribution in the center of the channel (viz., at y = h/2,
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i.e., Y = 0.5) is stopped and that at which it stops near the channel wall (viz., at y = 0
or y = h, i.e., Y = 0 or Y = 1) must differ. This is evidenced in Fig. 3(e) by comparing
the Xmax positions at Y = 0.5 and Y = 0 or by examining the variations of the
sample half-width variations (Ws) with time again at Y = 0.5 and Y = 0. These latest
plots also establish that while the sample starts to enlarge its half-width due to diffusion
over the range of time in which it progresses almost linearly along the channel length,
as soon as the electrophoretic contribution becomes sufficiently important the sample is
progressively focused, i.e. its concentration distribution becomes narrower than when it
was traveling at intermediate times. Thus, not only the sample is ultimately poised at a
given position within the channel, but it is also focused so as to eliminate part of the effect
of diffusional spreading incurred during its initial travel within the channel.

More precisely this focusing property of the present device (viz., the width and shape
of the focused concentration distribution obtained at steady state) depends on the inten-
sities of flow and the electric field. This is demonstrated in Fig. 4 for three different
combinations of the Peclet number (Pe = 10, 50 and 100) and the voltage applied
between the two electrodes (U = 10 V, 50 V, 100 V, which correspond to dimensionless
values Ψ = FU/RT = 389.2, 1946.1 and 3892.2, respectively). One can see from
Fig. 4 that although the sample focusing position is the same for all three situations
considered the resulting width of the sample is the smaller the steeper the potential gra-
dient, which obviously results in better focusing. In the case of Fig. 4 this had to be
achieved by simultaneous increase in both the hydrodynamic flow rate and the electric
potential applied along the channel. On the other hand, the same effect can be achieved by
changing the geometry of the ion-conducting membrane, viz., by varying the electric field
profile without changing the applied potential difference (see Fig. 2). This is exemplified
in Fig. 5 for three wedge-shaped membranes with different slopes. It follows that the
width of the focused sample depends on the diffusivity of the analyte as well as on the
electric field strength. In order to achieve better focusing, the latter can be increased not
only via increasing the potential difference applied along the separation channel but also
by changing the shape of the ion-conducting membrane. This may allow achieving the
same focusing quality using lower voltages than those used for illustration in Figs. 4–5
if this is desired experimentally. On the other hand, it should be noted that employing
higher voltages and higher solution flow rates allow the reduction of focusing times which
may be advantageous in experimental practice. The plots in Figs. 3–5 evidence the great
versatility of the method since they demonstrate that one can adjust the electrical and
hydrodynamic conditions to obtain a desired result.

3.2 Separation of two differently charged species

If the sample consists of molecules carrying different electric charges and/or different
diffusion coefficients each component will be focused at different positions along the
channel. Figure 6 illustrates the limiting distribution of two species with z = 1 and z = 2
(and an identical diffusion coefficient for simplicity) for the dimensionless parameters:
Pe = 100, Ψ = 3892.2, k = 5. The initial samples of the species were superimposed
and had the same dimensionless width Ws = 1 as well as equal concentrations. However,
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(a)

(b) (c)

Fig. 6. (a) 3D-representation of the simultaneous focusing of 2 species with z = 1 (peak
on the right) and z = 2 (peak on the left), respectively; (b,c) variations of the positions of
the two sample maxima in the center ((b) Y = 0.5) and near the bottom ((c) Y = 0) of the
channel as a function of time: z = 1 and z = 2. The shaded areas around each curve filled
with the same color represent the widths of each sample during the focusing operation. See

text for other parameter values.

as evidenced in Fig. 6, when focused, the two samples concentration distributions have
different amplitudes and widths since they traveled different lengths and are ultimately
trapped in areas with different electric field strength (see, e.g., Fig. 2 for k = 5).

4 Computational details

A computer program for the numerical solution of the model (16)–(20) was developed
by the authors. The time-dependent PDE (19) was solved using the Alternating Direction
Implicit finite difference method [71] which affords extremely rapid and accurate simu-
lations. The computer program features a user-friendly interface allowing easy parameter
input and graphical presentation of the computed concentration distributions as well as
dynamic sample parameters (position and width). The program can be obtained from the
authors upon request.

5 Conclusions

This theoretical work based on the concept recently introduced by some of us demon-
strates that the focusing of selected analytes in microfluidic separation channels thanks
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to the opposition between a constant transport by the hydrodynamic flow and a gradi-
ent of the electrophoretic driving force provides extremely interesting opportunities for
chemical and biochemical separations. Beyond its high experimental simplicity, the main
advantage of this concept is that the key electrical gradient is directly provided by that
of the thickness of an ion-conducting membrane so that the system may be optimized for
specific analytes of interest by very simple operations. As proven by the theory presented
in this work and the corresponding simulations the method is then highly versatile in the
sense that these theoretical analyses showed that specific shapes of the ion-conduction
membrane thickness profile may ensure the simultaneous focusing of several selected
analytes at the same time, a property which may be extremely useful when searching for
example for a specific protein distribution pattern in biological fluids.
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