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Abstract. Fractional derivative equations account for relaxation and diffusion processes in a lar-
ge variety of condensed matter systems. For instance, diffusion of position probability density
displayed by a random walker in complex systems – such as glassy materials – is often modeled
by fractional derivative partial differential equations (e.g. [1]). This paper deals with the existence
of solutions to the general fractional derivative equation dαu

dtα
+ Au = f for 0 < α < 1, with

A a self-adjoint operator. The results are proved using the von Neumann–Dixmier theorem [2].

Keywords: diffusion in complex systems, fractional derivative evolution equations, separation
of variables method, Caputo derivative, integral equations, self-adjoint operators, von Neumann–
Dixmier theorem.

1 Introduction

Fractional derivative models and equations are widely used in all science domains, as
can be reckoned from [3–7] and the wealth of references cited therein. In particular, in
the area of viscoelasticity (for a general presentation of which we refer to e.g. [8–11]),
fractional derivative models are of great utility in accurately predicting the rheological
behavior of polymer liquids in the glass transition region and beyond (e.g. see [12–21]; for
a review of fractional derivative rheological models see [22]), in interpreting experimental
measurements of anomalous diffusion processes in glassy materials [1, 23] etc.

Diffusion phenomena in complex systems – a category which includes organic and
inorganic glassy materials – are often associated with slower time rates (e.g. monomer
diffusion in glassy polymers). When this is the case, it is now routinely to have the
ordinary time derivative replaced by a fractional derivative of order 0 < α < 1.
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In this paper we study the following problem: find u : R+ 7→ D(A) such that

dαu

dtα
+Au = f, u(0) = u0. (1)

Here A is a coercive self-adjoint operator with domain D(A), which models – among
others – diffusion processes in fluids and solids. A typical example is that of a second
order strongly elliptic partial derivative operator, i.e.

A := −
n∑
i,j

∂

∂xj

Å
aij(x)

∂

∂xi

ã
+ c(x) Id

with aij ∈ C 2(Ω b Rn), c ∈ C 0(Ω), c ≥ 0, and for any x ∈ Ω and for any ξ ∈ Rn,

n∑
i,j

aij(x)ξiξj ≥ β|ξ|2, β > 0.

In the above |ξ| stands for the Euclidean norm of ξ = (ξ1, ξ2, . . . , ξn).
Equations (1) have been extensively studied by Bazhlekova [24] by means of Da

Prato–Iannelli’s theorem [25] and very general results within the framework of Lp spaces
can be found in [24]. For existence results in the case of systems of equations that gen-
eralize (1) see [26]. On the other hand, for some peculiar operators, explicit calculations
can be carried out (see e.g. [27–30]; for a review on recent results on fractional boundary
value problems see [31]).

In this paper, we restrict to the case of self-adjoint operators and prove that the result
obtained by the method of separation of variables converges in L2

loc(R+, D(Aθ)). This is
achieved using the von Neumann–Dixmier’s spectral theorem.

2 Functional framework

LetH be a separable Hilbert space. LetA be a self-adjoint operator the domainD(A)⊂H
of which is such that:

(i) D(A) is dense in H;

(ii) ∃c > 0 s.t. for ∀u ∈ D(A), (Au|u) ≥ c‖u‖2.

Using the von Neumann–Dixmier’s theorem [2] one has:

Theorem 1. Let A : D(A) ⊂ H → H be compliant with conditions (i) and (ii) right
above. Then there exist a Hilbert integral H =

∫ +∞
λ0

H (λ) dµ(λ), where λ0 ∈]0, c[ and
µ is a positive, bounded Radon measure, and a surjectif unitary operator U : H → H ,
such that:

1. U (D(A)) = {f ∈H s.t. λf ∈H };
2. For any y ∈ D(A), U (Ay) = λU (y).
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Fractional derivative equations 155

In many specific cases one may wish to work with non-canonical variants of Theo-
rem 1. For instance, for A = −∆ + Id, H = L2(Rn) and D(A) = H2(Rn), one may
prefer, instead of part (i) of Theorem 1, the following description (here ̂ denotes the
Fourier transform):¤�D(−∆ + Id) =

{
f ∈ L2

(
Rnξ
)

s.t.
(
|ξ|2 + 1

)
f ∈ L2

(
Rnξ
)}
.

Nevertheless, in order to get a unified treatment of the different cases (including
e.g. the above given operator or that of a self-adjoint compact operator) we have to
use Theorem 1. It allows working with a single eigenequation ∂α

∂tαZ + λZ = g (see
Propositions 1 and 3) and a fixed functional frame. Of course the convergence result
obtained in Theorem 2 below can in the end be stated in more specific (albeit non-
canonical) forms.

For sake of clarity we now pause for a few notation explanations and remainders
regarding the spaces Dθ used in this paper. These interpolation spaces are very similar to
the usual fractional spaces Hs(Ω), s ∈ R. In the following, ( | )H (λ) denotes the inner
product in H (λ) and ‖ ‖H (λ) the corresponding norm.

(a) We denote by ˆ the operator U . Let A : D(A) ⊂ H → H satisfy (i) and (ii)
above.

Denote by Dθ, θ ≥ 0, the space D(Aθ) := {f ∈ H | λθf̂ ∈ H , θ ≥ 0}. The
space Dθ is endowed with the norm

‖f‖2Dθ :=

+∞∫
λ0

λ2θ
∥∥f̂(λ)

∥∥2

H (λ)
dµ(λ)

for any f ∈ Dθ. For any θ ≥ θ′ ≥ 0, the continuous inclusions Dθ ↪→ Dθ′ ↪→ D0 = H
hold true. Likewise, for the topological dual spaces, H ′ ↪→ (Dθ′)

′ ↪→ (Dθ)
′. With the

help of the inner product ( | )H we have an isomorphism i : H → H ′. Henceforth

H
U −1

−−−→ H
∼−→ H ′ ↪→ (Dθ)

′.
(b) We now define the Banach spaces D−θ for θ ≥ 0. For θ ≥ 0, set D−θ = (Dθ)

′.
For any θ ∈ R, let Fθ denote the space of measurable vector fields f s.t. λθf ∈ H .

The space Fθ is endowed with the inner product

(f |g)Fθ :=

+∞∫
λ0

λ2θ
(
f(λ)

∣∣g(λ)
)
H (λ)

dµ(λ) ∀(f, g) ∈ Fθ × Fθ (2)

and the corresponding norm ‖ ‖Fθ . For any θ ≥ 0, one has F−θ
∼−→
ρ

(Fθ)
′, where ρ is

defined by

〈
ρ(ϕ), ψ

〉
=

+∞∫
λ0

(
ϕ(λ)

∣∣ψ(λ)
)
H (λ)

dµ(λ) ∀ϕ ∈ F−θ, ∀ψ ∈ Fθ.
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Since Fθ
U
∼
−1|Fθ−−−−−→ Dθ, one also has F−θ

G
∼−→ (Dθ)

′, with G being given by

〈
G(f), g

〉
=

+∞∫
λ0

(
f(λ)

∣∣ĝ(λ)
)
H (λ)

dµ(λ) ∀f ∈ F−θ, ∀g ∈ Fθ.

In what follows, for f ∈ F−θ, θ ≥ 0, and h = G(f) we (abusively) write ĥ = f . For
θ > 0, the norm ‖ ‖D−θ is defined by (see also Eq. (2))

‖h‖2D−θ :=

+∞∫
λ0

λ−2θ
∥∥ĥ(λ)

∥∥2

H (λ)
dµ(λ) ∀h ∈ D−θ.

The spaces Dθ and Fθ are complete for any θ ∈ R.
The operator A is extended to Dθ → Dθ−1 (θ < 1) in the following way: for any

u ∈ Dθ,”Au = λû.
(c) We introduce (see below) a function E. This kernel E will allow us to solve the

equation
∂αû

∂tα
+”Au = f̂ , û(0) = 0,

where the fractional derivative is formally defined by (see Caputo’s definition of it in
[32, 33]):

∂αh

∂tα
(t) :=

1

Γ(1− α)

t∫
0

h′(τ)

(t− τ)α
dτ.

For any λ > 0, let the functions E and W be given, for any t > 0, by:

E(λ, t) =
sin(απ)

π

+∞∫
0

rαe−rt

|rαeiαπ + λ|2
dr,

W (λ, t) =
sin(απ)

π

+∞∫
0

λrα−1e−rt

|rαeiαπ + λ|2
dr.

The functions E(λ, ·) and W (λ, ·) are causal functions w.r.t. the variable t, like all
t-depending functions considered in this paper.

Proposition 1. (See [34].) Let λ > 0, g ∈ C 1([0, T ]), T > 0. Then, for any t ∈ [0, T ],
the function uλ = E(λ) ∗ g (λ > 0) solves

1

Γ(1− α)

T∫
0

u′λ(t)

(t− s)α
ds = −λuλ(t) + g(t), uλ(0) = 0.

The derivative u′λ is understood in the classical sense.

www.mii.lt/NA



Fractional derivative equations 157

(d) Finally, for future reference, notice the following estimate:

Proposition 2. For any λ > 0,

+∞∫
0

∣∣E(λ, t)
∣∣ dt ≤ 1

λ
.

Proof. Since ∂W
∂t (λ, t) = −λ|E(λ, t)|, it implies that, for any T > 0,

T∫
0

∣∣E(λ, t)
∣∣ dt = − 1

λ

T∫
0

∂W

∂t
(λ, t) dt =

W (λ, 0)−W (λ, T )

λ
≤ W (λ, 0)

λ
.

SinceW (1, 0) = 1 (see [34]), one getsW (λ, 0) = 1 as well. Hence
∫ T

0
|E(λ, t)|dt ≤

1/λ.

3 Existence of solutions

Let H be a Hilbert space. Let 0 < α < 1 and A : D(A) 7→ H be a self-adjoint operator
satisfying the conditions (i) and (ii). Let f ∈ L2

loc(R+, Dθ), θ ∈ R. Our goal is to prove
an existence result for the equations

dαu

dtα
+Au = f, u(0) = u0. (3)

In the above equation, f : R → Dθ1 , u0 ∈ Dθ2 , θ1, θ2 ∈ R, are given functions. We
search for θ ∈ R and functions u : R+ → Dθ.

We first restrict to u0 = 0 as the case u0 6= 0 can be reduced to

dαv

dtα
+Av = f −Au0, v(0) = 0.

Since the system of equations (3) with u0 = 0 is formally equivalent to the below
system

∂αû

∂tα
(λ, t) + λû(λ, t) = f̂(λ, t), û(λ, 0) = 0.

We prove the existence in L2
loc(R+, Dθ+1) of the function u formally defined by

û(λ) = E(λ) ∗ f̂(λ), λ ≥ λ0 (see Proposition 1).

Proposition 3. Assume f ∈ L2
loc(R+, Dθ), θ ∈ R. Then there exists a function u ∈

L2
loc(R+, Dθ+1) such that û(λ) = E(λ) ∗ f̂(λ), (µ a.e. in λ ≥ λ0). Moreover, for any

t ≥ 0,
t∫

0

∥∥u(s)
∥∥2

Dθ+1
ds ≤

t∫
0

‖f‖2Dθ (s) ds.

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 2, 153–168
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Proof. Let t ≥ 0. One has:

+∞∫
λ0

(
λ2(θ+1)

t∫
0

∥∥E(λ) ∗ f̂(λ)
∥∥2

H (λ)
(s) ds

)
dµ(λ)

≤
+∞∫
λ0

λ2(θ+1)

( t∫
0

∥∥E(λ) ∗ f̂(λ)
∥∥2

H (λ)
(s) ds

)
dµ(λ)

≤
+∞∫
λ0

λ2(θ+1)

[ t∫
0

(
E(λ) ∗

∥∥f̂(λ)
∥∥)2

H (λ)
(s) ds

]
dµ(λ)

≤
+∞∫
λ0

λ2(θ+1)

[( t∫
0

E(λ, s) ds

)2( t∫
0

∥∥f̂(λ, s)
∥∥2

H (λ)
ds

)]
dµ(λ)

=

t∫
0

‖f‖2Dθ (s) ds,

where the last equality follows from Proposition 2.
The existence of a function u ∈ L2

loc(R+, Dθ+1) such that û(λ) = E(λ) ∗ f̂(λ),
(µ a.e. in λ ≥ λ0) follows from the above inequality. Moreover,

t∫
0

∥∥u(s)
∥∥2

Dθ+1
ds =

+∞∫
λ0

(
λ2(θ+1)

t∫
0

∥∥E(λ) ∗ f̂(λ)
∥∥2

H (λ)
(s) ds

)
dµ(λ)

≤
t∫

0

‖f‖2Dθ (s) ds.

It remains to prove that the function u given in Proposition 3 satisfies Eqs. (1). This
will be a consequence of the eigenequations solved by û. Before undertaking this, we
need several preliminary results.

We first focus on expressing “u′ in terms of functions E and f . The expression given
in Proposition 4 below is the result obtained by formally differentiating formula û(λ) =

E(λ) ∗ f̂(λ). Proposition 4 also contains our smoothness results for the function u.
Let g be formally defined by

ĝ(λ, t) = E(λ, t)f̂(λ, t) +
[
E(λ) ∗ “f ′(λ)

]
(t).

Proposition 4. Let f ∈ H1
loc(R+, Dθ). Then, for any ε ∈]0, 1[ and r ∈ [1, 2]∩ [1, 1

1−εα [,“u′(λ) = E(λ)f̂(λ, 0) + E(λ) ∗ “f ′(λ),

µ a.e. in λ ≥ λ0. Moreover, u ∈W 1,r
loc (R+, Dθ+1−ε).

www.mii.lt/NA



Fractional derivative equations 159

Proof. As W 1,r
loc (R+, Dθ) ↪→ W 1,1

loc (R+, Dθ) for r > 1, we shall consider only the case
r > 1. For any T ≥ 0, one has

T∫
0

∥∥∥∥u(t+ h)− u(t)

h
− g(t)

∥∥∥∥r
Dθ+1−ε

dt

=

T∫
0

[ +∞∫
λ0

∥∥∥∥ û(t+ h, λ)− û(t, λ)

h
− ĝ(t, λ)

∥∥∥∥2

H (λ)

λ2(θ+1−ε) dµ(λ)

]r/2
dt := Ih.

Let us prove that Ih −−−→
h→0

0. One has Ih ≤M(Jh +Kh), M > 0, where

Jh =

T∫
0

[ +∞∫
λ0

λ2(θ+1−ε)

∥∥∥∥∥
t+h∫
t

E(λ, u)f̂(λ, t+ h− u)
du

h

− E(λ, t)f̂(λ, 0)

∥∥∥∥2

H (λ)

dµ(λ)

]r/2
dt,

Kh =

T∫
0

{ +∞∫
λ0

∥∥∥∥∥
t∫

0

E(λ, u)

ï
f̂(λ, t+ h− u)− f̂(λ, t− u)

h
− “f ′(t− u)

ò
du

∥∥∥∥∥
2

H (λ)

× λ2(θ+1−ε) dµ(λ)

}r/2
dt.

Observe now that

Jh ≤
c

|h|

T∫
0

[ +∞∫
λ0

λ2(θ+1−ε)

( t+h∫
t

∣∣E(λ, u)− E(λ, t)
∣∣

×
∥∥f̂(λ, 0)

∥∥2

H (λ)
du

)2

dµ(λ)

]r/2
dt

+
c

|h|

T∫
0

[ +∞∫
λ0

λ2(θ+1−ε)

( t+h∫
t

∣∣E(λ, u)
∣∣∥∥f̂(λ, t+ h− u)

− f̂(λ, 0)
∥∥

H (λ)
du

)2

dµ(λ)

]r/2
dt

≡ Ah +Bh.

We now estimate Ah and Bh. On the one hand, for Ah one has
t+h∫
t

∣∣E(λ, u)− E(λ, t)
∣∣du =

t+h∫
t

[
E(λ, t)− E(λ, u)

]
du

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 2, 153–168
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as t ≤ u. Notice that |rαeiαπ + λ|2 ≥ Kr2qαλ2(1−q), 0 ≤ q ≤ 1. Let q = 1+ε
2 . Since

e−rt − e−ru ≥ 0 for t ≤ u, one gets, for λ ≥ λ0,

0 ≤ E(λ, t)− E(λ, u) ≤
+∞∫
0

Krα(e−rt − e−ru)

r(1+ε)αλ1−ε dr

≤ K

λ1−ε

( +∞∫
0

e−ξ

ξαε
dξ

)Å
1

t1−αε
− 1

u1−αε

ã
. (4)

Therefore,
t+h∫
t

∣∣E(λ, u)− E(λ, t)
∣∣ du ≤ M

λ1−ε

Å
h

t1−αε
− (t+ h)αε − tαε

αε

ã
and

Ah ≤
M

|h|

( +∞∫
λ0

λ2θ
∥∥f̂(λ, 0)

∥∥2

H (λ)
dµ(λ)

)r/2 T∫
0

Å
h

t1−αε
− (t+ h)αε − tαε

αε

ãr
dt

≤ M

|h|
∥∥f(0)

∥∥r
Dθ
KT

T∫
0

|h|r

t(1−αε)r
dt, (1− αε)r < 1.

Therefore, provided that 1 < r < 1
1−αε , one has Ah −−−→

h→0
0.

On the other hand now, using |E(λ, u)| ≤ K
|λ|1−εu1−αε (and letting u → +∞ in (4)),

one has for Bh the following estimates:

Bh ≤ c
T∫

0

[ +∞∫
λ0

λ2θ

( t+h∫
t

‖f̂(λ, t+ h− u)− f̂(λ, 0)‖H (λ)

u1−αε du

)2

dµ(λ)

]r/2
dt

|h|

≤ c
T∫

0

[ +∞∫
λ0

λ2θ|h|
t2(1−αε)

( t+h∫
t

∥∥f̂(λ, t+ h− u)− f̂(λ, 0)
∥∥2

H (λ)
du

)
dµ(λ)

]r/2
dt

|h|

≤ c
T∫

0

1

tr(1−αε)

( ∫
|u−t|≤h

∥∥f(t+ h− u)− f(0)
∥∥2

Dθ

du

|h|

)r/2
dt|h|r−1.

Recall that f ∈ H1
loc(R+, Dθ), and that f is continuous; hence, for h→ 0,∫
|u−t|≤h

∥∥f(t+ h− u)− f(0)
∥∥2

Dθ

du

|h|
→ 0.

This gives Bh −−−→
h→0

0.
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We now proceed to obtaining estimates for Kh for r = 2. Given that:{ T∫
0

{ +∞∫
λ0

λ2(θ+1−ε)

∥∥∥∥∥
t∫

0

E(λ, u)

ï
f̂(λ, t+ h− u)− f̂(λ, t− u)

h

− “f ′(λ, t− u)

ò
du

∥∥∥∥∥
2

H (λ)

dµ(λ)

}r/2
dt

}2

≤
T∫

0

{ +∞∫
λ0

Tλ2(θ+1−ε)

∥∥∥∥∥
t∫

0

E(λ, u)

ï
f̂(λ, t+ h− u)− f̂(λ, t− u)

h

− “f ′(λ, t− u)

ò
du

∥∥∥∥∥
2

H (λ)

dµ(λ)

}r/2
dt

≤ T
+∞∫
λ0

λ2(θ+1−ε)

{ T∫
0

( t∫
0

∣∣E(λ, u)
∣∣∥∥∥∥ f̂(λ, t+ h− u)− f̂(λ, t− u)

h

− “f ′(λ, t− u)

∥∥∥∥
H (λ)

du

)2

dt

}
dµ(λ)

≤ T
+∞∫
λ0

λ2(θ+1−ε)

( T∫
0

E(λ, u) du

)2( T∫
0

∥∥∥∥ f̂(λ, t+ h− u)− f̂(λ, t− u)

h

− “f ′(λ, t− u)

∥∥∥∥2

H (λ)

du

)
dµ(λ)

and since |E(λ, u)| ≤ K
λ1−εu1−αε (see (4)), one finally gets, using the fact that f ∈

H1
loc(R+, Dθ),

K2
h ≤ T

+∞∫
λ0

λ2θ

( T∫
0

du

u1−αε

)2( T∫
0

∥∥∥∥ f̂(λ, u+ h)− f̂(λ, u)

h
− “f ′(λ, u)

∥∥∥∥2

H (λ)

du

)
dµ(λ)

≤ KT

T∫
0

∥∥∥∥f(u+ h)− f(u)

h
− f ′(u)

∥∥∥∥2

Dθ

du −−−→
h→0

0.

In view of the assumption f ∈ H1
loc(R+, Dθ) made in Proposition 4, we need the

below given version of Mainardi’s [34] result quoted in our Proposition 1:

Lemma 1. Let f ∈ H1
loc(R+). Then, the function uλ, λ > 0, defined below for any t ≥ 0

uλ(t) =
(
E(λ) ∗ f

)
(t) (5)

Nonlinear Anal. Model. Control, 2012, Vol. 17, No. 2, 153–168



162 A. Heibig, L.I. Palade

solves the equations

1

Γ(1− α)

t∫
0

u′λ(s)

(t− s)α
ds = −λuλ(t) + f(t), uλ(0) = 0. (6)

Proof. Consider the application H1
loc(R+)

Φ−→ L1
loc(R+),

f 7→ 1

Γ(1− α)

t∫
0

u′(s)

(t− s)α
ds+ λu− f

with u = E(λ) ∗ f . We prove in the following that Φ = 0. Notice first Φ is a properly
defined mapping. Indeed, using arguments similar in nature to those presented in Propo-
sition 4 one shows that for f ∈ H1

loc(R+), u ∈ W 1,1
loc (R+). Moreover, since E(λ) ∈

L1
loc(R+) and f ∈ L1

loc(R+), one gets Φ(f) ∈ L1
loc(R+).

Next, observe that ∀f ∈ C 1(R+), Φ(f) = 0 (see Proposition 1), and that C 1(R+)
is dense in H1

loc(R+). One needs to prove that Φ is continuous. Observe first that u′ =
E(λ) ∗ f ′ + E(λ)f(0) (proof identical to the one given in Proposition 4). One then has,
using Proposition 2,∥∥Φ(f)

∥∥
1,[0,T ]

≤ K
∥∥∥∥ 1

sα

∥∥∥∥
1,[0,T ]

(
‖f ′‖1,[0,T ] +

∣∣f(0)
∣∣)+ ‖f‖1,[0,T ].

However, W 1,1([0, T ]) ↪→ L∞([0, T ]). Hence∥∥Φ(f)
∥∥

1,[0,T ]
≤ K

(
‖f ′‖1,[0,T ] + ‖f‖W 1,1([0,T ])

)
+ ‖f‖1,[0,T ].

It follows that Φ = 0, ending the proof of the first Eq. (6). The proof for uλ(0) = 0
can be patterned after the proof of Proposition 1.

Before proving the existence Theorem 2, we first state the following lemma:

Lemma 2. Let f ∈ H1
loc(R+, Dθ), θ ∈ R. Then, for any ϕ ∈ D−θ, (f̂(λ)|ϕ̂(λ))H (λ) ∈

H1
loc(R+), (f̂(λ)|ϕ̂(λ))′H (λ) = (“f ′(λ) | ϕ̂(λ))H (λ), for µ almost every λ ≥ λ0.

Proof. Let T > 0. Notice first that

T∫
0

∥∥∥∥f(t+ h)− f(t)

h
− f ′(t)

∥∥∥∥2

Dθ

dt −−−→
h→0

0

insofar f ∈ H1
loc(R+, Dθ). Therefore,

+∞∫
λ0

T∫
0

∥∥∥∥ f̂(t+ h, λ)− f̂(t, λ)

h
− “f ′(t, λ)

∥∥∥∥2

H (λ)

λ2θ dtdµ(λ) −−−→
h→0

0. (7)
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Consequently,
∫ T

0
‖ f̂(t+h,λ)−f̂(t,λ)

h ‖2H (λ) dt ≤ K(λ) < +∞ for µ almost every
λ ≥ λ0. It follows that, for any ϕ ∈ D−θ and ρ ∈ D(R∗+) such that supp ρ ⊂ [0, T ], one
has [ T∫

0

Å
f̂(t+ h, λ)− f̂(t, λ)

h

∣∣∣ϕ̂(λ)

ã
H (λ)

ρ(t) dt

]2

≤

( T∫
0

∣∣∣∣Å f̂(t+ h, λ)− f̂(t, λ)

h

∣∣∣ϕ̂(λ)

ã
H (λ)

∣∣∣∣2 dt

)( T∫
0

ρ2(t) dt

)

≤

( T∫
0

∥∥∥∥ f̂(t+ h, λ)− f̂(t, λ)

h

∥∥∥∥2

H (λ)

∥∥ϕ̂(λ)
∥∥2

H (λ)
dt

)( T∫
0

ρ2(t) dt

)

≤ K(λ)
∥∥ϕ̂(λ)

∥∥2

H (λ)
‖ρ‖22. (8)

However, for h > 0 small enough,
T∫

0

Å
f̂(t+ h, λ)− f̂(t, λ)

h

∣∣∣ϕ̂(λ)

)
H (λ)

ρ(t) dt

=

T∫
0

(
f̂(t, λ)

∣∣ϕ̂(λ)
)
H (λ)

ρ(t− h)− ρ(t)

h
dt

−−−→
h→0

−
T∫

0

(
f̂(t, λ)

∣∣ϕ̂(λ)
)
H (λ)

ρ′(t) dt. (9)

Invoking Eqs. (8) and (9) leads to∣∣∣∣∣
T∫

0

(
f̂(t, λ)

∣∣ϕ̂(λ)
)
H (λ)

ρ′(t) dt

∣∣∣∣∣ ≤M(λ)‖ρ‖2,

which implies further that (f̂(λ)|ϕ̂(λ))′ ∈ L2
loc(R+) for µ almost every λ ≥ λ0.

From Eq. (7) one obtains
+∞∫
λ0

[ T∫
0

Å
f̂(t+ h, λ)− f̂(t, λ)

h
− “f ′(t, λ)

∣∣∣ϕ̂(λ)

ã
H (λ)

ρ(t) dt

]
dµ(λ) −−−→

h→0
0.

Therefore, there exists (hk)k∈N, hk −−−−−→
k→+∞

0 such that, for µ almost every λ ≥ λ0,

T∫
0

Å
f̂(t+ hk, λ)− f̂(t, λ)

hk
− “f ′(t, λ)

∣∣∣ϕ̂(λ)

ã
H (λ)

ρ(t) dt −−−−−→
k→+∞

0.
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However,

T∫
0

Å
f̂(t+ hk, λ)− f̂(t, λ)

hk

∣∣∣ ϕ̂(λ)

ã
H (λ)

ρ(t) dt

−−−−−→
k→+∞

T∫
0

(
f̂(t, λ)

∣∣ϕ̂(λ)
)′
H (λ)

ρ(t) dt.

Therefore, for µ almost every λ ≥ λ0

T∫
0

[(
f̂(t, λ)

∣∣ϕ̂(λ)
)′
H (λ)

−
(“f ′(t, λ)

∣∣ϕ̂(λ)
)
H (λ)

]
ρ(t) dt = 0

and (
f̂(t, λ)

∣∣ϕ̂(λ)
)′
H (λ)

=
(“f ′(t, λ)

∣∣ϕ̂(λ)
)
H (λ)

,

t > 0, which ends the proof.

In the following we again use the Caputo fractional derivative:

dαu

dtα
:=

1

Γ(1− α)

t∫
0

u′(s)

(t− s)α
ds.

Using the eigenequations solved by û and the above results, one deduces that u solves
Eqs. (1):

Theorem 2. LetH be a Hilbert space,A a self-adjoint operator with domainD(A) ⊂ H
and satisfying properties (i), (ii) of Section 2. Let θ ∈ R, f ∈ H1

loc(R+, Dθ) and u0 ∈
Dθ+1. Then the equations

dαu

dtα
+ (Au)(t) = f(t), u(0) = u0, (10)

have a solution u such that u ∈ L2
loc(R+, Dθ+1) ∩W 1,1

loc (R+, Dθ), with û(λ) = E(λ) ∗
[f̂(λ)−‘Au0(λ)].

Moreover, for any ε ∈]0, 1[ and r ∈ [1, 2]∩[1, 1
1−εα [, one has u ∈W 1,r

loc (R+, Dθ+1−ε).

Proof. The fact that u given by û(λ) = E(λ) ∗ [f̂(λ) −‘Au0(λ)] satisfies u ∈ L2
loc(R+,

Dθ+1) ∩W 1,1
loc (R+, Dθ) ∩W 1,r

loc (R+, Dθ+1−ε) follows from Propositions 3 and 4.
It is sufficient to prove the remaining part of the theorem only for u0 = 0.
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Let ϕ ∈ D−θ. Since u′ ∈ L1
loc(R+, Dθ) (see Proposition 4), the following calcula-

tions are justified. One has:

1

Γ(1− α)

〈 t∫
0

u′(s)

(t− s)α
ds, ϕ

〉
+
〈
Au(t), ϕ

〉
−
〈
f(t), ϕ

〉

=
1

Γ(1− α)

t∫
0

〈
u′(s), ϕ

〉 ds

(t− s)α
+
〈
Au(t), ϕ

〉
−
〈
f(t), ϕ

〉

=
1

Γ(1− α)

+∞∫
λ0

( t∫
0

(“u′(λ, s)∣∣ϕ̂(λ)
)
H (λ)

ds

(t− s)α

)
dµ(λ)

+

+∞∫
λ0

(
λû(λ, t)

∣∣ϕ̂(λ)
)
H (λ)

dµ(λ)−
+∞∫
λ0

(
f̂(λ, t)

∣∣ϕ̂(λ)
)
H (λ)

dµ(λ)

Prop. 4
=

1

Γ(1− α)

+∞∫
λ0

[ t∫
0

(
E(λ, s)f̂(λ, 0) +

(
E(λ) ∗ “f ′(λ)

)
(s)

∣∣ϕ̂(λ)
)
H (λ)

ds

(t− s)α

]
dµ(λ)

+

+∞∫
λ0

(
λû(λ, t)

∣∣ϕ̂(λ)
)
H (λ)

−
+∞∫
λ0

(
f̂(λ, t)

∣∣ϕ̂(λ)
)
H (λ)

dµ(λ)

Lemma 2
=

1

Γ(1− α)

+∞∫
λ0

{ t∫
0

[
E(λ, s)(f̂(λ, 0)

∣∣ϕ̂(λ)
)
H (λ)

+ E(λ) ∗
(
f̂(λ)

∣∣ϕ̂(λ)
)′
H (λ)

] ds

(t− s)α

}
dµ(λ)

+

+∞∫
λ0

(
λû(λ, t)

∣∣ϕ̂(λ)
)
H (λ)

−
+∞∫
λ0

(
f̂(λ, t)

∣∣ϕ̂(λ)
)
H (λ)

dµ(λ)

=
1

Γ(1− α)

+∞∫
λ0

{ t∫
0

[
E(λ) ∗

(
f̂(λ)

∣∣ϕ̂(λ)
)
H (λ)

]′
(s)

ds

(t− s)α

}
dµ(λ)

+

+∞∫
λ0

λE(λ) ∗
(
f̂(λ)

∣∣ϕ̂(λ)
)
H (λ)

(t) dµ(λ)

−
+∞∫
λ0

(
f̂(λ, t)

∣∣ϕ̂(λ)
)
H (λ)

dµ(λ)
Eqs. (5), (6)

= 0.
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Hence u satisfies Eq. (10). Equation u(0) = 0 is a consequence of Eqs. (6). This ends
the proof.

Consider for instance the case of a bounded domain Ω with smooth boundary. When
A is a strongly elliptic second order operator as described in the Introduction section,
one can choose H = L2(Ω) and D(A) = H2(Ω) ∩ H1

0 (Ω). Notice that D0 = H =
L2(Ω) and D1 = D(A) = H2(Ω) ∩ H1

0 (Ω). Therefore, for f ∈ H1
loc(R+, L

2(Ω))
and u0 ∈ H2(Ω) ∩ H1

0 (Ω), Theorem 2 ensures that the initial value problem (1) has
a strong solution u ∈ L2

loc(R+, H
2(Ω) ∩H1

0 (Ω)) ∩W 1,1
loc (R+, L

2(Ω)) given by û(λ) =

E(λ) ∗ [f̂(λ)−‘Au0(λ)]. The last relationship is equivalent to Eq. (40) in [35].
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