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Abstract. While analyzing multidimensional data, we often have to reduce their dimensionality
so that to preserve as much information on the analyzed data set as possible. To this end, it is
reasonable to find out the intrinsic dimensionality of the data. In this paper, two techniques for
the intrinsic dimensionality are analyzed and compared, i.e., the maximum likelihood estimator
(MLE) and ISOMAP method. We also propose the way how to get good estimates of the intrinsic
dimensionality by the MLE method.

Keywords: multidimensional data, intrinsic dimensionality, maximum likelihood estimator,
Isomap.

1 Introduction

In the exploratory data analysis, we often confront with real-life data that are of a very
high-dimensionality. However, these data are usually not truly high-dimensional, i.e., they
are only embedded in a high-dimensional space, but can be efficiently summarized in
a space of much lower dimensionality, such as a nonlinear manifold. It means that these
data points locate on some manifold of lower dimensionality or they are close to that
manifold. Recently, there has been a surge of interest in manifold learning methods (lo-
cally linear embedding (LLE) [1,2], ISOMAP [3], Laplacian eigenmaps (LE) [4], Hessian
LLE (HLLE) [5], local tangent space analysis (LTSA) [6], and others [7]), which focus on
finding a nonlinear low-dimensional projection of manifold-type high-dimensional data.
The manifold learning methods require at least two parameters to be determined: the
intrinsic dimensionality d of the high-dimensional data and the number k of the nearest
neighbours. Improper values of these parameters greatly influence the results. The ways
to select the value of the parameter k are proposed in [8, 9]. The dimensionality of
the projection is a key parameter for manifold learning methods. On one hand, a large
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value chosen of the intrinsic dimensionality d amplifies noise effects, while a low value
leads to overlaps in mapping results (excessively reduced) [10]. It is noted in [11] that if
the dimensionality d is too small, important data features are “collapsed” onto the same
dimensionality, and if the dimensionality is too large, the projections become noisy and,
in some cases, unstable. Therefore, the problem is to disclose the exact dimensionality of
that manifold, i.e., the intrinsic dimensionality d of the analyzed data.

At first, the term of manifold needs to be defined. A manifold is an abstract topological
mathematical space, in which the area of each point is similar to the Euclidean space,
however the global structure of a manifold is more complex. A line and a circle are one-
dimensional manifolds. A plane and the surface of a ball, a torus are two-dimensional
manifolds, etc. The area of each point on the one-dimensional manifold is similar to
a line segment. The area of each point on the two-dimensional manifold is similar to
a plane segment.

The intrinsic dimensionality of a data set is usually defined as the minimal number
of parameters or latent variables necessary to describe the data [7]. Latent variables are
still often called as degrees of freedom of a data set [3, 7]. Let the dimensionality of the
analyzed data be n. High-dimensional data sets can have meaningful low-dimensional
structures hidden in the observation space, i.e., the data are of a low intrinsic dimensiona-
lity d� n.

Principal component analysis (PCA) is the most-known dimensionality reduction
method that integrates an estimator of the intrinsic dimensionality. However, the model
of PCA is linear, meaning that the estimator works only for manifolds containing linear
dependencies (i.e., linear subspaces). For more complex manifols, PCA gives at best an
estimate of the global dimensionality of an object [7].

Due to the increased interest in dimensionality reduction and manifold learning, se-
veral approaches have been proposed in order to estimate the intrinsic dimensionality
of a data set X in the last decade [11–16]. Techniques for intrinsic dimensionality
estimation can be subdivided into two main groups: estimators based on the analysis
of local properties of the data and estimators based on the analysis of global properties of
the data.

Six techniques for intrinsic dimensionality estimation are overlooked in [17]. Local
intrinsic dimensionality estimators are based on the observation that the number of data
points, covered by a hypersphere around a data point with radius r, grows proportional
to rd, where d is the intrinsic dimensionality of the data manifold around that data point.
As a result, the intrinsic dimensionality d can be estimated by measuring the number of
data points, covered by a hypersphere with a growing radius r. Three local estimators
for intrinsic dimensionality – the correlation dimension estimator, the nearest neighbour
dimension estimator, and the maximum likelihood estimator – are described in short
in [17]. Whereas local estimators for intrinsic dimensionality compute the average over
local estimates of intrinsic dimensionality, global estimators consider the data as a whole
when estimating the intrinsic dimensionality. Van der Maaten (2007) overlooks these
global intrinsic dimensionality estimators: the eigenvalue-based estimator, the packing
number estimator, and the geodesic minimum spanning tree estimator.

In [18], the maximum likelihood estimator of the intrinsic dimensionality is applied
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to the real problem, i.e., to the issue of determining the number of pure components in a
mixture from Raman spectroscopy data. Authors show how the estimate of the intrinsic
dimensionality corresponds to the number of pure components. Having an accurate esti-
mate of the number of pure components, it saves time in component extraction and etc.
Other possible application is given in Section 4 to find the number of degrees of freedom
of motion of the object in a set of photographs.

In this paper, we also analyze the maximum likelihood estimator (MLE) and explore,
which distances – Euclidean or geodesic – must be evaluated between data points in the
MLE algorithm in order to get the true estimate of the intrinsic dimensionality. One of
the nonlinear manifold learning methods, i.e., ISOMAP, is analysed as well, because of
its ability to find out the intrinsic dimensionality of data. Disadvantages of this method in
estimating the intrinsic dimensionality are disclosed.

2 The maximum likelihood estimator of intrinsic dimensionality

The maximum likelihood estimator [11] belongs to the class of the local estimators for
intrinsic dimensionality. The detailed algorithm of MLE is provided in [11]. In this paper,
only the idea is suggested.

Let the analyzed data consist of m n-dimensional points Xi = (xi1, . . . , xin), i =
1, . . . ,m (Xi ∈ Rn). MLE finds the intrinsic dimensionality dMLE of the data set X .
According to the authors, in practice, it is more convenient to fix the number of neighbours
k rather than the radius r of the hypersphere. Therefore, in this paper, we provide an
algorithm that is related with the number of the nearest neighbours.

The MLE algorithm [11] has two control parameters: k1 and k2 (k1 < k2) – the
numbers of the nearest neighbours for each data point. The values of these parameters are
chosen. The algorithm has the following steps:

1. The number k2 of the nearest neighbours for each data point Xi is found.

2. The estimate of the intrinsic dimensionality (dMLE) is calculated by the maximum
likelihood estimator (MLE) according to the formula:

dMLE =
1

k2 − k1 + 1

k2∑
k=k1

dk, (1)

where

dk =
1

m

m∑
i=1

dk(Xi), (2)

dk(Xi) =

[
1

k − 1

k−1∑
j=1

log
d(Xi, Xik)

d(Xi, Xij)

]−1

. (3)

Here d(Xi,Xij) is the Euclidean distance from the point Xi to the j-th nearest
neighbour Xij , i.e., it represents the radius of the smallest hypersphere with the
centre Xi that covers j neighbouring datapoints. In [11], it is shown that one could
divide by k − 2 rather than k − 1 to make the estimator asymptotically unbiased.
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It is clear from equation (3) that the estimate depends on the parameter k as well as
on the point Xi. Levina and Bickel (2004) assume that all the data points come from the
same manifold, and therefore they average the estimated dimensions over all observations
(m is the number of data points) (2). According to the authors, the choice of k clearly
affects the estimate. In general, for MLE to work well, the hypersphere should be small
and simultaneously contain enough points. Levina and Bickel choose the value of the
parameter k automatically: in some heuristic way they simply average over a range of
small to moderate values k = k1, . . . , k2 to get the final estimate (1). According to
experimental investigations, Levina and Bickel recommend the values of k1 = 10 and
k2 = 20. However, these estimates are valid for some fixed data sets only.

Since it is not known how to choose the values of the parameters k1 and k2 in general
case, in this paper, by analyzing the MLE algorithm, we use only one control parameter
k, i.e., the number of the nearest neighbours for each data point, instead of two control
parameters k1 and k2. The MLE algorithm is explored by evaluating two types of dis-
tances: Euclidean and geodesic. In both cases, the values dk (2) of MLE are calculated
with different values k of the nearest neighbours. In such a way, dependences of the
estimate of intrinsic dimensionality of the data on the number k of the nearest neighbours
are obtained. We choose such a value dk of MLE that is stable in a long interval of k.
Levina et al. (2007) suggest to select the value of k equal to 20 on the basis of a dataset
with known number of pure components in a mixture from Raman spectroscopy data.

3 The analyzed data sets

The following data sets were used in the experiments:
1000 3-dimensional data points (m = 1000, n = 3) that lie on a nonlinear 2-dimen-

sional S-shaped manifold (Fig. 1(a)).
1000 3-dimensional data points (m = 1000, n = 3) that lie on a nonlinear 2-dimensio-

nal 8-shaped manifold (Fig. 1(b)). The components (x, y, z) of these data are calculated
by the parametric equations below:

x = cos(v),

y = sin(v) cos(v),

z = u,

where v ∈ [ 2πm , 2π], u ∈ (0, 5), m is the number of data points.
1801 3-dimensional data points (m = 1801, n = 3) that lie on a nonlinear 2-dimen-

sional manifold – right helicoid (Fig. 1(c)). The components (x, y, z) of these data are
calculated by the parametric equations below:{

x = u cos(v),

y = u sin(v),

where u, v ∈ [0, 10π], z = 0.5v.
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1801 3-dimensional data points (m = 1801, n = 3) that lie on a nonlinear 1-dimen-
sional manifold – spiral (Fig. 1(d)). The components (x, y, z) of these data are calculated
by the parametric equations below:

x = 100 cos(t),

y = 100 sin(t),

z = t,

where t ∈ [0, 10π].
1000 3-dimensional data points (m = 1000, n = 3) that lie on a nonlinear 1-dimen-

sional manifold – helix (Fig. 1(e)). The components (x, y, z) of these data are calculated
by the parametric equations below:

x = (2 + cos(8t)) cos(t),

y = (2 + cos(8t)) sin(t),

z = sin(8t),

where t ∈ [ 2πm , 2π], m is the number of data points.
360 2-dimensional data points (m = 360, n = 2) that lie on a nonlinear 1-dimensional

manifold – circle. The components (x, y) of these data are calculated by the parametric
equations below: {

x = cos(t),

y = sin(t),

where t ∈ [0, 2π].
181 2-dimensional data points (m = 181, n = 2) that lie on a nonlinear 1-dimensio-

nal manifold – semicircle.
A data set of uncoloured pictures of a rotated duckling [19] (samples of pictures are

shown in Fig. 1(f)). The data are comprised of uncoloured pictures of the same object
(a duckling), obtained by gradually rotated a duckling at the 360◦ angle. Each picture is
digitized, i.e., a data point is a vector that consists of colour parameters of pixels, and,
therefore, it is of a very large dimensionality. The number of pictures (data points) is
m = 72. The images have 128 × 128 greyscale pixels, therefore the dimensionality of
points, characterizing each picture in a multidimensional space, is n = 16384.

A data set of coloured pictures of a rotated cup [19] (samples of pictures are shown
in Fig. 1(g)). The data are comprised of coloured pictures of the same object (a cup),
obtained by gradually rotated a cup at the 180◦ angle. Each picture is digitized, i.e.,
a data point is a vector that consists of colour parameters of pixels, and, therefore, it is of
a very large dimensionality. The number of pictures (data points) is m = 35. The images
have 128× 128 colour pixels, therefore the dimensionality of points, characterizing each
picture in a multidimensional space, is n = 49152.

A data set of photos of a person’s face [3] (example images are shown in Fig. 1(h)).
The data consist of many photos of a person’s face observed in different poses (left-and-
right pose, up-and-down pose) and lighting conditions, in no particular order. Each picture
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is digitized, i.e., a data point is a vector that consists of colour parameters of pixels, and,
therefore, it is of a very large dimensionality. The number of photos (data points) is
m = 698. The images have 64× 64 colour pixels, therefore the dimensionality of points
that characterize each photo in a multidimensional space is n = 4096.

(a) (b) (c)

(d) (e)

(f)

(g)

(h)

Fig. 1. Manifold datasets.

4 Experimental exploration of MLE

In this section, the MLE method is explored experimentally, while Euclidean or geodesic
distances are evaluated between data points. For brevity, we denote the MLE method as
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MLEe, if Euclidean distances are used, and MLEg, if geodesic distances are used. The
estimates of the intrinsic dimensionality, obtained by MLEe and MLEg, are denoted as
d∗MLEe and d∗MLEg, respectively.

The geodesic distance is the length of the shortest path between two points along
the surface of a manifold. Here the Euclidean distances are used when calculating the
length of the shortest path. In order to compute the geodesic distances between the points
X1, X2, . . . , Xm, it is necessary to set some number of the nearest points (neighbours)
of each point Xi on the manifold. The search of the neighbours of each point Xi can be
organized in two ways: (1) by the fixed number kgeod of the nearest points fromXi, (2) by
all the points within some fixed radius of a hypershere, the center of which is the pointXi.
When the neighbours are derived, a weighted graph over the points is constructed: each
point Xi is connected with its neighbours; the weights of edges are Euclidean distances
between the point Xi and its neighbours. Using one of the algorithms for the shortest
path distance in the graph, the shortest path lengths between the pairs of all points are
computed. These lengths are estimates of the geodesic distances between the points.

The first investigation is performed with the points of the 2-dimensional S-shaped and
8-shaped manifolds and with the points of the 1-dimensional manifolds: a circle and a
semicircle. The estimates of the intrinsic dimensionality d of the data were calculated
by MLE with various values of the control parameter k, k ∈ [3, 100]. After applying
both variants of MLE, the true results are obtained, i.e., d∗MLEe = d∗MLEg = 2 for all k
in the case of 2-dimensional manifolds (kgeod = 5, kgeod is the number of the nearest
neighbours chosen when geodesic distances are calculated), and d∗MLEe = d∗MLEg = 1
for all k in the case of 1-dimensional manifolds (kgeod = 2).

However, after investigating such manifolds as a helicoid (Fig. 2), a helix (Fig. 3) and
a spiral (Fig. 4), it became clear, that MLEe provides wrong results with many values of
the parameter k. Meanwhile, in the case of MLEg (kgeod = 5 in the case of the helicoid,
and kgeod = 2 in the case of the helix and the spiral), the true results are obtained with
k ∈ [5, 200].

An advantage of MLEg over MLEe became also evident while investigating the high-
dimensional data, obtained after digitizing real pictures (uncoloured pictures of a rotated
duckling, coloured pictures of a rotated cup, and photos of a person’s face observed in
different poses) (Figs. 5–7). The intrinsic dimensionality of these data, obtained by
MLEg (kgeod = 2 in the case of pictures of a rotated duckling, kgeod = 3 in the case
of pictures of a rotated cup, kgeod = 5 in the case of photos of a person’s face), is
equal to the number of degrees of freedom of a possible motion of the object observed.
Since a duckling or a cup were gradually rotated at a certain angle in the same plane,
i.e., without turning the object itself, these data have only one degree of freedom, i.e.,
the intrinsic dimensionality of these data is equal to 1. A person’s face analyzed in [3]
has two directions of motion (two poses): left-and-right pose and up-and-down pose.
Therefore, the high-dimensional data corresponding to these pictures have two degrees
of freedom, i.e., the intrinsic dimensionality of these data is equal to 2. However, the
intrinsic dimensionality of these data, obtained by MLEe, is not equal to the number of
degrees of freedom of a possible motion of the observed object. Thus, MLEe fails in
indentifying the true intrinsic dimensionality.

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 4, 387–402
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Fig. 2. Dependences of the estimate d∗ of the intrinsic dimensionality on k, obtained
after analyzing the points of the helicoid by MLE.

Fig. 3. Dependences of the estimate d∗ of the intrinsic dimensionality on k, obtained
after analyzing the points of the helix by MLE.

Fig. 4. Dependences of the estimate d∗ of the intrinsic dimensionality on k, obtained
after analyzing the points of the spiral by MLE.

Fig. 5. Dependences of the estimate d∗ of the intrinsic dimensionality on k, obtained
after analyzing the data points, corresponding to uncoloured pictures of a rotated

duckling, by MLE (k ∈ [3, 71]).
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Fig. 6. Dependences of the estimate d∗ of the intrinsic dimensionality on k, obtained
after analyzing the data points, corresponding to the coloured pictures of a rotated cup,

by MLE (k ∈ [3, 34]).

Fig. 7. Dependences of the estimate d∗ of the intrinsic dimensionality on k, obtained
after analyzing the data points, corresponding to the photos of a person’s face, by MLE

(k ∈ [3, 600]) (kgeod = 5).

5 Isometric feature mapping (ISOMAP)

ISOMAP can be assigned to the group of multidimensional scaling methods. This method
is designed for dimensionality reduction as well as for visualization of multidimensional
data [3]. Using ISOMAP, an assumption that the points of the initial space are located
on a lower-dimensional manifold is made. Geodesic distances are used as a measure of
proximity between the points analyzed in the ISOMAP. In order to compute the geodesic
distances between the points X1, X2, . . . , Xm, it is necessary to set some number of the
nearest points (neighbours) of each point Xi on the manifold. In the further experiments,
we use the fixed number kgeod of the nearest points from Xi.

The ISOMAP algorithm can be generalized as follows:

1. The neighbours of each point are derived in the input multidimensional space.

2. The geodesic distance between the pairs of all the points are computed; a dissimi-
larity matrix is formed.

3. The projection of multidimensional points to a lower-dimensional space is obtained
by multidimensional scaling.

Since ISOMAP is designed to analyse manifold-type high-dimensional data, it was
selected to investigate the intrinsic dimensionality of the data as one of the MDS-type
methods.
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In [3], it is provided the possibility to determine the dimensionality of the manifold,
i.e., the intrinsic dimensionality d of the initial data by using ISOMAP. ISOMAP provides
error curve that can be “eyeballed” to estimate dimensionality [11]. The interval of the
projection space d∗ is chosen for data projection, for example, d∗ = 1, . . . , 10, and the
residual variance [3] is computed for each d∗.

This quantitative measure illustrates how well the distance information is preserved.
It is defined as 1 − ρ2DxDy

, where ρDxDy is the standard linear correlation coefficient,
taken over all the entries of Dx and Dy , where Dy is the matrix of Euclidean distances
between the pairs of points in the low-dimensional space, andDx is the matrix of geodesic
distances between the pairs of points (the graph distance matrix) in the high-dimensional
space, respectively. The lower the residual variance, the better the high-dimensional data
are represented in the embedded space.

However, the ISOMAP method has some drawbacks [7]. When the manifold to be
embedded is not developable, ISOMAP yields disappointing results. In this case, the
guarantee of determining a global optimum does not really matter, since actually the
model and its associated error function are not appropriate anymore. Another problem
encountered when running ISOMAP is the practical computation of the geodesic dis-
tances. The approximations given by the graph distances may be very rough, and their
quality depends on both the data (number of points, noise) and the method parameter
kgeod. Badly chosen value of this parameter may totally jeopardize the quality of the
dimensionality reduction (data projection as well as the intrinsic dimensionality).

6 Experimental exploration of ISOMAP to estimate the intrinsic di-
mensionality

The first investigation is performed with the points of the 2-dimensional S-shaped mani-
fold. The ISOMAP method has been run for 10 times by selecting a different dimension-
ality of spaces for data projection, i.e., d∗ = 1, . . . , 10. Each time, after obtaining data
projections in a space of lower dimensionality, the residual variance was calculated. The
dependence of the residual variance on the projection space d∗ has been obtained. The
lower the value of the residual variance, the more precise projections of multidimensional
data, i.e., geodesic distances between multidimensional data points and their projections,
have been preserved. We can see in Fig. 8, that in the case of the S-shaped manifold, the
value of the residual variance decreases a great deal, if d∗ = 2. Although small values
of the residual variance (almost zero) are obtained, if d∗ ≥ 2, but only the first value of
the interval d∗ ∈ [2, 10] is taken as the intrinsic dimensionality in [3]. Thus, the most
precise data projections are obtained if data are transferred to a 2-dimensional space, i.e.,
the intrinsic dimensionality of these data is equal to 2, which is the truth.

The analogical investigation is performed with the points of the 2-dimensional man-
ifolds: 8-shaped manifold (Fig. 9) and helicoid (Fig. 10). In both cases, the values of
the residual variance considerably decrease, if d∗ = 2. However, the relative value of
the residual variance with d∗ = 2 and d∗ = 3 decreases up to 65,8% in the case of the
helicoid and by 47,5% in the case of the 8-shaped manifold. Thus a question arises, which
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projection space and the intrinsic dimensionality of the data thereby, is more suitable? It
cannot be specified strictly by ISOMAP.

Fig. 8. Dependence of the residual variance on the dimensionality of the projection
space d∗ obtained after analysing the points of the S-shaped manifold by ISOMAP

(kgeod = 5).

Fig. 9. Dependence of the residual variance on the dimensionality of the projection
space d∗ obtained after analysing the points of the 8-shaped manifold by ISOMAP

(kgeod = 5).

Fig. 10. Dependence of the residual variance on the dimensionality of the projection
space d∗ obtained after analysing the points of the helicoid by ISOMAP (kgeod = 5).

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 4, 387–402
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After investigating a spiral, it has been noticed, that the ISOMAP method (kgeod = 2)
does not define the intrinsic dimensionality d of these data (the best projection space) at
all, because the value of the residual variance is equal to 0 with all d∗ = 1, . . . , 10. It
means that any integer number from the interval [1, 10] can be the value of the parameter
d∗. Unfortunately, it is not the truth, because the intrinsic dimensionality d = 1 in the
case of a spiral.

Afterwards we investigated the closed 1-dimensional manifolds (a helix, a circle) that
have neither the beginning nor the end. It became clear, that, in this case, the true intrinsic
dimensionality d = 1 of these data is increased by 1 by ISOMAP, i.e., d∗ = 2 (Fig. 11,
Fig. 12). However, if a curve is unclosed, for example, a semicircle, then the intrinsic
dimensionality of the data is set true by this method, i.e., d = d∗ = 1 (Fig. 13). As the
values of the residual variance in the graph are very small (equal almost zero), maybe it is
risky to draw some conclusions. However, the first lowest value is obtained with d∗ = 1.

The previous fact is validated by the following investigation with high-dimensional
data points, corresponding to real pictures of a rotated duckling. If the object (a duckling)
has been gradually rotated by the 360◦ angle, the data points are located on a circle.
However, the estimate of the intrinsic dimensionality of these data obtained by ISOMAP
is equal to 2 (Fig. 14). But if a duckling is rotated at the 180◦ angle little by little, then

Fig. 11. Dependence of the residual variance on the dimensionality of the projection
space d∗ obtained after analysing the points of the helix by ISOMAP (kgeod = 2).

Fig. 12. Dependence of the residual variance on the dimensionality of the projection
space d∗ obtained after analysing the points of the circle by ISOMAP (kgeod = 2).
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the data points locate themselves on a semicircle. In this case, the intrinsic dimension-
ality of the data, obtained by ISOMAP, is equal to 1 (Fig. 15). In both cases, the high-
dimensional data points, corresponding to real pictures of a rotated duckling, lie on a 1-di-
mensional manifold (a curve). Therefore, the true intrinsic dimensionality of the data is 1.

Fig. 13. Dependence of the residual variance on the dimensionality of the projection
space d∗ obtained after analysing the points of the semicircle by ISOMAP (kgeod = 2).

Fig. 14. Dependence of the residual variance on the dimensionality of the projection
space d∗ obtained after analysing the points, corresponding to the pictures of a rotated

duckling at 360◦, by ISOMAP (kgeod = 2).

Fig. 15. Dependence of the residual variance on the dimensionality of the projection
space d∗ obtained after analysing the points, corresponding to the pictures of a rotated

duckling at 180◦, by ISOMAP (kgeod = 2).

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 4, 387–402
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The last investigation is performed with the high-dimensional data points that corre-
spond to coloured pictures. It has been noticed that the ISOMAP method increases the in-
trinsic dimensionality by 1, if colours and lighting dominate in the pictures. The intrinsic
dimensionality is 1 of the high-dimensional data, obtained by digitizing the coloured pic-
tures of a rotated cup, because these data points are located on a 1-dimensional manifold
(a semicircle) as well. Besides, they have one degree of freedom of a motion. However,
we can see from Fig. 16 that the dimensionality obtained by ISOMAP is equal to 2. An
analogous situation is obtained by analyzing the high-dimensional data that correspond
to photos of a person’s face observed in different poses (left-and-right, up-and-down).
Due to the lighting in the photos, the dimensionality obtained by ISOMAP is 3, but not 2
(Fig. 17).

Fig. 16. Dependence of the residual variance on the dimensionality of the projection
space d∗ obtained after analysing the points, corresponding to coloured pictures of a

rotated cup, by ISOMAP (kgeod = 3).

Fig. 17. Dependence of the residual variance on the dimensionality of the projection
space d∗ obtained after analysing the points, corresponding to the photos of a person’s

face, by ISOMAP (kgeod = 5).
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Table 1. The values of the intrinsic dimensionality, obtained by different method.

Data sets d d∗MLEe d∗MLEg d∗ISOMAP

S-shaped manifold 2 2 2 2
8-shaped manifold 2 2 2 2 or 3
Right helicoid 2 3 2 2 or 3
Spiral 1 2 1 1–10
Helix 1 1 or 2 1 2
Circle 1 1 1 2
Semicircle 1 1 1 1
Uncoloured pictures of a rotated
duckling at the 360◦ angle 1 2 or 3 1 2
Coloured pictures of a rotated cup 1 3 or 4 1 2
Photos of a person’s face 2 4 or 5 2 3

7 Conclusions

Real-life data are often hardly understandable because of their high-dimensionality. There-
fore, the ability to find the intrinsic dimensionality of a data set is very useful. Several
methods for estimating the intrinsic dimensionality are proposed in the literature.

In this paper, we have analysed two methods for the intrinsic dimensionality: the
maximum likelihood estimator (MLE) and the ISOMAP method. The obtained results are
generalized in Table 1. We have shown that, in order to get true estimates by MLE, it is
necessary to evaluate geodesic distances between data points in this algorithm (d∗MLEg =
d in all the cases). If the Euclidean distances are used in MLE, sometimes we can get
false estimates of the intrinsic dimensionality.

ISOMAP is a nonlinear manifold learning method, but it has the ability to define the
intrinsic dimensionality of data, too. Disadvantages of this method became evident in the
estimation of the intrinsic dimensionality while analyzing closed manifolds and coloured
pictures. In these cases, ISOMAP has failed to estimate the intrinsic dimensionality of the
data, because it increased the true intrinsic dimensionality of these data by 1, as compared
with the maximum likelihood estimator.
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