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Abstract. In this article we find the exact traveling wave solutions of the Kudryashov–Sinelshchikov
equation and nonlinear telegraph equation by using the first integral method. This method is based
on the theory of commutative algebra. This method can be applied to nonintegrable equations as
well as to integrable ones.
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1 Introduction

Nonlinear evolution equations are widely used to describe complex phenomena in various
sciences such as fluid physics, condensed matter, biophysics, plasma physics, nonlinear
optics, quantum field theory and particle physics, etc. In recent years, various power-
ful methods have been presented for finding exact solutions of the nonlinear evolution
equations in mathematical physics, such as, tanh method [1–3], multiple exp-function
method [4], transformed rational function method [5], Hirotas direct method [6, 7], ex-
tended tanh-function method [8] and so on.

The first integral method, which is based on the ring theory of commutative algebra,
was first proposed by Feng [9]. This method was further developed by the same author
in [10–13].

The aim of this work is to find new exact solutions of Kudryashov–Sinelshchikov
equation by using the first integral method.

The rest of this paper is organized as follows. In Section 2, we give the description of
the first integral method. In Sections 3 and 4, we apply this method to nonlinear telegraph
equation and Kudryashov–Sinelshchikov equation.
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2 The first integral method

Consider a general nonlinear partial differential equation (PDE) in the form

F (u, ux, ut, uxx, uxt, . . . ) = 0. (1)

Using traveling wave
u(x, t) = U(ξ), ξ = x− ct,

from Eq. (1), we obtain the ordinary differential equation (ODE):

G(U,U ′, U ′′, . . . ) = 0, (2)

where prime denotes the derivative with respect to the same variable ξ.
Suppose that the solution of ODE (2) can be written as follows:

u(x, t) = U(ξ) = f(ξ).

Next, we introduce a new independent variable

X(ξ) = f(ξ), Y (ξ) = f ′(ξ), (3)

which leads a system of nonlinear ordinary differential equations

X ′(ξ) = Y (ξ),

Y ′(ξ) = F1

(
X(ξ), Y (ξ)

)
.

(4)

By the qualitative theory of ordinary differential equations [14], if we can find the integrals
to Eq. (4) under the same conditions, then the general solutions to Eq. (4) can be solved
directly. However, in general, it is really difficult for us to realize this even for one first
integral, because for a given plane autonomous system, there is no systematic theory that
can tell us how to find its first integrals, nor is there a logical way for telling us what these
first integrals are. We will apply the division theorem to obtain one first integral to Eq. (4),
which reduces Eq. (2) to a first order integrable ordinary differential equation. An exact
solution to Eq. (1) is then obtained by solving this equation. Now, let us recall the division
theorem:

Division theorem. Suppose that P (w, z) and Q(w, z) are polynomials in C[w, z] and
P (w, z) is irreducible in C[w, z]. If Q(w, z) vanishes at all zero points of P (w, z), then
there exists a polynomial G(w, z) in C[w, z] such that

Q(w, z) = P (w, z)G(w, z).

3 Nonlinear telegraph equation

Let us consider the nonlinear telegraph equation [15]

utt − uxx + ut + αu+ βu3 = 0. (5)
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Using traveling wave u(x, t) = U(ξ), ξ = x− ct carries (5) into an ODE as follows:

(c2 − 1)U ′′ − cU ′ + αU + βU3 = 0, (6)

where prime denotes the derivative with respect to the same variable ξ.
Using (3) and (4), we get

X ′(ξ) = Y (ξ),

Y ′(ξ) =
c

c2 − 1
Y (ξ)− α

c2 − 1
X(ξ)− β

c2 − 1
X3(ξ).

(7)

Now, we apply the above division theorem to look for the first integral of system (7).
Suppose that X = X(ξ) and Y = Y (ξ) are nontrivial solutions to (7), and q(X,Y ) =∑m
i=0 ai(X)Y i is an irreducible polynomial in C[X,Y ] such that

q
(
X(ξ), Y (ξ)

)
=

m∑
i=0

ai(X)Y i = 0, (8)

where ai(X) (i = 0, 1, . . . ,m) are polynomials ofX and am(X) 6= 0. Eq. (8) is a first in-
tegral of Eq. (7). We note that dq/dξ is a polynomial ofX and Y , and q(X(ξ), Y (ξ)) = 0
implies that dq/dξ|(7) = 0. According to the division theorem, there exists a polyno-
mial [9] T (X,Y ) = g(X) + h(X)Y in C[X,Y ] such that

dq

dξ
=

dq

dX

dX

dξ
+

dq

dY

dY

dξ
=
(
g(X) + h(X)Y

) m∑
i=0

ai(X)Y i. (9)

In this example, we assume that m = 2 in Eq. (8). Taking Eq. (7) and (9) into account,
we get

2∑
i=0

a′i(X)Y i+1 +

(
c

c2 − 1
Y − α

c2 − 1
X − β

c2 − 1
X3

) 2∑
i=0

iai(X)Y i−1

=
(
g(X) + h(X)Y

) 2∑
i=0

ai(X)Y i. (10)

Equating the coefficients of Y i (i = 3, 2, 1, 0) in Eq. (10) leads to the system

a′2(X) = h(X)a2(X), (11)

a′1(X) =

(
g(X)− 2c

c2 − 1

)
a2(X) + h(X)a1(X), (12)

a′0(X) = 2a2(X)

[
α

c2 − 1
X +

β

c2 − 1
X3

]
+

(
g(X)− c

c2 − 1

)
a1(X) + h(X)a0(X), (13)

a1(X)

[
− α

c2 − 1
X − β

c2 − 1
X3

]
= g(X)a0(X). (14)
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Since ai(X) (i = 0, 1, 2) are polynomials, then, from (11), we deduce that a2(X) is
constant and h(X) = 0. For simplicity, take a2(X) = 1. Then Eqs. (12) and (13) reduce
to the following equations:

a′1(X) = g(X)− 2c

c2 − 1
, (15)

a′0(X) = 2

(
α

c2 − 1
X +

β

c2 − 1
X3

)
+

(
g(X)− c

c2 − 1

)
a1(X). (16)

Balancing the degrees of a0(X), a1(X) and g(X), we conclude that deg(g(X)) = 0
and deg(a1(X)) = 1 or deg(g(X)) = 1 and deg(a1(X)) = 2. If deg(g(X)) = 0 and
deg(a1(X)) = 1, assuming g(X) = A1 (A1 6= 0) and a1(X) = B0 +B1X (B1 6= 0) in
Eq. (15), we get A1 = B1 + 2c/(c2 − 1). Thus, from Eq. (16), we have

a0(X) = d+

(
B0B1 +

c

c2 − 1
B0

)
X +

1

2

(
B2

1 +
c

c2 − 1
B1 +

2α

c2 − 1

)
X2

+
β

2(c2 − 1)
X4, (17)

where d denotes an integration constant. By substituting a0(X), a1(X) and g(X) into
Eq. (14) and equating the coefficients of Xi (i = 4, 3, 2, 1) to zero, we obtain the
following system of nonlinear algebraic equations:

X4:
3β

2(c2 − 1)
B1 +

cβ

(c2 − 1)2
= 0, (18)

X3:
β

c2 − 1
B0 = 0, (19)

X2:
1

2
B3

1 +
3c

2(c2 − 1)
B2

1 +

(
c2

(c2 − 1)2
+

2α

c2 − 1

)
B1 +

2cα

(c2 − 1)2
= 0, (20)

X1: B0B
2
1 +

3c

c2 − 1
B0B1 +

2c2

(c2 − 1)2
B0 +

α

c2 − 1
B0 = 0, (21)

X0:

(
B1 +

2c

c2 − 1

)
d = 0. (22)

Solving the system (18)–(22) simultaneously, we get the solutions set

B0 = 0, B1 =
√
α(9α− 2), c = −3

√
α

9α− 2
, d = 0. (23)

B0 = 0, B1 = −
√
α(9α− 2), c = 3

√
α

9α− 2
, d = 0. (24)

Now, taking the solution set (23) into account, Eq. (8) becomes

β(9α− 2)

4
X4 +

α(9α− 2)

4
X2 +

√
α(9α− 2)XY + Y 2 = 0, (25)
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which is a first integral of Eq. (7). Solving Eq. (25), we get

Y (ξ) = ±
√
9α− 2

2

(√
−βX2(ξ)∓

√
αX(ξ)

)
. (26)

Combining (26) with (7), we obtain the exact solution to Eq. (6) and then exact solutions
to nonlinear telegraph equation can be written as

u(x, t) = −
√
α

exp[−
√
α(9α−2)

2 (x+ 3
√

α
9α−2 t+ ξ0)]

1−
√
−β exp[−

√
α(9α−2)

2 (x+ 3
√

α
9α−2 t+ ξ0)]

, α 6= 0,
2

9
, (27)

u(x, t) =
√
α

exp[−
√
α(9α−2)

2 (x+ 3
√

α
9α−2 t+ ξ0)]

1−
√
−β exp[−

√
α(9α−2)

2 (x+ 3
√

α
9α−2 t+ ξ0)]

, α 6= 0,
2

9
, (28)

where ξ0 is an arbitrary constant.
Similarly, in the case of (24), from (8), we obtain

Y (ξ) =

√
9α− 2

2

(√
−βX2(ξ) +

√
αX(ξ)

)
, (29)

and then the exact solution of nonlinear telegraph equation can be written as

u(x, t) =
√
α

exp[

√
α(9α−2)

2 (x− 3
√

α
9α−2 t+ ξ0)]

1−
√
−β exp[

√
α(9α−2)

2 (x− 3
√

α
9α−2 t+ ξ0)]

, α 6= 0,
2

9
, (30)

where ξ0 is an arbitrary constant.
Comparing our results with Wang’s results [15] then it can be seen that the results are

same.

Remark. If α = 0, we have

u(x, t) = ±
√
2√

β(x+ ξ0)
.

If α = 2/9, we have

u(x, t) = ±
√
2

3
√
β
tan

(
1

3
(x+ ξ0)

)
.

4 Kudryashov–Sinelshchikov equation

Consider the Kudryashov–Sinelshchikov equation [16, 17]:

ut + γuux + uxxx − ε(uuxx)x − κuxuxx − νuxx − δ(uux)x = 0, (31)

where γ, ε, κ, ν and δ are real parameters.
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Eq. (31) describes the pressure waves in the liquid with gas bubbles taking into ac-
count the heat transfer and viscosity. More details are presented [18, 19].

Now, applying the transformation u(x, t) = u(ξ), ξ = x − ct to Eq. (31) and
integrating the resultant equation once, we get

−cu+
γ

2
u2 + u′′ − εuu′′ − κ

2
(u′)2 − νu′ − δuu′ = 0, (32)

where integration constant is taken to zero and the primes denote derivative with respect
to ξ.

Using (3) and (4), we get

Ẋ(ξ) = Y (ξ),

Ẏ (ξ) =
1

1− εX(ξ)

[
cX(ξ)− γ

2
X2(ξ) +

κ

2
Y 2(ξ) +

(
ν + δX(ξ)

)
Y (ξ)

]
.

(33)

Now, we make the transformation dξ = (1−εX) dη in Eq. (33) to avoid the singular line
εX = 1 temporarily. Thus, system (33) becomes

dX

dη
= (1− εX)Y,

dY

dη
= cX − γ

2
X2 +

κ

2
Y 2 + (ν + δX)Y.

(34)

In this example, we assume that m = 1 in Eq. (8). From now on, we shall omit some
details because the procedure is the same. Then, by equating the coefficients of Y i (i =
2, 1, 0) on both sides of Eq. (9), we have

(1− εX)ȧ1(X) =

(
h(X)− k

2

)
a1(X), (35)

(1− εX)ȧ0(X) =
(
g(X)− ν − δX

)
a1(X) + h(X)a0(X), (36)

g(X)a0(X) = a1(X)

(
cX − γ

2
X2

)
. (37)

As a1(X) and h(X) are polynomials, from Eq. (35), we deduce that h(X) = k/2
and a1(X) must be a constant. For simplicity, we can take a1(X) = 1. Then Eq. (36)
indicates that deg(g(X)) ≤ deg(a0(X)). Thus, from Eq. (37), we conclude that
deg(g(X)) ≤ deg(a0(X)) = 1. Assuming g(X) = A0 + A1X (A1 6= 0) and a0(X) =
B0 + B1X (B1 6= 0) in Eq. (36), we get A0 = B1 − (κ/2)B0 + ν and A1 = δ − (ε +
κ/2)B1. Substituting g(X) and a0(X) into Eq. (37) and setting the coefficients of Xi

(i = 2, 1, 0) to be zero, we derive a system of nonlinear algebraic equations B0, B1 and
c. Solving the resultant system simultaneously, we get the solution set

B0 =
2(2νε+ νκ+ δ ±

√
δ2 + 2γε+ γκ)

κ(2ε+ κ)
, B1 =

δ ±
√
δ2 + 2γε+ γκ

2ε+ κ
,

c = −γ − νδ ± ν
√
δ2 + 2γε+ γκ

κ
.

(38)
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Using the condition (38) in (8), we obtain

Y = −2ν

κ
∓ 2(δ±

√
δ2+2γε+γκ)

κ(2ε+k)
− δ±

√
δ2+2γε+γκ

2ε+κ
X. (39)

Combining Eq. (33) with Eq. (39) and changing to the original variables, we find exact
solutions to Eq. (31) as

u(x, t)

= − 2ν(2ε+ κ)

κ(δ ±
√
δ2 + 2γε+ γκ)

∓ 2

κ
− 2ε+ κ

δ ±
√
δ2 + 2γε+ γκ

× exp

[
−δ±

√
δ2+2γε+γκ

2ε+κ

(
x+

(
γ−νδ±ν

√
δ2+2γε+γκ

κ

)
t+ξ0

)]
, (40)

where ξ0 is an arbitrary constant.
Comparing our results with Kudryashov’s results [16] and Ryabov’s results [17] then

it can be seen that the results are new.
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