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Abstract. An analysis for the steady two-dimensional boundary-layer stagnation-point
flow of Rivlin–Ericksen fluid of second grade with a uniform suction is carried out via
symmetry analysis. By employing Lie-group method to the given system of nonlinear
partial differential equations, the symmetries of the equations are determined. Using
these symmetries, the solution of the given equations is found. The effect of the visco-
elastic parameter k and the suction parameter R on the tangential and normal velocities,
temperature profiles, heat transfer coefficient and the wall shear stress, have been studied.
Also, the effect of the Prandtl number Pr on the temperature and the heat transfer
coefficient has been studied.

Keywords: stagnation point flow, Rivlin–Ericksen fluid, Lie-group, symmetries,
mechanics of fluids.

1 Introduction

The two-dimensional stagnation point flow of an incompressible viscous fluid appears
in several manufacturing processes of industry such as the extrusion of polymers, the
cooling of metallic plates, the aerodynamic extrusion of plastic sheets, etc. In the glass
industry, blowing, floating or spinning of fibers are processes, which involve the flow due
to a stretching surface, [1].

Non-Newtonian fluids are more appropriate in industrial applications than Newto-
nian fluids. Engineers and rheologists proposed simple generalizations such as the power-
law model for the non-Newtonian fluids. In addition to viscosity, another parameter,
namely the power-law index is needed to characterize the fluid. Walters [2] presented
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the relation between the different constitutive relations used for elasto-viscous liquids
such as the models due to Coleman–Noll, Rivlin–Ericksen, Green–Rivlin and Oldroyd.
There are several constitutive relations which are used to model the non-Newtonian (non-
linear) characteristics exhibited by some fluids. Take the past history of deformation
into account; integral models such as the K-BKZ model are used when memory effects
are important. However, for many fluids, only a very short part of the history of the
deformation influences the stress. The constitutive relations for these fluids may be
expressed as a function of the deformation gradient and its derivatives evaluated at the
current time. A material in which the stress depends only on a finite number of these time
derivatives is called a material of differential type. The Newtonian fluid and the second
grade fluid are the simplest fluids of the differential type when the dependence upon the
velocity gradient is given a more specific form, [3].

The constitutive equation for an incompressible homogeneous Rivlin–Ericksen fluid
of second grade is given by the following relation

S = −pI + µA1 + α1A2 + α2A1
2, (1)

where S is the stress tensor, p is the pressure, I is the identity tensor, µ is the coefficient
of viscosity, α1 and α2 are the material moduli and denote the first and second normal
stress coefficients which are not always constants, [4].

The kinematical tensors A1 and A2 are the first two Rivlin–Ericksen tensors [5]
which are discussed in detail by Rajagopal et al. [6] and given by

A1 = ∇v + (∇v)T , (2)

A2 =
D

Dt
A1 + A1 · ∇v + (∇v)T ·A1, (3)

where ∇ is the gradient operator, v is the velocity vector, a superscript T denotes trans-
pose, and D/Dt is the material time derivative which is define as follows:

D

Dt
(·) =

∂

∂t
(·) +

[
∇(·)

]
v, (4)

where ∂/∂t is the partial derivative.
Dunn and Fosdick [7] studied the thermodynamics stability in the model (1). They

concluded that, if the fluid is modeled by (1), thermodynamics compatibility in the sense
that all motions of the fluid meet the Clausius–Duhem inequality and the assumption that
the specific Helmholtz free energy of the fluid is a minimum in equilibrium requires that

µ ≥ 0, α1 ≥ 0, α1 + α2 = 0. (5)

The fluids characterized by above restrictions are called the second grade fluids.
Massoudi and Ramezan [8], following Rajagopal et al. [9], showed that, by substi-

tuting (1) and using (5) into the balance of linear momentum

ρ
dv

dt
= divS + ρb, (6)
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and using the incompressibility constrain, i.e., divv = 0, the following boundary layer
equation is obtained

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p∗

∂x̄
+ ν

∂2ū

∂ȳ2
+
α1

ρ

[
∂

∂x̄

(
ū
∂2ū

∂ȳ2

)
+
∂ū

∂ȳ

∂2v̄

∂ȳ2
+ v̄

∂3ū

∂ȳ3

]
, (7)

where

p∗ = p− (2α1 + α2)

(
∂u

∂y

)2

+ ρϕ, (8)

and, ρ, b and ϕ are the fluid density, the body force and the scalar function, respectively.
We can eliminate the pressure term from the boundary layer equation (7) by using

Bernoulli’s equation

U
∂U

∂x
= −1

ρ

∂p∗

∂x
. (9)

Also, we have assumed that the body force b is conservative, i.e., b = grad ϕ.
Massoudi [10] provided solutions for the flow and heat transfer in the boundary

layer stagnation flow of second grade fluids with arbitrary power law heat flux variation.
The governing equations were solved using second order central difference approximation
along with the appropriate boundary conditions. In his paper, the effect of mass injec-
tion/suction was neglected. Also, the effects of viscous dissipation are neglected. The
effect of the non-Newtonian nature of the fluid on the velocity profile and heat transfer
coefficient at the wall for different Prandtl numbers and wall surface flux variation was
investigated. He concluded that, the smaller the Prendtl number, the thicker is the thermal
boundary layer.

Mahapatra and Gupta [11] analyzed the steady two-dimensional stagnation-point
flow of an incompressible viscoelastic fluid over a flat deformable surface when the
surface is stretched in its own plane with a velocity proportional to the distance from
the stagnation-point. They concluded that, for a fluid of small kinematic viscosity, a
boundary layer is formed when the stretching velocity of the surface is less than the
inviscid free stream velocity and an inverted boundary layer is formed when the stretching
velocity exceeds the free stream velocity. Temperature distribution in the boundary layer
is determined when the surface is held at constant temperature giving the so called surface
heat flux. In their analysis, they used the finite-differences scheme along with the Thomas
algorithm to solve the resulting system of ordinary differential equations.

Liu [12] examined the flow and heat transfer of a steady, laminar flow of an elec-
trically conducting second grade fluid in a porous medium subject to a transverse uni-
form magnetic field over a stretching sheet with power law surface temperature or power
law surface temperature gradient. The energy equation includes the viscous dissipation,
work done due to deformation and internal heat generation or absorption. The resulting
closed form solutions of the velocity components show that the magnitude of dimen-
sionless surface velocity gradient depends on the viscoelastic parameter of the second
grade fluid and the combined parameter, associated with the permeability parameter of
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porous medium and the contribution due to the magnetic field. He concluded that, the
magnitude of dimensionless surface velocity gradient, increases with the combined pa-
rameter but decreases with the effect of viscoelastic parameter, which implies that, the
viscoelasticity of the second grade fluid reduces the skin friction at the sheet, while, the
combined effects of the permeability and magnetic field increase the power needed to
stretch the sheet.

Cortell [13] studied the flow and heat transfer of a steady, laminar flow of an
incompressible and electrically conducting second grade fluid subject to suction and to
a transverse uniform magnetic field past a stretching sheet. In his study, the viscoelastic
parameter is the parameter of interest. The equations for the heat transfer analysis were
solved by the Runge–Kutta method of fourth order. Two different cases have been ana-
lyzed for the equations of heat transfer. At the first case (constant surface temperature)
he concluded that, the temperature decreases as the viscoelastic parameter increases and
the dimensionless heat transfer coefficient increases with increase in the viscoelastic
parameter. At the second case (prescribed surface temperature), his study included both
viscous dissipation and work due to deformation. Also, he analyzed the effect on both
temperature and temperature-gradient profiles when the contribution of heat due to elastic
deformation is taken into account in the energy equation.

Ariel [14] developed a numerical algorithm to compute the stagnation point flow of
second grade fluids with/without suction. The algorithm caters for the situation when the
plate is impermeable or porous, it is applicable for all values of the physical parameters
such as the viscoelasticity of the fluid and the suction velocity. The viability of the algo-
rithm is checked by comparing the numerical results obtained by it with the asymptotic
solutions for large suction for the problem of the stagnation point flow and with the exact
analytical solution for the problem of the flow over a stretching sheet with suction. It is
proposed to apply the algorithm developed in his paper to compute the flow of second
grade fluids in other situations, e.g., the flow near a rotating disk, and particularly in finite
domains such as the flow through the channels, between disks, etc.

This paper is concerned with the solution of steady laminar flow of an incompress-
ible Rivlin–Ericksen fluid of second grade with a uniform suction. Lie-group method
is applied to the equations of motion for determining symmetry reductions of partial
differential equations, [15–21]. The resulting system of nonlinear differential equations
is then solved numerically using shooting method coupled with Runge–Kutta scheme.

2 Mathematical formulation of the problem

Consider the steady, laminar two-dimensional flow of an incompressible Rivlin–Ericksen
fluid of second grade impinging perpendicular on a permeable wall and flows away along
the x̄-axis. The wall is placed in the plane ȳ = 0 of a Cartesian system of coordinates
Ox̄ȳ (ȳ = 0). The wall has a uniform temperature T̄w and the free stream temperature
is T̄∞. A uniform suction is applied at the wall along ȳ-direction with a velocity given
by v̄ = −v0, where v0 is a constant in which v0 > 0, indicates the suction, Fig. 1.
The velocity components for the potential flow are (Ū , V̄ ), where their distribution in the
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frictionless flow in the neighborhood of the stagnation point is given by Ū = ax̄ and
V̄ = −aȳ, where a is a constant.

                                                                          y  

                                                                              ∞
T    

                      

                                                                xau =   

                

               

   

 

 

 

                                                                                                                                                 x  

                    wT                                                                                                                    

                                                                                                                            0
vv −=  

Fig. 1. Physical model and coordinate system.

The steady two-dimensional boundary layer equations, as discussed before, and the
energy equation corresponding to the boundary layer analysis (without dissipation), for
this fluid, are given by

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (10)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= Ū

dŪ

dx̄
+ ν

∂2ū

∂ȳ2
+
α1

ρ

[
∂

∂x̄

(
ū
∂2ū

∂ȳ2

)
+
∂ū

∂ȳ

∂2v̄

∂ȳ2
+ v̄

∂3ū

∂ȳ3

]
, (11)

ρcp

(
ū
∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ

)
= α

∂2T̄

∂ȳ2
, (12)

together with the boundary conditions

ū = 0, v̄ = −v0, T̄ = T̄w at ȳ = 0, (13a)

ū→ ax̄,
∂ū

∂ȳ
= 0, T̄ → T̄∞ as ȳ →∞, (13b)

where ū and v̄ are the fluid tangential and normal velocities, respectively, Ū is the free
stream velocity over the body surface, ν is the kinematic viscosity, cp is the specific heat
at constant pressure, T̄ is the fluid temperature, α is the thermal conductivity, T̄w is the
wall temperature, and T̄∞ is the ambient temperature.

We assumed an additional condition that is ∂ū/∂ȳ = 0 in (13b), since the boundary
conditions (13) are not sufficient to completely determine the solution. This extra con-
dition is fully valid from the physical considerations, since there is no shear in the free
stream. Indeed, it was used by Ariel [14], explicitly, in computing the stagnation point
flow of second grade fluids when there is a suction at the wall, and also implicitly, in
computing the flows of viscoelastic fluids due to rotating disk by Ariel [22], and radial
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stretching of a sheet by Ariel [23], and by Ayub et al. [24]. For further details on this
issue, we refer the reader to Rajagopal [25], Rajagopal and Kaloni [26], and Chan Man
Fong et al. [27].

Let us introduce the non-dimensional variables

x =
ax̄

U1
, y =

√
a

ν
ȳ, u =

ū

U1
, v =

v̄√
aν
, U =

Ū

U1
, T =

T̄ − T̄∞
T̄w − T̄∞

, (14)

where U1 is the characteristic velocity.
Invoking (14), equations (10)–(12) are reduced to the dimensionless form as fol-

lows:
∂u

∂x
+
∂v

∂y
= 0, (15)

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+
∂2u

∂y2
+ k

[
∂

∂x

(
u
∂2u

∂y2

)
+
∂u

∂y

∂2v

∂y2
+ v

∂3u

∂y3

]
, (16)

u
∂T

∂x
+ v

∂T

∂y
=

1

Pr

∂2T

∂y2
, (17)

where k = aα1/µ is the viscoelastic parameter, Pr = µcp/α is the Prandtl number and
µ = νρ is the molecular viscosity coefficient.

The boundary conditions (13) will be

u = 0, v = − v0√
aν
, T = 1 at y = 0, (18a)

u→ x,
∂u

∂y
= 0, T → 0 as y →∞. (18b)

From the continuity equation (15), there exists a stream function Ψ(x, y) such that

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
, (19)

which satisfies equation (15) identically.
Substituting from (19) into (16) and (17), gives

ΨyΨxy −ΨxΨyy − UUx −Ψyyy

− k(ΨxyΨyyy + ΨyΨxyyy −ΨxΨyyyy −ΨyyΨxyy) = 0, (20)

and

ΨyTx −ΨxTy −
1

Pr
Tyy = 0, (21)

where subscripts denote partial derivatives.
The boundary conditions (18) will be

Ψy = 0, Ψx = R, T = 1 at y = 0, (22a)
Ψy → x, Ψyy = 0, T → 0 as y →∞, (22b)

where R = v0/
√
aν is the suction parameter.
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3 Solution of the problem

At first, we derive the similarity solutions using Lie-group method under which (20)–(21)
and the boundary conditions (22) are invariant, and then we use these symmetries to
determine similarity variables.

3.1 Lie point symmetries

Consider the one-parameter (ε) Lie group of infinitesimal transformations in (x, y; Ψ, U, T )
given by

x∗ = x+ εφ(x, y; Ψ, U, T ) +O
(
ε2
)
,

y∗ = y + εζ(x, y; Ψ, U, T ) +O
(
ε2
)
,

Ψ∗ = Ψ + εη(x, y; Ψ, U, T ) +O
(
ε2
)
,

U∗ = U + εF (x, y; Ψ, U, T ) +O
(
ε2
)
,

T ∗ = T + εg(x, y; Ψ, U, T ) +O
(
ε2
)
,

(23)

where ε is the group parameter.
A system of partial differential equations (20) and (21) is said to admit a symmetry

generated by the vector field

X ≡ φ ∂

∂x
+ ζ

∂

∂y
+ η

∂

∂Ψ
+ F

∂

∂U
+ g

∂

∂T
, (24)

if it is left invariant by the transformation (x, y; Ψ, U, T )→ (x∗, y∗; Ψ∗, U∗, T ∗).
The solutions Ψ = Ψ(x, y), T = T (x, y) and U = U(x), are invariant under the

symmetry (24) if

ΦΨ = X
(
Ψ−Ψ(x, y)

)
= 0 when Ψ = Ψ(x, y), (25)

ΦT = X
(
T − T (x, y)

)
= 0 when T = T (x, y), (26)

and

ΦU = X
(
U − U(x)

)
= 0 when U = U(x). (27)

Assume,

∆1 = ΨyΨxy −ΨxΨyy − UUx −Ψyyy

− k(ΨxyΨyyy + ΨyΨxyyy −ΨxΨyyyy −ΨyyΨxyy),

∆2 = ΨyTx −ΨxTy −
1

Pr
Tyy.

(28)

A vector X given by (24), is said to be a Lie point symmetry vector field for (20) and
(21) if

X [4](∆j)|∆j=0 = 0, j = 1, 2, (29)
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where

X [4] ≡ φ ∂

∂x
+ ζ

∂

∂y
+ η

∂

∂Ψ
+ F

∂

∂U
+ g

∂

∂T
+ ηx

∂

∂Ψx
+ ηy

∂

∂Ψy
+ gx

∂

∂Tx

+ gy
∂

∂Ty
+ F x ∂

∂Ux
+ ηxy

∂

∂Ψxy
+ ηyy

∂

∂Ψyy
+ gyy

∂

∂Tyy

+ ηxyy
∂

∂Ψxyy
+ ηyyy

∂

∂Ψyyy
+ ηxyyy

∂

∂Ψxyyy
+ ηyyyy

∂

∂Ψyyyy
, (30)

is the fourth prolongation of X .
To calculate the prolongation of the given transformation, we need to differentiate

(23) with respect to each of the variables, x and y. To do this, we introduce the following
total derivatives

Dx ≡ ∂x + Ψx∂Ψ + Ux∂U + Tx∂T + Ψxx∂Ψx + Uxx∂Ux + Txx∂Tx

+ Ψxy∂Ψy + . . . ,

Dy ≡ ∂y + Ψy∂Ψ + Ty∂T + Ψyy∂Ψy + Tyy∂Ty + Ψxy∂Ψx + . . . .

(31)

Equation (29) gives the following system of linear partial differential equations

−UxF + (kΨyyyy −Ψyy)ηx + (Ψxy − kΨxyyy)ηy − UF x

+ (Ψy − kΨyyy)ηxy + (kΨxyy −Ψx)ηyy + kΨyyη
xyy

− (1 + kΨxy)ηyyy − kΨyη
xyyy + kΨxη

yyyy = 0,

−Tyηx + Txη
y + Ψyg

x −Ψxg
y − 1

Pr
gyy = 0.

(32)

The components ηx, ηy , gx, gy , F x, ηxy , ηyy, gyy, ηxyy , ηyyy, ηxyyy, ηyyyy can be
determined from the following expressions:

ηS = DSη −ΨxDSφ−ΨyDSζ,

gN = DNg − TxDNφ− TyDNζ,

F x = DxF − UxDxφ, (33)

ηJS = DSη
J −ΨJxDSφ−ΨJyDSζ,

gJN = DNg
J − TJxDNφ− TJyDNζ,

where S, J and N stand for x, y.
Substitution from (33) into (32) and solving the resulting linear system, which is

called determining equations, in view of the invariance of the boundary conditions (22),
yields [28–31]

φ = C1x, ζ = C2, η = C1Ψ + C3, F = C1U, g = 0. (34)
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From which, the system of nonlinear equations (20)–(21) has the three-parameter Lie
group of point symmetries generated by

X1 ≡ x
∂

∂x
+ Ψ

∂

∂Ψ
+ U

∂

∂U
, X2 ≡

∂

∂Ψ
and X3 ≡

∂

∂y
. (35)

The one-parameter group generated by X1 consists of scaling, whereas X2 and X3

consists of translation. The commutator table of the symmetries is given in Table 1, where
the entry in the ith row and jth column is defined as [Xi, Xj ] = XiXj −XjXi.

Table 1. Table of commutators of the basis operators.

X1 X2 X3

X1 0 −X2 0
X2 X2 0 0
X3 0 0 0

The finite transformations corresponding to the symmetries X1, X2 and X3 are
respectively

X1: x∗ = eε1x, y∗ = y, Ψ∗ = eε1Ψ, U∗ = eε1U, T ∗ = T,

X2: x∗ = x, y∗ = y, Ψ∗ = Ψ + ε2, U∗ = U, T ∗ = T, (36)
X3: x∗ = x, y∗ = y + ε3, Ψ∗ = Ψ, U∗ = U, T ∗ = T,

where ε1, ε2 and ε3 are the group parameters.
For X2, the characteristic

Φ = (ΦΨ,ΦU ,ΦT ) (37)

has the components

ΦΨ = 1, ΦU = 0, ΦT = 0, (38)

which means that no solutions are invariant under the group generated by X2.
For X3, the characteristic (37) has the components

ΦΨ = −Ψy, ΦU = 0, ΦT = −Ty. (39)

Therefore, the general solutions of the invariant surface conditions (25) and (26) are

Ψ ≡ Ψ(x), T ≡ T (x). (40)

From (40) into (19), we get

u = 0, v = v(x), T ≡ T (x). (41)
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Equation (41) is a solution of the continuity equation (15) and the energy equation (17),
even though it is not a particularly interesting one since it contradicts the boundary con-
ditions.

For X1, the characteristic (37) has the components

ΦΨ = Ψ− xΨx, ΦU = U − xUx, ΦT = −xTx. (42)

Hence, the general solutions of the invariant surface conditions (25)–(27) are

Ψ = xG(y), U(x) = x, T = h(y). (43)

Substitution from (43) into (20)–(21) yields

d3G

dy3
+G

d2G

dy2
−
(

dG

dy

)2

+ 1− k
[
G

d4G

dy4
− 2

dG

dy

d3G

dy3
+

(
d2G

dy2

)2]
= 0, (44)

and

d2h

dy2
+ Pr G

dh

dy
= 0. (45)

The boundary conditions (22) will be

dG

dy
= 0, G = R, h = 1 at y = 0, (46a)

dG

dy
→ 1,

d2G

dy2
= 0, h→ 0 as y →∞. (46b)

For X1 + βX2, the characteristic (37) has the components

ΦΨ = Ψ + β − xΨx, ΦU = U − xUx, ΦT = −xTx. (47)

Hence, the general solutions of the invariant surface conditions (25)–(27) are

Ψ = xG(y)− β, U(x) = x, T = h(y). (48)

Substitution from (48) into (20)–(21) yields the same ordinary differential equa-
tions (44)–(45) with the same boundary conditions (46). So, the solutions invariant under
both X1 and X1 + βX2 are the same.

For X1 + βX3, the characteristic (37) has the components

ΦΨ = Ψ− xΨx − βΨy, ΦU = U − xUx, ΦT = −xTx − βTy. (49)

Hence, the general solution of the invariant surface condition (25) is

Ψ = xL(λ), (50)

where λ = β lnx−y is the similarity variable which contradicts the boundary conditions.
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For X2 + βX3, the characteristic (37) has the components

ΦΨ = 1− βΨy, ΦU = 0, ΦT = −βTy. (51)

Hence, the general solutions of the invariant surface condition (25)–(26) are

Ψ =
1

β
y +H(x), T ≡ T (x). (52)

Substitution from (52) into (21) gives

Tx = 0. (53)

Equation (53) yields T = const, which not a particularly interesting one since it contra-
dicts the boundary conditions.

For X1 + βX2 + γX3, the characteristic (37) has the components

ΦΨ = Ψ + β − xΨx − γΨy, ΦU = U − xUx, ΦT = −xTx − γTy. (54)

Hence, the general solution of the invariant surface condition (25) is

Ψ = xM(λ)− β, (55)

where λ = γ lnx−y is the similarity variable which contradicts the boundary conditions.

3.2 Numerical solution

The system of nonlinear differential equations (44)–(45) with the boundary conditions
(46) is solved numerically using the shooting method, coupled with Runge–Kutta scheme.

From (19) and (43), we get

u

x
=

dG

dy
, v = −G and T = h(y). (56)

4 Results and discussion

4.1 Tangential velocity

4.1.1 The effect of the viscoelastic parameter k

Fig. 2 illustrates the behaviour of the tangential velocity u/x for R = 1.0, over a range
of the viscoelastic parameter k. As seen, the tangential velocity increases as k decreases.
That is because a decrease in the viscoelastic parameter k causes a decrease in the velocity
boundary layer thickness and as a result an increase in the tangential velocity.

4.1.2 The effect of the suction parameter R

Fig. 3 illustrates the behaviour of the tangential velocity u/x for k = 5.0, over a range of
the suction parameterR. The tangential velocity increases asR increases. That is because
an increase in the suction parameter R causes a decrease in the velocity boundary layer
thickness and as a result an increase in the tangential velocity.

389



M.B. Abd-el-Malek, H.S. Hassan

Fig. 2. Tangential velocity profiles over
a range of k with R = 1.0.

Fig. 3. Tangential velocity profiles over
a range of R with k = 5.0.

4.2 Normal velocity

4.2.1 The effect of the viscoelastic parameter k

Fig. 4 illustrates the behaviour of the normal velocity G(y) = −v for R = 1.0, over a
range of the viscoelastic parameter k. It is clear that, the normal velocity increases as k
decreases, as mentioned before.

4.2.2 The effect of the suction parameter R

Fig. 5 illustrates the behaviour of the normal velocity G(y) = −v for k = 5.0, over a
range of the suction parameter R. We noticed that, the normal velocity increases as R
increases.

Fig. 4. Normal velocity profiles over
a range of k with R = 1.0.

Fig. 5. Normal velocity profiles over
a range of R with k = 5.0.
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4.3 The temperature profiles

4.3.1 The effect of the viscoelastic parameter k

Fig. 6 illustrates the variation of the temperature profiles T for Pr = 0.5 and R = 1.0,
over a range of the viscoelastic parameter k. We noticed that, the temperature profiles
decrease as k decreases and therefore the thinning of the thermal boundary layer. That
is because, for a fixed value for Pr , a decrease in the viscoelastic parameter k causes a
decrease in the velocity boundary layer thickness and as a result a decrease in the thermal
boundary layer thickness. Our result is in complete agreement with that reported by
Massoudi [10]. A small variation in the rate of increase of T appears with higher values
k and this variation becomes more evident with lower values of k.

4.3.2 The effect of the suction parameter R

Fig. 7 illustrates the variation of the temperature profiles T for Pr = 0.5 and k = 5.0, over
a range of the suction parameter R. As seen, the temperature increases as R decreases.

Fig. 6. Temperature profiles over a range of
k with Pr = 0.5 and R = 1.0.

Fig. 7. Temperature profiles over a range of
R with Pr = 0.5 and k = 5.0.

4.3.3 The effect of the Prandtl mumber Pr

Fig. 8 illustrates the variation of the temperature profiles T for k = 10.0 and
R = 1.0, over a range of Prandtl number Pr . It is noticed that, as Pr decreases, the
thickness of the thermal boundary layer becomes greater than the thickness of the velocity
boundary layer according to the well known relation δT /δ ≈ Pr−1/2, where δT is the
thickness of the thermal boundary layer and δ is the thickness of the velocity boundary
layer. So, the thickness of the thermal boundary layer increases as Pr decreases and
hence, the temperature T increases with the decrease of Pr .
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Fig. 8. Temperature profiles over a range of
Pr with k = 10.0 and R = 1.0.

4.4 Heat transfer

As mentioned before, when the Prandtl number increases, the thickness of the thermal
boundary layer becomes thinner and this causes an increase in the gradient of the tem-
perature. Therefore, the heat transfer coefficient (−h′(0)) increases as Pr increases. Our
result is in complete agreement with that reported by Liu [12]. For different values of the
viscoelastic parameter k and Prandtl number Pr at R = 1.0, computed values of the heat
transfer coefficient were calculated, Table 2.

Table 2. Values of −h′(0) at R = 1.0 for different values of k and Pr .

−h′(0)
k Pr = 0.5 Pr = 1.0 Pr = 1.5

5.0 0.6796938 1.1648321 1.6460344
10.0 0.6603802 1.1416527 1.6223326

100.0 0.6271725 1.1019078 1.5823146
1000.0 0.6214285 1.0949981 1.5754198

From Table 2, it is noticed that, for a fixed value of Pr , the heat transfer coefficient
(−h′(0)) decreases as the viscoelastic parameter k increases. Also, the value of (−h′(0))
is positive which is consistent with the fact that the heat flows from the surface to the fluid
in the absence of viscous dissipation.

4.5 Wall shear stress

The dimensionless wall shear stress G′′(0)is computed for different values of the vis-
coelastic parameter k and suction parameter R. As seen from Table 3, the value of the
dimensionless wall shear stress G′′(0) decreases as k increases which is consistent with
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the fact that, there is progressive thinning of the boundary layer with increasing k. Also,
the value of the dimensionless wall shear stress G′′(0) increases as R increases for fixed
value of viscoelastic parameter k. The computed values ofG′′(0) are compared with those
obtained by Ariel [14], for different values of the viscoelastic parameter k with suction
parameter R = 10. The results agree very well, Table 4.

Table 3. Values of dimensionless wall shear stress G′′(0) for different k and R.

G′′(0)
k R = 2.0 R = 5.0 R = 10.0

5.0 0.4310454 0.4374629 0.4418974
10.0 0.3103676 0.3117219 0.3132360
20.0 0.2216492 0.2221664 0.2224629
50.0 0.1410701 0.1430986 0.1441271

100.0 0.0999251 0.1001764 0.1028501

Table 4. Comparison between the values of G′′(0) for different k with R = 10.

G′′(0)
Ariel [14] Present work

Exact numerical Asymptotic Numerical
k solution solution solution
5.0 0.440519 0.442889 0.4418974

10.0 0.313218 0.315207 0.3132360
20.0 0.222283 0.223909 0.2224629
50.0 0.140989 0.142190 0.1441271

100.0 0.099819 0.100750 0.1028501

5 Conclusion

Lie-group method is applicable to both linear and non-linear partial differential equations,
which leads to similarity variables that used to reduce the number of independent variables
in partial differential equations. By determining the transformation group under which
the given partial differential equations are invariant, we can obtain information about the
invariants and symmetries of these equations. This information can be used to determine
the similarity variables that will reduce the number of independent variables in the system.
In this work, we have used Lie-group method to obtain similarity reductions of nonlinear
boundary layer equations (10)–(12), for the two-dimensional steady, laminar flow of
an incompressible Rivlin–Ericksen fluid of second grade with a uniform suction. By
determining the transformation group under which the given partial differential equations
are invariant, we obtained the invariants and the symmetries of these equations. In turn,
we used these invariants and symmetries to determine the similarity variables that reduced
the number of independent variables.
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The resulting system of non-linear ordinary differential equations (44)–(45) sub-
jected to the boundary conditions (46), is solved numerically using the shooting method
coupled with Runge–Kutta scheme. We have studied the effects of the viscoelastic pa-
rameter k and the suction parameter R on the tangential velocity u/x, normal velocity
G(y) = −v, temperature profiles T , heat transfer coefficient (−h′(0)) and the wall shear
stress. Also, the effect of the Prandtl number Pr on the temperature and the heat transfer
coefficient has been studied. Our results are in complete agreement with those reported by
Massoudi [10] and Liu [12]. Particular computed values of the dimensionless wall shear
stress G′′(0) are compared with those obtained by Ariel [14] and were found to agree
very well with his results.
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