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Abstract. In this paper, a method of artificial neural networks (NN) is proposed as an alternative
tool for the one-step-ahead prediction of composite indicators (CIs) of Lithuania’s economy. CI is
composed of widely used social and economic indicators. The NN is applied for forecasting CI
during the financial crisis and later periods (2008–2010) on the basis of data of earlier years (1998–
2007). In this work, the Extreme Learning Machine (ELM) algorithm is combined with locally
weighted regression. The analysis shows that the prediction error of a testing sample is statistically
smaller compared to Levenberg–Marquardt or ELM methods.
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1 Introduction

Recently more and more artificial indicators have been established in global academic
and research fields which reflect the development of a country’s economy in various
aspects. Composite indicators (CIs), which compare country performance, are a useful
tool in setting policy priorities. Together with the widely used statistical indicators such as
gross domestic product (GDP), price indices, the unemployment rate, and others, various
artificial indicators are presented, e.g. Global Competitiveness Index (World Economic
Forum), Index of Economic Freedom (Heritage Foundation and Wall Street Journal),
Summary Innovation Index (European Commission), and others. The use of CI’s around
the world is growing year after year [1]. This may be influenced by the fact that more and
more researches appear which sustain a proposition that GDP does not always reflect the
real development of a country, quality of life, development of technologies, and other [2].
Also, when economic conditions are unstable, there is a need to evaluate and analyze
additional indexes as separate statistical indicators do not always show the real economic
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situation. A comprehensive analysis of artificial indices and statistical data may give a
more general view on the current situation.

This research work is the further analysis of the construction of the CIs of Lithua-
nia’s economic development [3]. In the previous paper, a CI which shows the trends in
Lithuania’s economy was constructed. Different socioeconomic indicators, which are
widely used and notably correlate with GDP, were used for the composition of CIs. The
dynamics of CIs was compared to the trends in the main economic indicator – GDP. The
analysis showed that the CI might be used as an additional tool for the investigation of the
country’s economic development. The impact of weights on the final results of CIs was
studied.

Short-term forecasting of macroeconomic time series is one of the main stages of the
analysis of economic trends in the country. Hence, the forecast of such an index (CI)
allows us to make an additional economic analysis and earlier to detect possible changes
in GDP trends.

Several institutions are publishing official forecasts of various macroeconomic in-
dicators in Lithuania. E.g. at Statistics Lithuania, traditional econometric models are
used for the short-term forecasting of Lithuania’s GDP. These methods are based on
regression analysis, where additional economic indicators – regressors – are used for the
prediction of the single value added of a particular activity [4]. The Bank of Lithuania
regularly does research related to the macroeconomic analysis and forecasts using the
structured macroeconomic model. The model-based projections are then updated taking
into account expert judgement with respect to structural changes and the latest available
information about the forthcoming economic shocks [5]. The recently proposed methods
for the forecasting of GDP are bridge models (monthly data are used) and dynamic factor
models [6]. The authors [6] noted that the models that are appropriate for the euro area
countries are not always suitable for the new Member States. For Lithuania, for instance,
the results obtained in [6] are difficult to interpret.

It should be noted that often researches are modeling economic indicators using linear
models [7] which are based on parametric techniques and rather strict conditions on
the data distribution. If the conditions are fulfilled, the respective model may be used;
otherwise, we cannot be sure of the quality of the statistical results obtained. One can
apply the standard time series models to the process if it can be expressed by means of
stationary sequences [7]. This assumption is likely to be violated during crisis periods.

In the last decades, artificial neural networks (NN) have become one of the most
powerful tools which enable the analysis, simulation and prediction trends in large sys-
tems in various fields [8]. The NN theory is based on Takens’ theorem [9], which claims
that it is possible to rebuild the dynamics of the process using correct time lags. The
main difference, compared to the methods discussed, is that the NN models are non-
linear models which are, by definition, more powerful since they give more possibilities
in the choice of the input-output relation [10]. The NN have the universal approximation
property: under mild conditions on the data, they can fit any data set with an arbitrary high
precision, provided that there is a sufficient number of parameters in the model. However,
when there are too many parameters (compared to the number of the data available), the
overfitting phenomenon appears [10].
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Often researches choose the NN tool as an alternative method for the analysis and
forecasting of the main economic indicators such as GDP or inflation. In this paper, we
refer only to the authors who obtained significant results using the NN in economic fields.

Tkacz (Bank of Canada) proposed the NN which enables forecasting the growth
of Canadian GDP. The analysis showed that the NN yield statistically lower errors of
forecasts for the year-over-year growth rate of real GDP relative to linear and univariate
models [11]. McNelis and McAdams (European Central Bank) conducted an investiga-
tion into the forecasts of inflation using the NN for the USA, Japan and the euro area. The
authors showed that, in particular cases, the errors of forecasts are significantly smaller in
comparison with the linear models [12].

Hence, in this paper, the NN methods were chosen for the prediction of CIs ac-
cording to the theoretical framework and statistically significant results of foreign re-
searches which forecasted different macroeconomic indicators using this approach. The
first research concerning the prediction of the growth of Lithuania’s economy using the
NN was proposed by Jakaitienė and Tamošiūnaitė [13]. They analyzed data of quarterly
periodicity 1996–2002. The authors suggested to use the NN as an additional tool for the
forecasting of GDP growth. Still they recommended that higher accuracy of prediction
may be obtained with a larger set of observations (longer time series).

Practically, there are no comprehensive researches concerning the prediction (using
the NN) of trends in Lithuania’s economy after financial-economic crisis. This can be
explained by the fact that most of the official socioeconomic macro data are short time
series starting from 1998 [4]. For example, if data is of quarterly periodicity and the period
of 1998–2010 is analyzed, there are only 52 observations. This fact may complicate the
implementation of the NN architecture which usually requires large data sets for fitting.

On the other hand, there are papers published where the NN are used for the analysis
of short time series. Zhang and Kline constructed the NN and analyzed the characteristics
of various economic time series of quarterly periodicity, where the size of the smallest
samples varied from 16 to 28 observations [14].

The objective of the paper is to analyze the one-step-ahead predictions of the CI of
Lithuania’s economy using NN methods. The essential questions were highlighted:

(i) To analyze the accuracy of predictions using different data transformation methods
at the initial stage and the NN architecture (the number of neurons of a hidden layer).

(ii) To analyze errors using different methods of training and prediction of the NN.
(iii) To verify whether the combined NN method proposed increases the CI forecasting

accuracy.

The novelty of the research is the proposed NN method: we put together the algorithm
of the ELM (for the training of NN) and the locally weighted regression (for prediction).
To our knowledge there is no comprehensive studies analyzing the prediction accuracy
of macroeconomic indicators by using this combined algorithm. Also in this paper we
discuss the question concerning the small samples problem as NN are often used for the
large samples.

The structure of the paper is as follows. The methodology of the construction of the CI
is described in Section 2. Section 3 presents methods chosen for the training and testing of
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NN. Section 4 gives the process of the implementation and characteristics of the models
of NN. A practical case concerning the prediction of CI using the NN is described in
Section 5. Section 6 gives concluding remarks.

2 Construction of the CI

In this section, the process of construction of the CI is described: the selection of prelim-
inary data, data disaggregation, the selection of weights, and the aggregation of the CI.

We have defined the CI as an additional tool for country’s economic analysis. The CI
is defined as follows

CI(t,ϕ) =
∑
i

Xi(t)ϕi, i = 1, . . . ,m, (1)

where t = 1, . . . , T is time, X(t) = (X1(t), . . . , Xm(t))′ ∈ Rm is a vector of certain
economic indicators, e.g. various statistics of business, technologies, and other. ϕ ∈ Rm

is a vector of weights of the different indicators.
In this research we have used the methodology of construction the CI of Lithuania’s

economy proposed in [3]. We will shortly describe the main features of the methodology
in order to present the theoretical background. In this paper, we have extended the period
of analysis (1998–2010) and constructed the artificial index with higher frequency, that
is, monthly periodicity (the previous one was of quarterly periodicity, the period of 1998–
2009).

We have selected the data set X for the construction of the CI of monthly periodicity.
Statistical indicators (the same variables as in the mentioned paper, m = 28) are from the
following fields/subfields: population and social statistics (2 indicators), industry (4 ind.),
construction (4 ind.), domestic trade (6 ind.), foreign trade (4 ind.), services (3 ind.), price
indexes (5 ind.).

The process of the construction of the CI can be described in the following steps.

Data disaggregation

Some statistical indicators Xi, such as export or industrial production, are officially pub-
lished on a monthly and quarterly basis. But we also use time series (construction, services
data) which do not have statistically fixed information of monthly periodicity (available
only on a quarterly basis). Here we have to solve a mathematical problem concerning
the data disaggregation from low frequency (LF) (with quarterly periodicity), to higher
frequency (HF) (with monthly periodicity). Two methods of time series disaggregation
from LF to HF were chosen:

(i) The method of Barbone, Bodo and Visco [15] was used when there was a variable
which strongly correlated with the series analyzed. The residuals of the regression
model are described using an autoregressive model AR(1), and the parameters are
evaluated using the minimization of the sum of squared residuals.

(ii) Denton method [16] was used when there was no variable with similar trends and
structure. It disaggregates the time series using only its characteristics.
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Next, we will consider the data set Xi(t) of monthly periodicity, t = 1, . . . , T ,
i = 1, . . . ,m.

Preliminary analysis of the data

Economic time series are often affected by seasonal fluctuations, which may be observed
each year at roughly the same time (in our case, this is the same month). Such statistical
data may give misleading information on the real dynamics of the time series. Therefore
seasonal adjustment (TRAMO/SEATS method [17]) was applied to the all time series.

The data corrected for outliers (additive outliers, level shifts and transitory changes):
the number of outliers of every time series should not exceed 5 per cent. Then the all
selected indicators Xi were standardized (mean µi = 0 and variance σ2

i = 1). Exactly
these indicators are used in (1).

Selection of weights and aggregation

In the previous work indicators’ weights ϕ were evaluated using factor analysis meth-
ods [18]. We chose the same set of ϕ that had been evaluated using the factor rotation
method Varimax [19] and improved using the Nikoletti [20] method. In general, this
method gives the highest weights to those indicators that strongly correlate with the
corresponding factor. It is supposed that the chosen weights ϕ in (1) do not depend on the
time t.

3 Methods of training and testing of the NN

In this section, we describe the methods that are used for training and testing the NN
and the one-step-ahead prediction of the CI: Levenberg–Marquardt, Extreme Learning
Machine (ELM) and the proposed method combined of ELM and locally weighted re-
gression.

Let us describe the approximation problem of the single hidden layer of the feed-
forward NN (SLFNs). For T arbitrary distinct samples (zt, yt), t = 1, . . . , T , where
zt = [zt1, . . . , ztn]

′ ∈ Rn and yt = [yt1, . . . , ytk]
′ ∈ Rk, standard SLFNs with N hidden

neurons and activation functions

g`(z) = g◦(w` · z+ b`), ` = 1, . . . , N, (2)

are mathematically modeled as

ỹt :=

N∑
`=1

α` · g`(zt) ≈ yt, t = 1, . . . , T, (3)

where w` = [w`1, . . . , w`n]
′ is the vector of weights connecting the `th hidden neuron

and the input neurons, α` = [α`1, . . . , α`k]
′ is the vector of weights connecting the `th

hidden neuron and the output neurons, and b` is the threshold of the `th hidden neuron.
T is the number of training samples and g◦ : R → Rk is a basic activation function.
Symbol ′ denotes the matrix transposition.
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Classical training method for backpropagation NN

For the implementation of the SLFNs, standard methods were chosen. For the training
of SLFNs we chose Levenberg–Marquardt [21] method. It is based on gradient methods
and has some disadvantages, e.g. the procedure is time consuming, there exists problem
of local minimum, and other [22]. The weights and the value of the bias of the layer were
calculated using Nguyen–Widrow initialization method [23]. The chosen restriction on
the training process was the number of epochs equal to 300.

Extreme learning machine

ELM is a progressive learning algorithm of the SLFNs, which randomly chooses the
input weights and analytically determines the output weights of SLFNs [22, 24]. Differ-
ently from the traditional learning algorithms, this algorithm tends to reach not only the
smallest training error but also the smallest norm of weights (among all the least-squares
solutions). Bartlett’s theory [25] on the generalization performance of the feedforward
NN states that “the size of the weights is more important than the size of the network”. In
theory, this algorithm tends to provide the best generalization performance and minimum
training error at an extremely fast learning speed.

Combined method of ELM and LW regression

The locally weighted (LW) regression is described in [26–29]. In this paper we propose
the method that puts together the ELM method and LW regression.

This type of NN, when it is used together with the LW regression, is known as locally
weighted NN. The advantage of the locally weighted NN is that closer attention is paid to
the regression curve rather than to coefficients, i.e. whether the regression curve accurately
replicates the real data. The weakest place of the weighed NN is large time needed to
calculate the optimal parameters. However, this is compensated by the accuracy of the
method, compared with standard NN.

The algorithm of the proposed method can be divided into several stages. First, the
sample is divided into training and testing samples: Ω1 = {(zt, yt), t = 1, . . . , T1},
T1 < T , is the training sample and Ω2 = {(zt, yt), t = T1 + 1, . . . , T} is the testing
sample.

Stage 1. For the given T1 and the samples (zt, yt), t = 1, . . . , T1, the training of NN is
performed using the ELM and estimates of (ŵ`, b̂`) (2) and the output weights α̂` (3) are
obtained (` = 1, . . . , N ).

Stage 2. The estimates (ŵ`, b̂`), ` = 1, . . . , N of the coefficients (w`, b`), ` = 1, . . . , N
of the neurons of the hidden layer (evaluated at the first stage) are kept fixed and, for each
new observation (the observation which does not belong to the training samples), only the
weights α` of the neurons of output layer are recalculated (` = 1, . . . , N ). Thus, during
the process, only local information is used.
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More precisely, for given query data zτ , T1 + 1 ≤ τ ≤ T, (τ is the time of the query)
the new estimates α̂` are found using the LW regression:

τ−1∑
t=τ−L

(
yt −

N∑
`=1

α` · ĝ`(zt)

)2

exp

{
− 1

2σ2
‖zt − zτ‖2

}
−→ min

{αl}
. (4)

Here
ĝ`(z) := g◦(ŵ` · z+ b̂`), ` = 1, . . . , N,

σ is a bandwidth and L < T1 is a size of sliding window.
Stage 3. The new estimates α̂`, ` = 1, . . . , N , obtained in the previous stage by solv-
ing (4) are used in (5) for the prediction of yq:

ŷq =
N∑
`=1

α̂` · ĝ`(zq). (5)

4 Process of the NN implementation

In this section, we will describe the process of the NN implementation and the main
its characteristics: the transformation of data, the architecture of NN, measures of the
prediction of accuracy.

According to [12], there is no a priori way to determine which scaling function is the
most suitable for the NN. This depends on the characteristics of the data. A reasonable
strategy is to estimate the model with different types of scaling functions and then to
find out which one gives the best performance. Two linear scaling transformations, fv ,
v = 1, 2, are considered.

Define yt := fv(CI(t)) (here k = 1), zt := fv(X(t − 1)) (here n = m), where f1
(f2) means the coordinatewise scaling transformation to the interval [0, 1] (respectively,
the symmetric interval [−1, 1]).

All models which were applied to the prediction of CI, have the same architecture of
NN with the following features. The SLFNs model has one hidden layer. The number
of nodes N of the hidden layer was chosen 5, 10, 15, 20. The number of inputs was
chosen m = 28. The sigmoid (logistic) function was employed as the basic activation
function g◦, (g◦(u) = 1/(1 + exp(−u))).

The following methods for training the SLFNs in sample Ω1 and prediction for sam-
ple Ω2 were used:
M1: The Levenberg–Marquardt method was applied to training; the evaluated character-

istics were used for prediction.
M2: The ELM method was applied to training; the evaluated characteristics were used

for prediction.
M3: The combined method: the ELM method was used for generating the NN coeffi-

cients; the values of predictions for the each query zτ were evaluated online using
the LW regression (4). The size of sliding window was L = 35, the bandwidth
σ = 1.

www.mii.lt/NA



Prediction of composite indicators 245

The experiment can be represented by

ĈI = h(X, fv,M), v = 1, 2, M ∈ {M1,M2,M3}, (6)

where ĈI is the predicted CI, X is the selected data set.
The technique of ensemble averaging [8] was applied when a number of different NN

share a common input, and their individual outputs are combined to produce the overall
output value.

This technique is used when there are K different models of NN which produce a
similar error, and in this case it is difficult to choose the best model. The output value of
the ensemble (of the tth data point) is obtained by using a simple average of all individual
outputs. The mean square error of the ensemble (of the testing sample) is not greater than
the error of the separate model of the NN [8].

In our case, the prediction of the ensemble yields a better solution compared to the
predictions of separate NN. We chose the size of the ensemble K = 50: the experiment
was performed 50 times using the different methods (M ∈ {M1,M2,M3}) and the
different transformations (v = 1, 2).

The following measures of the NN prediction accuracy were used:

(i) The root mean square error:

RMSE =

(
1

T

T∑
t=1

(
CI(t)− ĈI(t)

)2)1/2

,

(ii) The mean absolute percentage error:

MAPE =
1

T

T∑
t=1

∣∣∣∣CI(t)− ĈI(t)

CI(t)

∣∣∣∣ · 100,
(iii) The positive predictive value, in per cent:

PPV =
1

T

T∑
t=1

1
((
ĈI(t+ 1)− ĈI(t)

)(
CI(t+ 1)− CI(t)

)
> 0
)
,

(iv) The estimates of mean E(ε) and variance Var(ε) of the errors ε(t) = CI(t)− ĈI(t),
t = T1 + 1, . . . , T .

The accuracy of training was tested using only RMSE.
Beyond the analysis of the errors, we investigated the phenomenon of the random

walk (RW). In the case of RW, it is possible to use simpler methods than the models of
NN for the forecasting of the series. There are papers that show that the one-step-ahead
forecasts ŷ(t) (obtained using the NN)of the economic series behave like a RW process
(see, e.g. [30]). It means that ŷ(t+1) = ŷ(t)+ε(t) where t is time, {ε(t)} are uncorrelated
and homoscedastic random increments with zero mean. R. Site and J. Site [30] analyzed
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Standard & Poor 500 financial time series using the Time Delay NN [31, 32] and Elman
recurrent NN [33]. The authors compared RW prediction errors, NN prediction errors, and
other. They found that the NN predicts like an RW process for all parameters they tried.

We applied the standard Student’s t-test to test whether the predicted process is the
RW. The following increments were considered:

(i) the estimated increments by applying the NN: ĈI(t+ 1)− CI(t),
(ii) the actual increments: CI(t+ 1)− CI(t).

5 Analysis of the results

The periods of training and prediction were 1998–2007 (T1 = 120) and 2008–2010
(T − T1 = 36), respectively. Figure 1 shows that the dynamics of training data totally
differs from the trends in the data during then financial crisis (the period from the second
half of 2008 until the start of 2010).

1998 I 2000 I 2002 I 2004 I 2006 I 2008 I 2010 I

0

0.2

0.4

0.6

0.8

1

 

 

CI index

Fig. 1. The transformed CI index

The main attention was given to the measures of prediction accuracy for the period
2008–2010. The crucial question is how efficiently the NN can be applied in crisis periods
to predict an unexpected decline in the economy and its recovery signs. From the huge
number of the results obtained from different models (6), we will present only the main
and the most important ones (Tables 1, 2).

A short explanation of the content of the tables is as follows. The M1, M2 and M3

denote the method of training and testing, the numbers in the brackets refer to the number
of neurons of the hidden layer. The RMSE of training data is marked “_train” otherwise
the accuracy measures are applied to the predicted data. In the tables descriptive statistics
(average; maximum and minimum denoted, respectively, by “_max” and “_min”) of
50 repetitions of the each model in (6) are presented. The RMSE_2008 is the error of
the prediction for the 2008.

When comparing the transformation f1 versus f2, the former has smaller RMSE for
both training and testing sets. The opposite conclusion holds only for the PPV of the
classical model (M1(5)).
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The classical method M1 gives the largest errors of RMSE; the MAPE is greater than
20 per cent, while M3(20) is only 3.66 per cent (Table 1). Concerning the methods of
training and testing, the combined method of ELM and LW regression (M3) distinguishes
for its smallest RMSE (both of training and prediction) and MAPE values. The PPV of
the combined method is similar to that of the ELM (M2). The RMSE of model M3(20)
is 0.053 in the year 2008 and 0.027 in the next year when the decline in the economy has
slowed down (Table 1). This can be explained by the fact that during earlier periods we
cannot identify such decline in the economy; therefore, it is impossible to train the NN to
determine a sudden shift.

Table 1. Measures of prediction accuracy for the linear scale transformation f1.

M1(5) M2(15) M2(20) M3(15) M3(20)
RMSE_train 0.013 0.018 0.014 0.018 0.014
RMSE 0.154 0.116 0.124 0.039 0.036
RMSE_max 0.258 0.233 0.241 0.046 0.044
RMSE_min 0.091 0.052 0.046 0.034 0.033
RMSE_2008 0.115 0.097 0.100 0.056 0.053
RMSE_2009 0.128 0.108 0.145 0.031 0.027
RMSE_2010 0.179 0.118 0.103 0.022 0.020
MAPE 20.41 14.90 16.37 4.11 3.66
MAPE_max 33.15 31.84 35.33 5.29 4.68
MAPE_min 11.45 5.42 5.32 3.09 2.99
PPV 64.41 68.00 71.59 69.24 73.53
PPV_min 32.35 47.06 52.94 55.88 61.76
PPV_max 88.24 91.18 91.18 85.29 85.29
E(ε) −0.006 0.007 −0.056 0.020 0.019
Var(ε) 0.010 0.009 0.009 0.001 0.001

Table 2. Measures of prediction accuracy for the linear scale transformation f2.

M1(5) M2(15) M2(20) M3(15) M3(20)
RMSE_train 0.028 0.035 0.029 0.035 0.028
RMSE 0.380 0.281 0.363 0.120 0.125
RMSE_2008 0.263 0.214 0.264 0.192 0.204
RMSE_2009 0.382 0.270 0.359 0.070 0.058
RMSE_2010 0.415 0.309 0.389 0.055 0.058
PPV 68.29 63.71 65.35 62.59 64.35

The RMSE of two models M3(15) and M3(20) are shown on Fig. 2 (the number of
the experiment is n∗). It can be seen that only two values of the model M3(20) (the
numbers of experiments are n∗ = 1, 9) are larger than 0.04. The mean values of errors ε
for models M1(5), M2(20) and M3(20) are presented in Fig. 3. Table 1 gives the values
of mean estimates. Models M1 and M2 produce a similar mean value of errors though
the estimated variance V̂ar(ε) is larger compared for the model M3 (V̂ar(ε) = 0.001).
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Fig. 2. RMSE of models M3(20) and M3(15), n∗ is the number of the experiment.
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Fig. 3. The mean values of errors ε for models M1(5), M2(20) and M3(20), n∗ is the
number of the experiment.

In summary, the experiment showed that the proposed method of NN gives the small-
est values of RMSE and MAPE and the largest value of PPV when the hidden layer has
20 nodes and the transformation f1 is applied.

The analysis of the predictions of the model M3(20) concerning the RW process pro-
duced the following results (p-values of 2-tailed t-test): the sequence of predictions ĈI(t),
t = 1, . . . , T , is not an RW process (with p-value = 0.007; the actual CI (1998–2010) is
not an RW process (p-value = 0.027), but some parts of the index are RW processes are;
e.g. the process of the first 120 elements is not RW (p-value = 0.000), the process of the
first 140 elements is RW (p-value = 0.104), the process of the last 120 elements is not
RW (p-value = 0.022).

The accuracy of the NN predictions was compared with that of standard AR(p) mod-
els [7]. The same set of the indicators was chosen with the linear scale transformation f1
and applied the AR(p) models to each of them. The values of ĈI were obtained by
aggregating the series of the AR(p) predictions and the same measures of accuracy were
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evaluated (Table 1). The best value of the RMSE of AR(p) was 0.091 when p = 1 and
then increased with the order p. Therefore we restricted the further analysis to the cases
p ≤ 4. The PPV did not change much and was approximately equal to 64.7 per cent for
p = 1, 2, 3 and 61.8 per cent for p = 4. When increasing the model order p the respective
value of MAPE was not improved and was around 7 per cent. In all the considered cases
the measures of accuracy for AR(p) were worse compared to corresponding measures of
the proposed method and similarly to the models M1 or M2 (Table 1).

6 Conclusions

In this paper, the problem of forecasting an artificial index CI of Lithuania’s economy
proposed in [3] during the crisis and later period 2008–2010 is investigated. The locally
weighted NN, where the extreme learning machine (ELM) method is used for training and
the locally weighted (LW) regression is used for the prediction, is proposed as a possible
solution. This type of the NN has an advantage since more attention is paid to the linear
parametric part of the NN thereby increasing the efficiency of the method.

The empirical analysis showed that the error of the CI predictions obtained by the pro-
posed method is statistically smaller compared with the Levenberg–Marquardt and ELM
methods as well as with standard AR(p) models. It was found that for the considered data
the best prediction accuracy yields the linear scaling transformation to the interval [0, 1]
and the NN with 20 hidden neurons.

Analysis of the results based on various accuracy measures (RMSE, MAPE and PPV,
see Section 4) suggests that the proposed method may be used for data of rather small
sample size and during periods when the dynamics of time series may have unexpected
changes.

For forecasting economic changes and prediction of the Gross domestic product in pe-
riods of economic instability additional carefully validated synthetic indexes of economy
are necessary.
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