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Abstract. In this present work, the simplest equation method is used to construct exact solutions
of the DS-I and DS-II equations. The simplest equation method is a powerful solution method
for obtaining exact solutions of nonlinear evolution equations. This method can be applied to
nonintegrable equations as well as to integrable ones.
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1 Introduction

In this paper, we consider the Davey–Stewartson (DS) equations [1–3]

iqt +
1

2
δ2
(
qxx + δ2qyy

)
+ λ|q|2q − φxq = 0,

φxx − δ2φyy − 2λ
(
|q|2
)
x
= 0.

(1)

1Corresponding author.

c© Vilnius University, 2012



370 A. Yildirim et al.

The case δ = 1 is called the DS-I equation, while δ = i is the DS-II equation. The
parameter λ characterizes the focusing or defocusing case. The Davey–Stewartson I and II
are two well-known examples of integrable equations in two space dimensions, which
arise as higher dimensional generalizations of the nonlinear Schrödinger (NLS) equa-
tion [3].

Davey and Stewartson first derived their model in the context of water waves, from
purely physical considerations. In the context, q(x, y, t) is the amplitude of a surface wave
packet, while φ(x, y, t) represents the velocity potential of the mean flow interacting with
the surface wave [3].

The Davey–Stewartson equations are also reduced to Hamiltonian ODEs [4], and so
exact solutions could be furnished by the integrability [5] of finite-dimensional Hamilto-
nian systems.

The research area of nonlinear evolution equation has been very active for the past
few decades. There are various kinds of nonlinear evolution equations that appear in
various areas of physical and mathematical sciences. Much effort has been made on
the construction of exact solutions of nonlinear equations, for their important role in the
study of nonlinear physical phenomena. Nonlinear wave phenomena appears in various
scientific and engineering fields, such as fluid mechanics, plasma physics, optical fibers,
biology, solid state physics, chemical kinematics, chemical physics and geochemistry.
Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and convection
are very important in nonlinear wave equation. In recent years, the powerful and efficient
methods to find analytic solutions of nonlinear equations have drawn a lot of interest by
a diverse group of scientists such as simplest equation method [6–10], tanh method [11,
12], multiple exp-function method [13], Backlund transformation method [14], Hirotas
direct method [15, 16], transformed rational function method [17] and so on.

In 1996, Ma and Fuchssteiner proposed a powerful approach for finding exact so-
lutions to nonlinear differential equations [18]. Their key idea is to expand solutions of
given differential equations as functions of solutions of solvable differential equations, in
particular, polynomial and rational functions. This idea is so important that many types of
nonlinear equations can be solved by it. A more systematical theory on decompositions
and transformations is presented very recently in [17] and [19]. Ma and his coauthors’
theory unifies many existing approaches to exact solutions such as the tanh-function
methods, the homogeneous balance method, the exp-function method and the Jacobi
elliptic function method.

The simplest equation method is a very powerful mathematical technique for finding
exact solutions of nonlinear ordinary differential equations. It has been developed by
Kudryashov [6–10] and used successfully by many authors for finding exact solutions
of ODEs in mathematical physics [20, 21].

The aim of this paper is to find exact solutions of DS-I and DS-II equations by using
the simplest equation method.

The paper is arranged as follows. In Section 2, we describe briefly the simplest equa-
tion method. In Sections 3, we apply this method to DS-I and DS-II equations.
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2 The simplest equation method

Step 1. We first consider a general form of nonlinear equation

P (u, ux, ut, uxx, uxt, . . .) = 0. (2)

Step 2. To find the traveling wave solution of Eq. (2) we introduce the wave variable
ξ = x− ct so that

u(x, t) = y(ξ).

Based on this we use the following changes:

∂

∂t
(.) = −c ∂

∂ξ
(.),

∂

∂x
(.) =

∂

∂ξ
(.),

∂2

∂x2
(.) =

∂2

∂ξ2
(.) (3)

and so on for other derivatives.
Using (3) changes the PDE (2) to an ODE

Q

(
y,
∂y

∂ξ
,
∂2y

∂ξ2
, . . .

)
= 0, (4)

where y = y(ξ) is an unknown function, Q is a polynomial in the variable y and its
derivatives.
Step 3. The basic idea of the simplest equation method consists in expanding the solutions
y(ξ) of Eq. (4) in a finite series

y(ξ) =

l∑
i=0

aiz
i, al 6= 0, (5)

where the coefficients ai are independent of ξ and z = z(ξ) are the functions that satisfy
some ordinary differential equations.

These ordinary differential equations are called the simplest equations. The simplest
equation is characterized by the fact that it is of a lesser order than Eq. (4) and, the general
solution of this equation is known (or we know the way of finding its general solution,
or at least we know some particular solutions of this equation). This means that the exact
solutions y(ξ) of Eq. (4) can be presented by a finite series (5) in the general solution
z = z(ξ) of the simplest equation.

As examples of simplest equations used in the literature, we can cite the Riccati
equation, the equation for the Jacobi elliptic function and the equation for the Weierstrass
elliptic function.

In this paper, we use the Riccati equation as simplest equation

dz

dξ
= k + az(ξ) + bz2(ξ), (6)

where k, a and b are independent on ξ. When k = 0 and a, b 6= 0, we obtain the Bernoulli
equation

dz

dξ
= az(ξ) + bz2(ξ). (7)
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We found that the use of the Bernoulli equation leads to new traveling-wave and wavefront
solutions of Eq. (1). Equation (7) admits the following exact solutions:

z(ξ) =
a exp[a(ξ + ξ0)]

1− b exp[a(ξ + ξ0)]
, (8)

for the case a > 0, b < 0 and

z(ξ) = − a exp[a(ξ + ξ0)]

1 + b exp[a(ξ + ξ0)]
, (9)

for the case a < 0, b > 0, where ξ0 is a constant of integration.
When k = β 6= 0 and a = 0, b = α 6= 0 we obtain the Riccati equation

dz

dξ
= β + αz2(ξ). (10)

Equation (10) admits the following exact solutions [22]:

z(ξ) = −
√
−αβ
α

tanh

(√
−αβξ − ε ln ξ0

2

)
, ξ0 > 0, ε = ±1, (11)

when αβ < 0, and

z(ξ) =

√
αβ

α
tan
(√

αβξ + ξ0
)
, ξ0 = const,

when αβ > 0.

Remark 1. l is a positive integer, in most cases, that will be determined. To determine the
parameter l, we usually balance the linear terms of highest order in the resulting equation
with the highest order nonlinear terms.

Step 4. Substituting (5) into (4) with (6), then the left hand side of Eq. (4) is converted
into a polynomial in z(ξ), equating each coefficient of the polynomial to zero yields a set
of algebraic equations for ai, c.

Step 5. Solving the algebraic equations obtained in Step 4, and substituting the results
into (5), then we obtain the exact traveling wave solutions for Eq. (2).

Remark 2. This method is a simple case of the method in [18].

3 DS-I and DS-II equations

To find exact solutions of DS-I and DS-II Eqs. (1), first we make the transformation

q(x, y, t) = u(ξ)ei(αx+βy+γt), φ(x, y, t) = v(ξ),

www.mii.lt/NA



New exact traveling wave solutions for DS-I and DS-II equations 373

where ξ = iµ(x + y − ct), we have a relation c = αδ2 + βδ4 and reduce system (1) to
the following system of ordinary differential equations:

−
(
γ +

1

2
α2δ2 +

1

2
β2δ4

)
u− µ2δ2

2

(
δ2 + 1

)
uξξ + λu3 − iµvξu = 0, (12a)

µ
(
δ2 − 1

)
vξξ − 2iλ

(
u2
)
ξ
= 0. (12b)

Integrating Eq. (12b) once with respect to ξ and setting the constant of integration to
be zero, we obtain

vξ =
2iλ

µ(δ2 − 1)
u2. (13)

Substituting (13) into Eq. (12a) we have

M

2

(
δ2 − 1

)
u+

µ2δ2

2

(
δ4 − 1

)
uξξ − λ

(
δ2 + 1

)
u3 = 0, (14)

where M = 2γ + α2δ2 + β2δ4.
For the solutions of Eq. (14), we make the following ansatz:

u(ξ) =

l∑
i=0

aiz
i, al 6= 0, (15)

where ai are all real constants to be determined, l is a positive integer which can be
determined by balancing the highest order derivative term with the highest order nonlinear
term after substituting ansatz (15) into Eq. (14), where z satisfies Eq. (7).

Balancing uξξ with u3 in (14) gives

l + 2 = 3l,

so that
l = 1.

This suggests the choice of u(ξ) in Eq. (14) as

u(ξ) = a0 + a1z(ξ). (16)

Substituting (16) along with (7) in Eq. (14) and then setting the coefficients of zj

(j = 3, 2, 1, 0) to zero in the resultant expression, we obtain a set of algebraic equations
involving a0, a1, a and b as

µ2δ2
(
δ4 − 1)b2a1 − λ

(
δ2 + 1

)
a31 = 0,

3

2
µ2δ2

(
δ4 − 1

)
aba1 − 3λ

(
δ2 + 1

)
a0a

2
1 = 0,

1

2
µ2δ2

(
δ4 − 1

)
a2a1 +

M

2

(
δ2 − 1

)
a1 − 3λ

(
δ2 + 1

)
a20a1 = 0,

M

2

(
δ2 − 1

)
a0 − λ

(
δ2 + 1

)
a30 = 0.
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Using Maple gives two sets of solutions:

a0 =

√
M(δ2 − 1)

2λ(1 + δ2)
, a1 =

bδµ

λ

√
λ(δ2 − 1), a =

1

δµ

√
2M

1 + δ2
, (17)

where α, β, γ and b are arbitrary constants;

a0 = −

√
M(δ2 − 1)

2λ(1 + δ2)
, a1 = −bδµ

λ

√
λ(δ2 − 1), a = − 1

δµ

√
2M

1 + δ2
, (18)

where α, β, γ and b are arbitrary constants.
Assuming a > 0 and choosing b < 0 in case (17). Therefore, using solution (8) of

Eq. (7), ansatz (16) , we obtain the following traveling-wave solution of Eq. (14):

u1(ξ) =

√
(δ2 − 1)M

2λ(1 + δ2)

{
1 + 2

exp[ 1
δµ

√
2M
1+δ2 (ξ + ξ0)]

1− b exp[ 1
δµ

√
2M
1+δ2 (ξ + ξ0)]

}
. (19)

Assuming a < 0 and choosing b > 0 in case (18). Therefore, using solution (9) of
Eq. (7), ansatz (16) , we obtain the following traveling-wave solution of Eq. (14):

u2(ξ) = −

√
(δ2 − 1)M

2λ(1 + δ2)

{
1 + 2

exp[− 1
δµ

√
2M
1+δ2 (ξ + ξ0)]

1 + b exp[− 1
δµ

√
2M
1+δ2 (ξ + ξ0)]

}
. (20)

By using (13) and (19), (20) we have

v1(ξ) =
2iλ

k(δ2 − 1)

∫
u21 dξ

=

√
− δ2M

2(1 + δ2)

{
4

b2
ln

(
b exp

[
1

δµ

√
2M

1 + δ2
(ξ + ξ0)

]
− 1

)

−4

b
ln

(
b exp

[
1

δµ

√
2M

1 + δ2
(ξ + ξ0)

]
− 1

)
+

1

δµ

√
2M

1 + δ2
(ξ + ξ0)−

4

b2(b exp[ 1
δµ

√
2M
1+δ2 (ξ + ξ0)]− 1)

}
,

v2(ξ) =
2iλ

k(δ2 − 1)

∫
u22 dξ

=

√
− δ2M

2(1 + δ2)

{
4

b2
ln

(
b exp

[
− 1

δµ

√
2M

1 + δ2
(ξ + ξ0)

]
+ 1

)
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+
4

b
ln

(
b exp

[
− 1

δµ

√
2M

1 + δ2
(ξ + ξ0)

]
+ 1

)
− 1

δµ

√
2M

1 + δ2
(ξ + ξ0) +

4

b2(b exp[− 1
δµ

√
2M
1+δ2 (ξ + ξ0)] + 1)

}
.

Thus, we obtain the following traveling-wave solutions of DS-I and DS-II equations:

q1(x, y, t)

=

√
(δ2−1)M
2λ(1+δ2)

{
1 + 2

exp[ 1
δµ

√
2M
1+δ2 (iµ(x+y−(αδ

2+βδ4)t)+ξ0)]

1−b exp[ 1
δµ

√
2M
1+δ2 (iµ(x+y−(αδ2+βδ4)t)+ξ0)]

}

× ei(αx+βy+γt),

φ1(x, y, t)

=

√
− δ2M

2(1+δ2)

{
4

b2
ln

(
b exp

[
1

δµ

√
2M

1+δ2
(
iµ
(
x+y−

(
αδ2+βδ4

)
t
)
+ξ0

)]
−1
)

−4

b
ln

(
b exp

[
1

δµ

√
2M

1+δ2
(
iµ
(
x+y−

(
αδ2+βδ4

)
t
)
+ξ0

)]
−1
)

+
1

δµ

√
2M

1+δ2
(
iµ
(
x+y−

(
αδ2+βδ4

)
t
)
+ξ0

)
− 4

b2(b exp[ 1
δµ

√
2M
1+δ2 (iµ(x+y−(αδ2+βδ4)t)+ξ0)]−1)

}
;

q2(x, y, t)

= −

√
(δ2−1)M
2λ(1+δ2)

{
1 + 2

exp[− 1
δµ

√
2M
1+δ2 (iµ(x+y−(αδ

2+βδ4)t)+ξ0)]

1+b exp[− 1
δµ

√
2M
1+δ2 (iµ(x+y−(αδ2+βδ4)t)+ξ0)]

}

× ei(αx+βy+γt),

φ2(x, y, t)

=

√
− δ2M

2(1+δ2)

{
4

b2
ln

(
b exp

[
− 1

δµ

√
2M

1+δ2
(
iµ
(
x+y−

(
αδ2+βδ4

)
t
)
+ξ0

)]
+1

)

+
4

b
ln

(
b exp

[
− 1

δµ

√
2M

1+δ2
(
iµ
(
x+y−

(
αδ2+βδ4

)
t
)
+ξ0

)]
+1

)
− 1

δµ

√
2M

1+δ2
(
iµ
(
x+y−

(
αδ2+βδ4

)
t
)
+ξ0

)
+

4

b2(b exp[− 1
δµ

√
2M
1+δ2 (iµ(x+y−(αδ2+βδ4)t)+ξ0)]+1)

}
.
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Substituting (16) along with (10) in Eq. (14) and then setting the coefficients of zj

(j = 3, 2, 1, 0) to zero in the resultant expression, we obtain a set of algebraic equations
involving a0, a1 and k as

µ2δ2
(
δ4 − 1

)
a1 − λ

(
δ2 + 1

)
a31 = 0,

−3λ
(
δ2 + 1

)
a0a

2
1 = 0,

µ2δ2
(
δ4 − 1

)
ka1 +

M

2

(
δ2 − 1

)
a1 − 3λ

(
δ2 + 1

)
a20a1 = 0,

M

2

(
δ2 − 1

)
a0 − λ

(
δ2 + 1

)
a30 = 0.

Solving these under-determined algebraic equations, we get the following result:

a0 = 0, a1 = ±δµ
λ

√
λ(δ2 − 1), k = − M

2µ2δ2(δ2 + 1)
,

where α, β and γ are arbitrary constants.
Therefore, using solution (11) of Eq. (10), ansatz (16), we obtain the following traveling-

wave solution of Eq. (14):

u3(ξ) = ∓

√
(δ2 − 1)M

2λ(1 + δ2)
tanh

[√
M

2µ2δ2(δ2 + 1)
(ξ + ξ0)

]
.

By using (13) we have

v3(ξ) =
2iλ

k(δ2 − 1)

∫
u23 dξ

=

√
− 2δ2M

1 + δ2

{
1

2
ln

(
tanh

[√
M

2µ2δ2(δ2 + 1)
(ξ + ξ0)

]
− 1

)

−1

2
ln

(
tanh

[√
M

2µ2δ2(δ2 + 1)
(ξ + ξ0)

]
+ 1

)

− tanh

[√
M

2µ2δ2(δ2 + 1)
(ξ + ξ0)

]}
.

Then exact solutions to DS-I and DS-II equations can be written as

q3(x, y, t)

= ∓

√
(δ2−1)M
2λ(1+δ2)

tanh

[√
M

2µ2δ2(δ2+1)

(
ik(x+y−

(
αδ2+βδ4

)
t
)
+ξ0

)]
× ei(αx+βy+γt),
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φ3(x, y, t)

=

√
−2δ2M

1+δ2

{
1

2
ln

(
tanh

[√
M

2µ2δ2(δ2+1)

(
ik
(
x+y−

(
αδ2+βδ4

)
t
)
+ξ0

)]
−1
)

−1

2
ln

(
tanh

[√
M

2µ2δ2(δ2+1)

(
ik
(
x+y−

(
αδ2+βδ4

)
t
)
+ξ0

)]
+1

)

− tanh

[√
M

2µ2δ2(δ2+1)

(
ik
(
x+y−

(
αδ2+βδ4

)
t
)
+ξ0

)]}
.

4 Conclusion

In this work, we obtained exact solutions of DS-I and DS-II equations by using the
simplest equation method. The efficiency of this method was demonstrated. The new
complex solution of the DS-I and DS-II equations were obtained. The solutions obtained
may be significant and important for the explanation of some practical physical problems.
The method may also be applied to other nonlinear partial differential equations.
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