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Abstract. In this paper, two solitary wave solutions are obtained for the Vakhnenko–Parkes equation
with power law nonlinearity by the ansatz method. Both topological as well as non-topological
solitary wave solutions are obtained. The parameter regimes, for the existence of solitary waves, are
identified during the derivation of the solution.
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1 Introduction

The theory of nonlinear evolution equations (NLEEs) is an important area of research
in the area of applied mathematics [1–15]. A challenging task is to look for solutions of
these NLEEs. There are various types of solutions that are available for these equations.
Some of them are soliton solutions, solitary wave solutions, cnoidal and snoidal waves,
periodic solutions, shock wave solutions as well as various other types. In this paper there
will be one such NLEE that will be studied. This is the Vakhnenko–Parkes (VP) equation
with power law nonlinearity. The ansatz method will be used to retrieve the topological as
well as non-topological solitary wave solution. The domain restrictions will be revealed
during the process of obtaining the solutions.
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2 Mathematical analysis

The standard form of the VP equation is given by [11]

uuxxt − uxuxt + u2ut = 0, (1)

where u(x, t) is a real function of the spatial variable x and the temporal variable t.
In this paper, we are interested in the following family of the VP equation with power

law nonlinearity:
uuxxt + auxuxt + bu2nut = 0, (2)

where a and b are nonzero real constants, while n ∈ Z+. The parameter n indicates the
power law nonlinearity parameter. Thus, for a = −1 and b = n = 1, Eq. (2) collapses
to (1).

The purpose of this paper is to calculate the exact topological and non-topological soli-
tary wave solutions for this model, exhibiting power law nonlinearity. The importance of
the results presented here is two-fold. First, exact solitary wave solutions to a family of the
considered equation and the conditions for their existence are obtained for a general case
of power nonlinearity law in a simple way. Importantly, the finding of explicit solutions of
a given NLEE with any value of the exponent in the nonlinearity term is very interesting
since it offers some knowledge on the general dynamical behavior of the wave propagation
so that special cases are truly meaningful both from the physical and mathematical point
of view. Second, these results confirm the existence of non-topological solitary waves
for any exponent n > 1/2, while topological solitary waves exist only in the case when
n = 3/2. Furthermore, closed form solitary wave solutions exist only for a = −1, which
corresponds exactly to the value of this coefficient in the standard form of the VP equa-
tion (1). To achieve our goal we will use the solitary wave ansatz method which has re-
cently been applied successfully to several NLEEs with constant and variable coefficients.

3 Non-topological solitary wave

In order to solve (2), the starting hypothesis is [7–13]

u(x, t) = A sechp τ, (3)

where
τ = B(x− vt) (4)

and
p > 0 (5)

for solitary waves to exist. Here, in (3) and (4), A is the amplitude of the solitary wave
while v is the velocity of the solitary wave and B is the inverse width. The exponent p is
unknown at this point and its value will fall out in the process of deriving the solution of
this equation. From the ansatz (3), one can find that

uuxxt =
p3A2B3v tanh τ

cosh2p τ
− p(p+ 1)(p+ 2)A2B3v tanh τ

cosh2p+2 τ
, (6)
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uxuxt =
p3A2B3v tanh τ

cosh2p τ
− p2(p+ 1)A2B3v tanh τ

cosh2p+2 τ
, (7)

u2nut =
pvA2n+1B tanh τ

coshp(2n+1) τ
. (8)

Inserting the expressions (6)–(8) into (2) yields

(a+ 1)p3A2B3v) tanh τ

cosh2p τ
− p(p+ 1)(p+ 2 + ap)A2B3v tanh τ

cosh2p+2 τ

+
bpvA2n+1B tanh τ

coshp(2n+1) τ
= 0. (9)

From (9), equating the exponents 2p+ 2 and p(2n+ 1) gives

2p+ 2 = p(2n+ 1),

so that
p =

2

2n− 1
. (10)

Taking p > 0 as a necessary condition for the existence of the solitary wave solution (3)
implies that we must have n > 1/2 in (10).

Now, from (9), setting the coefficients of the linearly independent functions
tanh τ/ cosh2p+j τ to zero, where j = 0, 2, gives

(a+ 1)p3A2B3v = 0,

−p(p+ 1)(p+ 2 + ap)A2B3v + bpvA2n+1B = 0.

Solving the above equations yields

a = −1, (11)

B =

{
bA2n−1

2(p+ 1)

}1/2

. (12)

The substitution of (10) and (11) into (12) gives the inverse width of the solitary wave as

B =

{
b(2n− 1)A2n−1

2(2n+ 1)

}1/2

(13)

which shows that the solitary waves will exist for

b > 0

as long as n > 1/2 which is guaranteed from (5) and (10). The width of the solitary wave
given by (12) or (13) is the same by virtue of (10).

Thus, the solitary wave solution of the VP equation (2) with power law nonlinearity
is given by

u(x, t) = A sech2/(2n−1)
[
B(x− vt)

]
, (14)
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where the inverse width of the solitary wave B is given by (12) or (13). Finally, we would
like to note that the solution (14) exists under the conditions n > 1/2, b > 0 and a = −1.
This solitary wave given by (14) is a generalized version of the solitary wave solution
that was obtained earlier. In particular when n = 1, (14) collapses to Eqs. (3.4) of [11],
(2) of [7], (3) of [8] and (2) of [10].

4 Topological solitary wave

In this section, we will calculate the topological solitary wave solution of the family of
VP equation (2) with power law nonlinearity, using the solitary wave ansatz. To start off,
the hypothesis is taken to be

u(x, t) = A tanhp τ, (15)

where
τ = B(x− vt) (16)

and
p > 0

for solitary waves to exist. Here, in (1) and (16), A and B are free parameters and v is the
velocity of the wave. Also, the unknown exponent p will be determined during the course
of the derivation of the solitary wave solution to (2). Therefore from (15),we have

uuxxt = −pA2B3v
[
(p− 1)(p− 2) tanh2p−3 τ

−
{
2p2 + (p− 1)(p− 2)

}
tanh2p−1 τ

+
{
2p2 + (p+ 1)(p+ 2)

}
tanh2p+1 τ

−(p+ 1)(p+ 2) tanh2p+3 τ
]
, (17)

uxuxt = −p2A2B3v
{
(p− 1) tanh2p−3 τ − (p+ 1) tanh2p+3 τ

+(3p+ 1) tanh2p+1 τ − (3p− 1) tanh2p−1 τ
}
, (18)

u2nut = pvA2n+1B
(
tanhp(2n+1)+1 τ − tanhp(2n+1)−1 τ

)
. (19)

Substituting the expressions (17)–(19) into (2), we obtain

−pA2B3v
[
(p− 1)(p− 2) tanh2p−3 τ −

{
2p2 + (p− 1)(p− 2)} tanh2p−1 τ{

2p2 + (p+ 1)(p+ 2)
}
tanh2p+1 τ − (p+ 1)(p+ 2) tanh2p+3 τ

]
−ap2A2B3v

{
(p− 1) tanh2p−3 τ − (p+ 1) tanh2p+3 τ

+(3p+ 1) tanh2p+1 τ − (3p− 1) tanh2p−1 τ
}

+bpvA2n+1B
(
tanhp(2n+1)+1 τ − tanhp(2n+1)−1 τ

)
= 0. (20)

From (20), equating the exponents 2p+ 3 and p(2n+ 1) + 1 gives

2p+ 3 = p(2n+ 1) + 1,
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so that
p =

2

2n− 1
. (21)

As a result, the condition n > 1/2 for the topological solitary wave solution to exist arises
from (21). It needs to be noted that the same value of p is yielded when the exponents
2p+ 1 and p(2n+ 1)− 1 are equated with each other.

Now from (20) the linearly independent functions are tanh2p+j τ for j = ±1,±3.
Hence setting their respective coefficients to zero yields a set of algebraic equations:

−pA2B3v(p− 1)(p− 2)− ap2A2B3v(p− 1) = 0, (22)

pA2B3v
{
2p2 + (p− 1)(p− 2)

}
+ ap2A2B3v(3p− 1) = 0, (23)

−pA2B3v
{
2p2 + (p+ 1)(p+ 2)

}
− ap2A2B3v(3p+ 1)− bpvA2n+1B = 0, (24)

pA2B3v(p+ 1)(p+ 2) + ap2A2B3v(p+ 1) + bpvA2n+1B = 0. (25)

In order to solve (22), we have considered the case:

p = 1. (26)

By setting p = 1 in (23)–(25), we obtain

a = −1,

B =

{
−bA

2n−1

4

}1/2

. (27)

The latter forces the constraint relation

b < 0.

Now, equating the two values of p from (21) and (26) gives the condition:

n =
3

2
.

Thus, for the family of the VP equation (2) with power law nonlinearity, dark solitary
waves will exist only when n = 3/2. This important observation is being made for the
first time in this paper.

Furthermore, the free parameter B in (27) becomes

B =

√
− b
4
A.

Hence, finally, the topological solitary wave solution to the VP equation (2) with power
law nonlinearity is given by

u(x, t) = A tanh

[√
− b
4
A(x− vt)

]
which exist provided that a = −1 and b < 0.
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5 Conclusions

In this paper, the topological and non-topologial solitary wave solution to the VP equation,
with power law nonlinearity, was obtained. In addition, the constraint conditions were also
obtained in order for the solitary wave solutions to exist. In the future, this VP equation
will be investigated further. The time-dependent coefficients will be considered. Also,
several other solutions, using a variety of other methods, will be obtained. These results
will be reported in future.
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