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Abstract. In this paper, a new iterative method (NIM) is used to obtain the exact solutions of some
nonlinear time-fractional partial differential equations. The fractional derivatives are described in
the Caputo sense. The method provides a convergent series with easily computable components in
comparison with other existing methods.
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1 Introduction

In recent years, notable contributions have been made to both the theory and applica-
tions of the fractional differential equations. These equations are increasingly used to
model problems in research areas as diverse as population dynamics, mechanical systems,
fiber optics, control, chaos, fluid mechanics, continuous-time random walks, anomalous
diffusive and subdiffusive systems, unification of diffusion and wave propagation phe-
nomenon, dynamical systems and others. The most important advantage of using frac-
tional differential equations in these and other applications is their non-local property. It is
well known that the integer order differential operator is a local operator but the fractional
order differential operator is non-local. This means that the next state of a system depends
not only upon its current state but also upon all of its historical states. This is more realistic
and it is one reason why fractional calculus [1–4] has become more and more popular.

In general, there exists no method that yields an exact solution for a fractional dif-
ferential equation. Approximation and numerical solutions are used extensively [5–10].
In the present paper, we use new iterative method (NIM) to construct an exact solution
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to the generalized nonlinear biological population equation [11–14] with time-fractional
derivatives of the form [15–17]:

Dα
t u =

(
u2
)
xx

+
(
u2
)
yy

+ f(u), t > 0, x, y ∈ <, 0 < α ≤ 1, (1)

f(u) = hua
(
1− rub

)
, (2)

u(x, y, 0) = g(x, y), (3)

where u denotes population density, f represents the population supply due to births
and deaths, h, a, r, b are real numbers, g is given initial condition and Dα denotes the
differential operator in the sense of Caputo.

Also, we use new iterative method to obtain an exact solution of following system of
three nonlinear time-fractional partial differential equations [18, 19]:

Dα
t u = −vxwy + vywx − u,

Dα
t v = −wxuy − wyux + v, t > 0, 0 < α ≤ 1, (4)

Dα
t w = −uxvy − uyvx + w,

with initial conditions

u(x, y, 0) = h1(x, y), v(x, y, 0) = h2(x, y), w(x, y, 0) = h3(x, y), (5)

where Dα denotes the differential operator in the sense of Caputo.
The structure of this article is as follows:
We begin by reviewing the procedure of the new iterative method [6, 20–24]. In

Section 3, we introduce some necessary definitions and mathematical preliminaries of
the fractional calculus theory in the Caputo sense which are required for establishing
our results. In Section 4, we extend the application of the new iterative method to
construct our exact solutions for the time-fractional biological population model given by
Eqs. (1)–(3) and a system of three nonlinear time-fractional partial differential equations
given by Eqs. (4)–(5). We present three examples to show the efficiency and simplicity
of the new iterative method. The method is used in a direct way [6, 20–24] without using
any linearization, perturbation, polynomials or restrictive assumptions in comparison with
other existing methods [14–19].

2 The new iterative method (NIM)

Daftardar-Gejji and Jafari [20] have considered the following functional equation:

u = f + L(u) +N(u), (6)

where L is a linear operator, N is a nonlinear operator and f is a known function.
We are looking for a solution u of Eq. (6) having the series form:

u =

∞∑
i=0

ui. (7)
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Since L is a linear operator,

L

( ∞∑
i=0

ui

)
=

∞∑
i=0

L(ui). (8)

The nonlinear operator N is decomposed as [20–22]

N

( ∞∑
i=0

ui

)
= N(u0) +

{
N(u0+u1)−N(u0)

}
+
{
N(u0+u1+u2)−N(u0+u1)

}
+
{
N(u0+u1+u2+u3)−N(u0+u1+u2)

}
+ · · ·

= N(u0) +

∞∑
i=1

{
N

( i∑
j=0

uj

)
−N

( i−1∑
j=0

uj

)}
. (9)

From Eqs. (7)–(9), Eq. (6) is equivalent to

∞∑
i=0

ui = f + L

( ∞∑
i=0

ui

)
+N(u0) +

∞∑
i=1

{
N

( i∑
j=0

uj

)
−N

( i−1∑
j=0

uj

)}
. (10)

We define the recurrence relation

u0 = f,

u1 = L(u0) +N(u0),

un+1 = L(un) +
{
N(u0 + · · ·+ un)−N(u0 + · · ·+ un−1)

}
= L(un) +

{
N

( n∑
j=0

uj

)
−N

( n−1∑
j=0

uj

)}
, n = 1, 2, . . . . (11)

Then,
n+1∑
i=1

ui = L

( n∑
i=0

ui

)
+N

( n∑
i=0

ui

)
(12)

and
∞∑
i=0

ui = f + L

( ∞∑
i=0

ui

)
+N

( ∞∑
i=0

ui

)
. (13)

It is clear from Eq. (13) that
∑∞
i=0 ui is solution of Eq. (6). Where ui, i = 0, 1, 2, . . . , are

given by algorithm (11). Also, The k-term approximate solution of Eq. (6) can be given
by
∑k−1
i=0 ui. We refer to [20–22] for details of the convergence.

3 Fractional calculus

We give some basic definitions and properties of the fractional calculus theory which are
used further in this paper.
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Definition 1. A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ < if there
exists a real number p (> µ), such that f(x) = xpf1(x), where f1(x) ∈ C[0,∞), and it
is said to be in the space Cmµ if f (m) ∈ Cµ, m ∈ N .

Definition 2. The Riemann–Liouville fractional integral operator of order α ≥ 0, of
a function f ∈ Cµ, µ ≥ −1, is defined as

Jαf(x) =
1

Γ(α)

x∫
0

(x− t)α−1f(t) dt, α > 0, x > 0,

J0f(x) = f(x).

Properties of the operator Jα can be found in [1–4], we mention only the following.
For f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ > −1:

1. JαJβf(x) = Jα+βf(x);

2. JαJβf(x) = JβJαf(x);

3. Jαxγ = Γ(γ+1)
Γ(α+γ+1)xα+γ .

The Riemann–Liouville derivative has certain disadvantages when trying to model
real world phenomena with fractional differential equations. Therefore, we shall intro-
duce a modified fractional differential operator Dα proposed by Caputo in his work on
the theory of viscoelasticity [25].

Definition 3. The fractional derivative f(x) in the Caputo sense is defined as

Dαf(x) = Jm−αDmf(x) =
1

Γ(m− α)

x∫
0

(x− t)m−α−1f (m)(t) dt (14)

for m− 1 < α ≤ m, m ∈ N , x > 0, f ∈ Cm−1.

Also, we need here two of its basic properties.

Lemma 1. If m− 1 < α ≤ m, m ∈ N and f ∈ Cmµ µ ≥ −1, then

DαJαf(x) = f(x)

and

JαDαf(x) = f(x)−
m−1∑
k=0

f (k)
(
0+
)xk
k!
, x > 0.

The Caputo fractional derivatives are considered here because it allows traditional
initial conditions to be included in the formulation of the problem. In this paper, we con-
sider the biological population equation and a system of three partial differential equations
with time-fractional derivatives and the fractional derivatives are taken in Caputo sense as
follows.
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Definition 4. For m to be the smallest integer that exceeds α, the Caputo time-fractional
derivative operator of order α > 0 is defined as

Dα
t u(x, y, t) =

∂αu(x, y, t)

∂tα

=

{
1

Γ(m−α)

∫ t
0
(t− τ)m−α−1 ∂

mu(x,y,τ)
∂tm dτ for m− 1 < α < m,

∂mu(x,y,t)
∂tm for α = m ∈ N.

(15)

For more information on the mathematical properties of fractional derivatives and
integrals one can consult the mentioned references.

4 Applications

In this section, we present three examples with analytical solution to show the efficiency
of methods described in the Section 2

Example 1. We consider the Eqs. (1)–(3) with a = 1, r = 0 (Malthusian law [11])
and g(x, y) =

√
xy, we have the following time-fractional biological population equation

with initial condition:

Dα
t u =

(
u2
)
xx

+
(
u2
)
yy

+ hu, t > 0, 0 < α ≤ 1, (16)

u(x, y, 0) =
√
xy. (17)

Firstly, for the solution, applying operator Jα, the inverse of the operator Dα
t , on both

side of Eq. (16), using the initial condition and Lemma 1 yields

u =
√
xy + Jα

((
u2
)
xx

+
(
u2
)
yy

)
+ Jα(hu). (18)

According to the NIM, in view of the algorithm (11), we construct the following recur-
rence relation:

u0 =
√
xy,

u1 = Jα
((
u2

0

)
xx

+
(
u2

0

)
yy

)
+ Jα

(
hu0

)
,=
√
xy

htα

Γ(α+ 1)
,

u2 = Jα
((

(u0 + u1)2
)
xx

+
(
(u0 + u1)2

)
yy

)
− Jα

((
u2

0

)
xx

+
(
u2

0

)
yy

)
+ Jα(hu1)

=
√
xy

h2t2α

Γ(2α+ 1)
,

· · ·
un+1 = Jα

((
(u0 + · · ·+ un)2

)
xx

+
(
(u0 + · · ·+ un)2

)
yy

)
− Jα

((
(u0 + · · ·+ un−1)2

)
xx

+
(
(u0 + · · ·+ un−1)2

)
yy

)
+ Jα(hun)

=
√
xy

(htα)n+1

Γ((n+ 1)α+ 1)
, n = 2, 3, . . . .
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Thus, the solution of Eqs. (16)–(17) is

∞∑
i=0

ui = u(x, y, t) =
√
xy

∞∑
k=0

(htα)k

Γ(kα+ 1)
=
√
xyEα

(
htα
)
, (19)

where Eα(htα) is the Mittag–Leffler function defined as Eα(z) =
∑∞
k=0

zk

Γ(1+kα) [4].
For α→ 1, we have

u(x, y, t) =
√
xy

∞∑
k=0

(ht)k

k!
=
√
xyeht (20)

which is an exact solution of the standard form biological population model [15].
Figure 1 shows the exact solutions of Eqs. (16)–(17) for α = 1 and α = 0.5 when

h = 0.2 and t = 10.

(a) (b)

Fig. 1. The exact solution u(x, y, t) of Eqs. (16)–(17) when h = 0.2 and t = 10: (a) α = 1,
(b) α = 0.5.

Example 2. Consider the Eqs. (1)–(3) with a = 1, b = 1 (Verhulst law [11]) and g(x, y) =

e
√
hr/8(x+y), we have the following time-fractional biological population equation with

initial condition:

Dα
t u = (u2)xx + (u2)yy + hu(1− ru), t > 0, 0 < α ≤ 1, (21)

u(x, y, 0) = e
√
hr/8(x+y). (22)

Similar to previous example, for the solution, applying operator Jα on both side of
Eq. (21), using the initial condition and Lemma 1 yields

u = e
√
hr/8(x+y) + Jα

((
u2
)
xx

+
(
u2
)
yy
− hru2

)
+ Jα(hu). (23)
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In view of the algorithm (11), we construct the recurrence relation:

u0 = e
√
hr/8(x+y),

u1 = Jα
((
u2

0

)
xx

+
(
u2

0

)
yy
− hru2

0

)
+ Jα(hu0) = e

√
hr/8(x+y) htα

Γ(α+ 1)
,

u2 = Jα
((

(u0 + u1)2
)
xx

+
(
(u0 + u1)2

)
yy
− hr(u0 + u1)2

)
− Jα

((
u2

0

)
xx

+
(
u2

0

)
yy
− hru2

0

)
+ Jα(hu1) = e

√
hr/8(x+y) h2t2α

Γ(2α+ 1)
,

· · ·

un+1 = Jα
((

(u0 + · · ·+ un)2
)
xx

+
(
(u0 + · · ·+ un)2

)
yy
− hr(u0 + · · ·+ un

)2)
− Jα

((
(u0 + · · ·+ un−1)2

)
xx

+
(
(u0 + · · ·+ un−1

)2)
yy

− hr(u0 + · · ·+ un−1

)2)
+ Jα(hun

)
= e
√
hr/8(x+y) (htα)n+1

Γ((n+ 1)α+ 1)
,

n = 2, 3, . . . .

Thus, the solution of Eqs. (21)–(22) is

∞∑
i=0

ui = u(x, y, t) = e
√
hr/8(x+y)

∞∑
k=0

(htα)k

Γ(kα+ 1)
= e
√
hr/8(x+y)Eα

(
htα
)
, (24)

where Eα(htα) is the Mittag–Leffler function.
For α→ 1, we have

u(x, y, t) = e
√
hr/8(x+y)

∞∑
k=0

(ht)k

k!
= e
√
hr/8(x+y)+ht (25)

which is an exact solution of the standard form biological population model [16].

Example 3. Now, we consider the Eqs. (4)–(5) with h1(x, y) = e(x+y), h2(x, y) =
e(x−y) and h3(x, y) = e(−x+y).

Similar to previous examples, for the solution of system, applying operator Jα on
both sides of Eqs. (4), using the above initial conditions and Lemma 1 yields

u = e(x+y)Jα(−vxwy + vywx) + Jα(−u),

v = e(x−y)Jα(−wxuy − wyux) + Jα(v), t > 0, 0 < α ≤ 1,

w = e(−x+y)Jα(−uxvy − uyvx) + Jα(w).

(26)

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 4, 403–414
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In view of the algorithm (11), we construct the following recurrence relation:

u0 = e(x+y),

v0 = e(x−y),

w0 = e(−x+y),

u1 = Jα
(
−(v0)x(w0)y + (v0)y(w0)x

)
+ Jα(−u0) = −e(x+y) tα

Γ(α+ 1)
,

v1 = Jα
(
−(w0)x(u0)y − (w0)y(u0)x

)
+ Jα(v0) = e(x−y) tα

Γ(α+ 1)
,

w1 = Jα
(
−(u0)x(v0)y − (u0)y(v0)x

)
+ Jα(w0

)
= e(−x+y) tα

Γ(α+ 1)
,

· · ·
un+1 = Jα

(
−(v0+· · ·+vn)x(w0+· · ·+ wn)y + (v0+· · ·+ vn)y(w0+· · ·+wn)x

)
−Jα

(
−(v0 + · · ·+ vn−1)x(w0 + · · ·+ wn−1)y

+(v0 + · · ·+ vn−1)y(w0 + · · ·+ wn−1)x
)

+ Jα(−un)

= e(x+y) (−tα)n+1

Γ((n+ 1)α+ 1)
, n = 1, 2, . . . ,

vn+1 = Jα
(
−(w0+· · ·+wn)x(u0+· · ·+un)y − (w0+· · ·+wn)y(u0+· · ·+un)x

)
−Jα

(
−(w0 + · · ·+ wn−1)x(u0 + · · ·+ un−1)y

−(w0 + · · ·+ wn−1)y(u0 + · · ·+ un−1)x
)

+ Jα(vn)

= e(x−y) (tα)n+1

Γ((n+ 1)α+ 1)
, n = 1, 2, . . . ,

wn+1 = Jα
(
−(u0 + · · ·+ un)x(v0+· · ·+vn)y − (u0+· · ·+un)y(v0+· · ·+vn)x

)
−Jα

(
−(u0 + · · ·+ un−1)x(v0 + · · ·+ vn−1)y

−(u0 + · · ·+ un−1)y(v0 + · · ·+ vn−1)x
)

+ Jα(wn)

= e(−x+y) (tα)n+1

Γ((n+ 1)α+ 1)
, n = 1, 2, . . . .

We get the solutions of Eqs. (4)–(5) as follows:

∞∑
i=0

ui = u(x, y, t) = e(x+y)
∞∑
k=0

(−tα)k

Γ(kα+ 1)
= e(x+y)Eα

(
−tα

)
,

∞∑
i=0

vi = v(x, y, t) = e(x−y)
∞∑
k=0

(tα)k

Γ(kα+ 1)
= e(x−y)Eα

(
tα
)
, (27)

∞∑
i=0

wi = w(x, y, t) = e(−x+y)
∞∑
k=0

(tα)k

Γ(kα+ 1)
= e(−x+y)Eα

(
tα
)
.
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For α→ 1, we have

u(x, y, t) = e(x+y−t), v(x, y, t) = e(x−y+t), w(x, y, t) = e(−x+y+t) (28)

which are the exact solutions of the standard form system [18].
Figures 2–4 show the exact solutions of Eqs. (4)–(5) for α = 1 and α = 0.5 when

t = 1.

(a) (b)

Fig. 2. The exact solution u(x, y, t) of Eqs. (4)–(5) when t = 1: (a) α = 1, (b) α = 0.5.

(a) (b)

Fig. 3. The exact solution v(x, y, t) of Eqs. (4)–(5) when t = 1: (a) α = 1, (b) α = 0.5.

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 4, 403–414
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(a) (b)

Fig. 4. The exact solution w(x, y, t) of Eqs. (4)–(5) when t = 1: (a) α = 1, (b) α = 0.5.

5 Conclusion

In this paper, we have used a new iterative method (NIM) for finding an exact solution
of nonlinear time-fractional biological population model and a system of three nonlinear
time-fractional partial differential equations. The method is used in a direct way without
using any linearization, perturbation, polynomials or restrictive assumptions in compar-
ison with other existing methods. Also, the method gives more realistic series solutions
that converge very rapidly in nonlinear fractional problems. Thus, we conclude that new
iterative method can be considered as an efficient method for solving linear and nonlinear
problems.
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