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Abstract. A one-parameter multivariate distribution, called the Ewens sampling formula, was
introduced in 1972 to model the mutation phenomenon in genetics. The case discussed in this note
goes back to Lynch’s theorem in the random binary search tree theory. We examine an additive
statistics, being a sum of dependent random variables, and find an upper bound of its variance in
terms of the sum of variances of summands. The asymptotically best constant in this estimate is
established as the dimension increases. The approach is based on approximation of the extremal
eigenvalues of appropriate integral operators and matrices.
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1 Introduction and result

Let Sn denote the symmetric group of permutations σ acting on n ≥ 1 letters. Each
σ ∈ Sn has a unique representation (up to the order) by the product of independent
cycles κi:

σ = κ1 · · ·κw, (1)
where w = w(σ) denotes the number of cycles. Denote by kj(σ) ≥ 0 the number of
cycles in (1) of length j for 1 ≤ j ≤ n and k̄(σ) := (k1(σ), . . . , kn(σ)). The latter is
called the cycle vector of permutation σ. Let νn,θ be the Ewens probability measure on
Sn defined by

νn,θ
(
{σ}

)
= θw(σ)/

(
θ(θ + 1) · · · (θ + n− 1)

)
=: θw(σ)/

(
θ(n)

)
, σ ∈ Sn,

where θ > 0 is a parameter. If we set `(s̄) = 1s1 + · · · + nsn for a vector s̄ =
(s1, . . . , sn) ∈ Zn+, then `(k̄(σ)) ≡ n and, as it is shown in [1],

νn,θ
(
k̄(σ) = s̄

)
= 1

{
`(s̄) = n

} n!

θ(n)

n∏
j=1

(
θ

j

)sj 1

sj !

= P
(
ξ̄θ = s̄

∣∣ `(ξ̄θ) = n
)
, (2)
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where ξ̄θ = (ξ1,θ, . . . , ξn,θ) and ξj,θ, 1 ≤ j ≤ n, are mutually independent Poisson r.vs
given in some probability space {Ω,F , P} with parameter Eξj,θ = θ/j.

The probability in (2), assigned to the vector s̄ ∈ Zn+, is called the Ewens sampling
formula. It has been introduced by W.J. Ewens [2] to describe the sampling distribution
of a sample of n genes from a large population. In this case, the allelic partition s̄ =
(s1, . . . , sn), contains all the information available in a sample, that is, sj denotes the
number of alleles represented j times in it, j = 1, . . . , n. In the so-called neutral alleles
model of population genetics, the parameter θ is interpreted as the mutation rate (see [3]).
For a comprehensive account of recent applications in combinatorics and statistics, we
refer to [1] and [4]. Now, we just mention that the case θ = 2 explored in the present
paper has some connections to the random binary search tree theory (see [5]).

Apart from w(σ), other statistics, called completely additive functions,

h(σ) := hā(σ) := a1k1(σ) + · · ·+ ankn(σ), (3)

where ā := (a1, . . . , an) ∈ Rn is a non-zero vector, appear in applications rather often.
For instance, h(σ) with aj = log j, j ≤ n, is a good approximation for the logarithm
of the group-theoretical order of σ ∈ Sn (see [1]). The case with aj = {xj}, where
{u} stands for the fractional part of u ∈ R, is met in the theory of random permutation
matrices (see [6]).

By (2), under νn,θ, the function h(σ) is a sum of dependent r.vs. This fact raises
some obstacles, seen already in the analysis of power moments carried out by the first
author [7, 8] and [9] in the case θ = 1. To overcome the difficulties arising from the
dependency, proving limit theorems for h(σ), one needs specified approaches (see, for
instance, [10, 11] or [12] and the references therein). We now draw the reader’s attention
to the variance.

Denote by An,θ(ā) := En,θh(σ) and Dn,θ(ā) := Varn,θh(σ) the mean value and
the variance of function h(σ) under the probability measure νn,θ. Set

τn,θ := sup
ā6=0̄

(
Dn,θ(ā)

/∑
j≤n

Varn,θ
(
ajkj(σ)

))
.

The problem is to estimate its discrepancy from 1 which is an indicator of the dependence
among the summands. The first author [7] has succeeded to explore the case θ = 1.

Theorem M. We have

τn,1 =
3

2
+ O

(
1

n

)
as n→∞.

A sketchy proof of this theorem is given in [7]. It is based on the spectral analysis of
some integral operators. Nevertheless, the same approach to τn,θ for other θ > 0 leads
to different operators in each case. Therefore, having the aim to expose our method in
full detail and to give an instance of another appearing operator, we now chose the case
θ = 2.
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Theorem. We have

τn,2 =
4

3
+ O

(
1

n

)
as n→∞.

The idea of our proof goes back to the number theoretical papers by J. Kubilius [13]
and [14] and is explained in the next section. To our knowledge, apart from [7], it has not
been applied in combinatorics.

The lower bound of τn,2 is found in Section 3 and the upper estimate is obtained in
the last section.

2 An idea

First of all, we express the variance as a quadratic form. It appears that the eigenvalues of
appropriate integral operators well approximate the eigenvalues of the involved matrices
as their order increases. Further, the eigenfunctions of operators are used to find the
vectors ā giving the extremal values of the variances.

To find an expression of the variance Dn,θ(ā), we apply the following G.A. Watter-
son’s result.

Lemma 1. Set x(r) := x(x− 1) · · · (x− r + 1) if r ∈ Z+ and, for arbitrary l ∈ N and
r1, . . . , rl ∈ Z+, define m := 1r1 + · · ·+ lrl. Then

En,θ
(
k1(σ)(r1) · · · kl(σ)(rl)

)
= 1{m ≤ n}

(
θ + n−m− 1

n−m

)(
θ + n− 1

n

)−1 l∏
j=1

(
θ

j

)rj
.

Proof. See [15] or [1, p. 96].

Lemma 2. We have Dn,2(ā) = 2B(ā)− 4∆(ā), where

B(ā) =
∑
j≤n

a2
j

j

(
1− j

n+ 1

)
,

and

∆(ā) =
∑
i,j≤n
i+j>n

aiaj
ij

(
1− i

n+ 1

)(
1− j

n+ 1

)
+

1

(n+ 1)2

∑
i+j≤n

aiaj .

Proof. Since x(0) = 1, applying Lemma 1 for l = m = j · 1 and ri = 0 if 1 ≤ i ≤ j − 1,
we have

An,2(ā) = 2
∑
j≤n

aj
j

(
1− j

n+ 1

)
.
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Similarly,

En,2h
2(σ) =

∑
i,j≤n

aiajEn,2
(
ki(σ)kj(σ)

)
= 4

∑
i+j≤n

aiaj
ij

(
1− i+ j

n+ 1

)
+ 2

∑
j≤n

a2
j

j

(
1− j

n+ 1

)
.

In the second step, we used Lemma 1 separately in the cases i 6= j and i = j. In the latter,
dealing with En,2kj(σ)2, we also applied the relation x2 = x(2) + x(1). Inserting these
expressions into the equality Dn,2(ā) = En,2h

2(σ) − (An,2(ā))2, we obtain the desired
formula.

The lemma is proved.

Corollary 1. For all n ≥ 1, we have

Dn,2(ā) ≤ 4B(ā) (4)

and ∣∣∣∣∑
j≤n

Varn,2
(
ajkj(σ)

)
− 2B(ā)

∣∣∣∣ ≤ 6

n
B(ā). (5)

Proof. If aj , j ≤ n, are of one sign, then, omitting ∆(ā) ≥ 0 in the expression of variance
obtained in Lemma 2, we have Dn,2(ā) ≤ 2B(ā) for all n ≥ 1 and ā ∈ Rn.

Further, splitting aj = a+
j − a

−
j , where a+

j and a−j are respectively the positive and
negative parts of aj , we define ā′ = (a+

1 , . . . , a
+
n ) and ā′′ = (a−1 , . . . , a

−
n ). Then, by

virtue of (x+ y)2 ≤ 2x2 + 2y2, x, y ∈ R,

Dn,2(ā) = Dn,2

(
ā′ − ā′′

)
≤ 2Dn,2

(
ā′
)

+ 2Dn,2

(
ā′′
)
.

Now, applying the just proved inequality twice, we obtain

Dn,2(ā) ≤ 4B
(
ā′
)

+ 4B
(
ā′′
)

= 4B(ā).

To prove (5), from Lemma 1, we have∑
j≤n

Varn,2
(
ajkj(σ)

)
− 2B(ā)

= 4
∑
j≤n/2

a2
j

j2

(
1− 2j

n+ 1

)
− 4

∑
j≤n

a2
j

j2

(
1− j

n+ 1

)2

= − 4

(n+ 1)2

∑
j≤n/2

a2
j − 4

∑
n/2≤j≤n

a2
j

j2

(
1− j

n+ 1

)2

=: −4
(
Σ′ + Σ′′

)
.
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Now,

Σ′ ≤ 1

n

∑
j≤n/2

a2
j

j

(
1− j

n+ 1

)
and

Σ′′ ≤ 3

2n

∑
n/2<j≤n

a2
j

j

(
1− j

n+ 1

)
.

Inserting the last inequalities into the previous expression, we complete the proof of (5).
The corollary is proved.

By virtue of (5), instead of τn,2, we may examine the ratio ∆(ā)/B(ā). Our idea
lays in choosing the vectors ā so that these quadratic forms could be approximated by
appropriate Riemann integrals. The natural choice is

aj := aj,n :=
j

n+ 1
g

(
j

n+ 1

)
, 1 ≤ j ≤ n,

where g : [0, 1] → R is a continuous function. For convenience, in the sums below, we
formally add one more summand corresponding to j = n+ 1 though it equals zero at all
places of appearance. Then

B(ā) ≈
1∫

0

x(1− x)g2(x) dx.

Setting

γj(ā) :=

(
1− j

n+ 1

) ∑
n−j+1<i≤n+1

ai
i

(
1− i

n+ 1

)
+

j

(n+ 1)2

∑
i≤n−j+1

ai

for 1 ≤ j ≤ n+ 1, we have a more convenient expression

∆(ā) =
∑

j≤n+1

aj
j
γj(ā).

This leads to

∆(ā) ≈
1∫

0

g(x)

[
(1− x)

1∫
1−x

(1− u)g(u) du+ x

1−x∫
0

ug(u) du

]
dx.

Now, assume that g(x), 0 ≤ x ≤ 1, is a solution to the equation

(1− x)

1∫
1−x

(1− u)g(u) du+ x

1−x∫
0

ug(u) du = λx(1− x)g(x), (6)
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with some λ ∈ R. Then, for the additive function h(σ) = hā(σ) defined in (3) via such ā,

Dn,2(ā) ≈ 2(1− 2λ)B(ā).

If our intuition is true, among all these λ we may look for the values giving the extremes
of ratio Dn,2/B(ā). Following this idea, we have to examine the operator

g(x) 7→ 1

x

1∫
1−x

(1− u)g(u) du+
1

1− x

1−x∫
0

ug(u) du (7)

defined on the space of continuous functions g : [0, 1]→ R and its eigenvalues λ. Using
the substitutions g(u) = p(2u − 1) and y = 2x − 1 with a continuous function p :
[−1, 1]→ R, from (6), we arrive at the equation

(1− y)

1∫
−y

(1− t)p(t) dt+ (1 + y)

−y∫
−1

(1 + t)p(t) dt = 2λ
(
1− y2

)
p(y).

The solutions to it are twice differentiable, therefore they also satisfy

λ
(
1− y2

)
p′′(y)− 4λyp′(y) + p(−y)− 2λp(y) = 0.

If λ 6= 0, for even and uneven functions p(y), respectively, this leads to the differential
equations (

1− y2
)
p′′(y)− 4yp′(y) +

(
±λ−1 − 2

)
p(y) = 0. (8)

The latter are well known in the theory of Jacobi polynomials P (1,1)
r (t), r ≥ 0, which are

defined (see in [16, Sect. V.2] or [17, Sect. II.7]) by(
1− t2

)
P (1,1)
r (t) =

(−1)r

2rr!

dr

dtr
(
1− t2

)r+1

or by

P (1,1)
r (t) =

1

2r

r∑
k=0

(
r + 1

r − k

)(
r + 1

k

)
(t− 1)k(t+ 1)r−k.

We will use their properties listed in the next lemma.

Lemma 3. Let δmr be the Kronecker symbol and 0 ≤ m ≤ r. Then

(i)

1∫
−1

(
1− t2

)
P (1,1)
m (t)P (1,1)

r (t) dt =
8(r + 1)δmr

(2r + 3)(r + 2)
;

(ii) P (1,1)
r (t) satisfies the differential equation(

1− t2
)
p′′(t)− 4tp′(t) + r(r + 3)p(t) = 0;
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(iii) P
(1,1)
r (−t) = (−1)rP

(1,1)
r (t).

Proof. See [16, Sect. V.2] and [17, Sect. II.7].

Corollary 2. The operator defined by (7) has the eigenfunctions

gr(x) := P (1,1)
r (2x− 1), 0 ≤ x ≤ 1,

corresponding to the eigenvalues

λr :=
(−1)r

(r + 1)(r + 2)
,

where r = 0, 1, . . . .

Proof. Applying 2 + r(r + 3) = (r + 1)(r + 2), the properties (ii) and (iii) given in the
lemma, we see that equation (8) is satisfied by p(y) = P

(1,1)
r (y) if λ = λr. Recalling the

former substitutions, we complete the proof.

3 The lower bound

Let us keep our previous notation. As we have noted, the numbers λr and the vectors
ār := (ar1, . . . , arn), where arj := (j/(n + 1))gr(j/(n + 1)), 1 ≤ j ≤ n and r ≥ 0,
are worth to be exploited. The technical calculations are presented in a few lemmata, the
most of them are based on the next well known Koksma inequality.

Lemma 4. If f : [0, 1]→ R is continuously differentiable and N ∈ N, then∣∣∣∣∣ 1

N

∑
j≤N

f

(
j

N

)
−

1∫
0

f(x) dx

∣∣∣∣∣ ≤ 1

N

1∫
0

∣∣f ′(x)
∣∣ dx.

Proof. See, for instance, [18, Sect. 2.5].

Afterwards, all remainder term estimates will be dependent on r only.

Lemma 5. For each r ≥ 0, we have

B(ār) =
(r + 1)

(2r + 3)(r + 2)
+ O

(
1

n

)
and

∆
(
ār
)

=
(−1)r

(2r + 3)(r + 2)2
+ O

(
1

n

)
as n→∞.
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Proof. By the Koksma inequality and relation (i) of Lemma 3, we have

B(ār) =

1∫
0

x(1− x)g2
r(x) dx+ O

(
1

n

)

=
1

8

1∫
−1

(
1− t2

)(
P (1,1)
r (t)

)2
dt+ O

(
1

n

)

=
r + 1

(2r + 3)(r + 2)
+ O

(
1

n

)
.

Calculating γj(ār), we introduce the temporary notation K := n− j + 1,

f1(x) :=

(
1− jx+K

n+ 1

)
gr

(
jx+K

n+ 1

)
, f2(x) :=

Kx

n+ 1
gr

(
Kx

n+ 1

)
and arrive at

γj(ā
r) :=

K

(n+ 1)2

∑
1≤i≤j

f1

(
i

j

)
+

j

(n+ 1)2

∑
1≤i≤K

f2

(
i

K

)
+ O

(
Kj

(n+ 1)3

)
.

Now, applying Lemma 4 for f(x) = fl(x), l = 1, 2, and exploiting also equation (6),
we obtain

γj(ā
r) =

(
1− j

n+ 1

) 1∫
1−j/(n+1)

(1− t)gr(t) dt

+
j

n+ 1

1−j/(n+1)∫
0

tgr(t) dt+ O

(
j

n2

(
1− j

n+ 1

))

= λr
j

n+ 1

(
1− j

n+ 1

)
gr

(
j

n+ 1

)
+ O

(
j

n2

(
1− j

n+ 1

))
(9)

for 1 ≤ j ≤ n+ 1. Hence again by (i) of Lemma 3,

∆(ār) =
1

n+ 1

∑
j≤n+1

gr

(
j

n+ 1

)
γj(ā

r)

= λr

1∫
0

x(1− x)g2
r(x) dx+ O

(
1

n

)

=
λr(r + 1)

(2r + 3)(r + 2)
+ O

(
1

n

)
=

(−1)r

(2r + 3)(r + 2)2
+ O

(
1

n

)
.

The lemma is proved.
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Corollary 3. We have

τn,2 ≥
4

3
+ O

(
1

n

)
(10)

as n→∞.

Proof. It suffices to apply (5) and Lemma 5 for r = 1. Indeed,

τn,2 ≥ Dn,θ

(
ā1
)/∑

j≤n

Varn,θ
(
aj1kj(σ)

)
=
(
2B
(
ā1
)
− 4∆

(
ā1
))
/
(
2B
(
ā1
)

+ O
(
n−1

))
=

(
16

45
+ O

(
n−1

))/( 4

15
+ O

(
n−1

))
=

4

3
+ O

(
n−1

)
.

The corollary is proved.

4 The upper bound

Let ‖ · ‖ denote the Euclidean norm in Rn. Dealing with the quadratic forms B(ā) and
∆(ā), it is convenient to apply the substitution

aj = j1/2

(
1− j

n+ 1

)−1/2

xj , 1 ≤ j ≤ n,

convertingB(ā) to the sum of squares, that is, to ‖x̄‖2. Then ∆(ā) becomes the quadratic
form Q(x̄) =: x̄Qx̄′, where x̄′ is the vector-column and Q is a symmetric matrix. If qij ,
1 ≤ i, j ≤ n, are the entries of the latter, then

qij = (ij)−1/2

(
1− i

n+ 1

)1/2(
1− j

n+ 1

)1/2

if i+ j > n and

qij =
(ij)1/2

(n+ 1)2

(
1− i

n+ 1

)−1/2(
1− j

n+ 1

)−1/2

if i+ j ≤ n.
Now, by virtue of (5),

τn,2 = 1− 2 inf
x̄ 6=0̄

Q(x̄)

‖x̄‖2
+ O

(
1

n

)
= 1− 2 inf

x̄ 6=0̄

1

‖x̄‖2
n∑
j=1

µjx
2
j + O

(
1

n

)

≤ 1− 2 min
1≤j≤n

µj + O

(
1

n

)
, (11)

where µj , 1 ≤ j ≤ n, denote the eigenvalues of the matrix Q. It remains to find their
minimal value.
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Lemma 6. Let v̄ ∈ Rn and α ∈ R be arbitrary. If M is a symmetric real n× n matrix,
then there exists its eigenvalue µ such that

|α− µ|‖v̄‖ ≤ ‖v̄M − αv̄‖.

Proof. This is Lemma 5.6 in [19].

Lemma 7. Let r ≥ 0 be fixed and λr be defined in Corollary 2. There exists an eigenvalue
µr (relabelled if necessary) of Q such that

µr = λr + O
(
n−1

)
provided that n is sufficiently large.

Proof. We apply the previous lemma with α = λr and v̄ = v̄r := (vr1, . . . , vrn), where

vri =
i1/2

n+ 1

(
1− i

n+ 1

)1/2

gr

(
i

n+ 1

)
, i ≤ n.

If ȳr = (yr1, . . . , yrn) = v̄rQ, then, recalling the previous notation and using (9), we
have

yrj =
∑
i≤n

qijvri = j−1/2

(
1− j

n+ 1

)−1/2

γj
(
ār
)

= λrvrj + O

(
j1/2

n2

(
1− j

n+ 1

)1/2)
.

Hence ∥∥v̄rQ− λrv̄r∥∥ = O
(
n−1

)
.

By Lemma 5, ‖v̄r‖2 = B(ār) ≥ cr > 0 for sufficiently large n.
The claim now follows from Lemma 6.

The just proved lemma gives some numeration of the first eigenvalues µr of the
matrix Q. There is no repetition of them if n is sufficiently large. Actually, we can
even chose some unbounded sufficiently slowly increasing sequence of natural numbers
rn such that

max
0≤r≤rn

|µr − λr| ≤ r−2
n (12)

as n → ∞. Extend the numeration to list the remaining eigenvalues. The latter µr,
rn < r ≤ n−1, maybe, are written with repetitions or repeating those with small indexes.
However, we will prove that µ1 is the minimal among all of µr, where 0 ≤ r ≤ n− 1.

Lemma 8. We have ∑
0≤r≤n−1

µ2
r =

∑
r≥0

λ2
r + O

(
log n

n

)

=
π2

3
− 3 + O

(
n−1 log n

)
. (13)
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and
min

0≤r≤n−1
µr = µ1 (14)

if n is sufficiently large.

Proof. Observe that∑
r≥0

λ2
r =

∑
r≥0

(
1

(r + 1)2
+

1

(r + 2)2
− 2

(
1

r + 1
− 1

r + 2

))
=
π2

3
− 3. (15)

On the other hand, using the well known property of the matrix eigenvalues, we arrive at∑
0≤r≤n−1

µ2
r =

∑
i,j≤n

q2
ij

=
∑
i,j≤n
i+j>n

1

ij

(
1− i

n+ 1

)(
1− j

n+ 1

)

+
1

(n+ 1)4

∑
i+j≤n

ij

(
1− i

n+ 1

)−1(
1− j

n+ 1

)−1

=: Σ1 + Σ2. (16)

Now

Σ1 =

( ∑
n/2<j≤n

1

j

(
1− j

n+ 1

))2

+ 2
∑
j≤n/2

1

j

(
1− j

n+ 1

) ∑
n−j<i≤n

1

i

(
1− i

n+ 1

)
=: Σ11 + 2Σ12.

Further, approximating the sums by appropriate integrals, from Lemma 4 we obtain

Σ11 =

( 1∫
1/2

1− x
x

dx+ O

(
1

n

))2

=

(
log 2− 1

2

)2

+ O
(
n−1

)
and

Σ12 =
∑
j≤n/2

1

j

(
1− j

n+ 1

)( 1∫
1−j/n

1− u
u

du+ O

(
1

n

))

=

1/2∫
0

1− x
x

(
− log(1− x)− x

)
dx+ O

(
log n

n

)
=: I + O

(
n−1 log n

)
.
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If Li2(x) denotes the dilogarithm function, then

I = Li2

(
1

2

)
+

1/2∫
0

(
log(1− x)− (1− x)

)
dx

= Li2

(
1

2

)
+

log 2

2
− 7

8
=
π2

12
− log2 2

2
+

log 2

2
− 7

8
(17)

(see [20, Sect. 27.7.3, p. 1004]).
Similarly,

Σ2 =

(
1

n+ 1

∑
j≤n/2

j

n+ 1− j

)2

+
2

(n+ 1)2

∑
n/2<j≤n

j

n+ 1− j
∑
i≤n−j

i

n+ 1− i

=: Σ21 + 2Σ22.

Now again

Σ21 =

( 1/2∫
0

x

1− x
dx+ O

(
1

n

))2

=

(
log 2− 1

2

)2

+ O
(
n−1

)
and

Σ22 =
1

n+ 1

∑
n/2<j≤n

j

n+ 1− j

( 1−j/n∫
0

v

1− v
dv + O

(
1

n

))

=

1∫
1/2

u

1− u
(
− log u− (1− u)

)
du+ O

(
log n

n

)
= I + O

(
n−1 log n

)
.

Inserting the obtained values of Σij , i, j ∈ {1, 2}, into formulas for Σi, i ∈ {1, 2}, and
the latter into (16), we have∑

0≤r≤n−1

µ2
r = 2

(
log 2− 1

2

)2

+ 4I + O
(
n−1 log n

)
.

This and (17) yields ∑
0≤r≤n−1

µ2
r =

π2

3
− 3 + O

(
n−1 log n

)
.

www.mii.lt/NA



On a variance related to the Ewens sampling formula 465

Now, equality (13) follows from the earlier found sum (15).
As we have noted after Lemma 7, the possible minimum, except µ1, could be among

µr, if rn < r ≤ n− 1. However, using the inequality (12), we have the estimate

∑
rn<r≤n−1

µ2
r =

∑
r>rn

λ2
r + O

( ∑
0≤r≤rn

|λr − µr|
)

+ O

(
log n

n

)

≤
∞∫
rn

du

(u+ 1)2(u+ 2)2
+ o(1) = o(1),

showing that maxrn<r≤n−1 |µr| = o(1) as n → ∞. Hence by (12), the minimal eigen-
value is µ1 provided that n is sufficiently large.

The lemma is proved.

Proof of Theorem. By virtue of the upper estimate (11) and (14) we see that τn,2 ≤ 1 −
2µ1 + O(n−1). Lemma 7 now yields τn,2 ≤ 4/3 + O(n−1). Recalling the lower estimate
(10) we complete the proof.

The theorem is proved.
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12. E. Manstavičius, A limit theorem for additive functions defined on the symmetric group, Lith.
Math. J., 51, pp. 211–237, 2011.

13. J. Kubilius, On the estimate of the second central moment for arbitrary additive arithmetic
functions, Liet. Mat. Rink., 23, pp. 110–117, 1983 (in Russian).

14. J. Kubilius, Improved estimate of the second central moment for additive arithmetic functions,
Liet. Mat. Rink., 25, pp. 104–110, 1985 (in Russian).

15. G.A. Watterson, The sampling theory of selectively neutral alleles, Adv. Appl. Probab., 6,
pp. 463–488, 1974.

16. T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach Scientific
Publishers, New York, 1978.

17. Y.L. Geronimus, Theory of Orthogonal Polynomials, Gos. Izd. Techn.-Theor. Liter., Moscow,
1950 (in Russian).

18. L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, Wiley & Sons, New York,
1974.

19. P.D.T.A. Elliott, Arithmetic Functions and Integer Products, Springer-Verlag New York Inc.,
New York, 1985.

20. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,
M. Abramowitz, I.A. Stegun (Eds.), USA Department of Commerce, National Bureau of
Standards, 1972.

www.mii.lt/NA


