Existence results for a class of (p, q) Laplacian systems

G.A. Afrouzi, M. Mirzapour
Department of Mathematics, Faculty of Basic Sciences
University of Mazandaran, Babolsar, Iran
afrouzi@umz.ac.ir

Received: 2009-10-21 Revised: 2010-10-05 Published online: 2010-11-29
Abstract. We establish the existence of a nontrivial solution for inhomogeneous quasilinear elliptic systems:

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) u|u|^{\gamma-2}+\frac{\alpha}{\alpha+\beta} b(x) u|u|^{\alpha-2}|v|^{\beta}+f & \text { in } \Omega, \\ -\Delta_{q} v=\mu d(x) v|v|^{\gamma-2}+\frac{\beta}{\alpha+\beta} b(x)|u|^{\alpha} v|v|^{\beta-2}+g & \text { in } \Omega, \\ (u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega) . & \end{cases}
$$

Our result depending on the local minimization.
Keywords: elliptic systems, Nehari manifold, Ekeland variational principle, local minimization.

1 Introduction

In this paper we deal with the nonlinear elliptic system

$$
\begin{cases}-\Delta_{p} u=\lambda a(x) u|u|^{\gamma-2}+\frac{\alpha}{\alpha+\beta} b(x) u|u|^{\alpha-2}|v|^{\beta}+f & \text { in } \Omega \tag{1}\\ -\Delta_{q} v=\mu d(x) v|v|^{\gamma-2}+\frac{\beta}{\alpha+\beta} b(x)|u|^{\alpha} v|v|^{\beta-2}+g & \text { in } \Omega \\ (u, v) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega) & \end{cases}
$$

where $1<p, q<N$ and Ω is a regular set of $R^{N}, N \geq 3, \alpha>0, \beta>0, \lambda$ and μ are positive parameters, functions $a(x), b(x)$ and $d(x) \in C(\bar{\Omega})$ are smooth functions with change sign on $\bar{\Omega}$, we assume here that $1<\gamma<\min (p, q), \gamma<\alpha+\beta, \alpha+\beta>$ $\max (p, q)$ and $\alpha / p+\beta / q=1$. For $p \geq 1 \Delta_{p} u$ is the p-Laplacian defined by $\Delta_{p} u=$ $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ and $W_{0}^{1, p}(\Omega)$ is the closer of $C_{0}^{\infty}(\Omega)$ equipped by the norm $\|u\|_{1, p}:=$ $\|\nabla u\|_{p}$, where $\|\cdot\|_{p}$ represent the norm of Lebesgue space $L^{p}(\Omega)$. The Lebesgue integral in Ω will be denote by the symbol \int whenever the integration is carried out over all Ω.

Let p^{\prime} be the conjugate to $p, W_{0}^{-1, p^{\prime}}(\Omega)$ is the dual space to $W_{0}^{1, p}(\Omega)$ and we denote by $\|\cdot\|_{-1, p^{\prime}}$ its norm. We denote by $\left\langle x^{*}, x\right\rangle_{X^{*}, X}$ the natural duality paring between X and
X^{*}. The problem

$$
\begin{cases}-\Delta_{p} u=u|u|^{\alpha-1}|v|^{\beta+1}+f & \text { in } \Omega \\ -\Delta_{q} v=|u|^{\alpha+1} v|v|^{\beta-1}+g & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain, $f \in D_{0}^{-1, p^{\prime}}(\Omega), g \in D_{0}^{-1, q^{\prime}}(\Omega)$ has been studied in [1] for $p \neq q$ and in a recent paper [2] for $p \neq q$ on arbitrary domains with lack of compactness.

Let us define $X=W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$ equipped with the norm $\|(u, v)\|_{X}=$ $\|u\|_{1, p}+\|v\|_{1, q}$ and $(X,\|\cdot\|)$ is a reflexive and separable Banach space.
Definition 1 (Weak solution). We say that $(u, v) \in X$ is a weak solution of (1) if:

$$
\begin{aligned}
& \int|\nabla u|^{p-2} \nabla u . \nabla w_{1} \mathrm{~d} x \\
& \quad=\lambda \int a(x) u|u|^{\gamma-2} w_{1} \mathrm{~d} x+\frac{\alpha}{\alpha+\beta} \int b(x) u|u|^{\alpha-2}|v|^{\beta} w_{1} \mathrm{~d} x+\int f w_{1} \mathrm{~d} x \\
& \int|\nabla v|^{q-2} \nabla v . \nabla w_{2} \mathrm{~d} x \\
& \quad=\mu \int \mathrm{d}(x) v|v|^{\gamma-2} w_{2} \mathrm{~d} x+\frac{\beta}{\alpha+\beta} \int b(x)|u|^{\alpha} v|v|^{\beta-2} w_{2} \mathrm{~d} x+\int g w_{2} \mathrm{~d} x .
\end{aligned}
$$

for all $\left(w_{1}, w_{2}\right) \in X$.
It is clear that problem (1) has a variational structure.
It is well known if the Euler function ϕ is bounded below and ϕ has a minimizer on X, then this minimizer is a critical point of ϕ. However, the Euler function $\phi(u, v)$, associated with the problem (1), is not bounded below on the whole space X, but is bounded on an appropriate subset, and has a minimizer on this set (if it exists) which gives rise to solution to (1). Clearly, the critical points of ϕ are the weak solutions of problem (1).

The associated Euler-Lagrange functional to system (1) $\phi: X \rightarrow R$ is defined by

$$
\begin{align*}
\phi(u, v)= & \frac{1}{p}\|u\|_{1, p}^{p}+\frac{1}{q}\|v\|_{1, q}^{q}-\frac{1}{\gamma}\left[\lambda \int a(x)|u|^{\gamma}+\mu \int d(x)|v|^{\gamma}\right] \\
& -\frac{1}{\alpha+\beta} \int b(x)|u|^{\alpha}|v|^{\beta}-\langle f, u\rangle-\langle g, v\rangle . \tag{2}
\end{align*}
$$

Consider the Nehari manifold associated to problem (1) given by

$$
\Lambda=\left\{(u, v) \in X \backslash\{(0,0)\} ; \phi^{\prime}(u, v)(u, v)=0\right\}, \quad m_{1}=\inf _{(u, v) \in \Lambda} J(u, v)
$$

Consequently, for every $(u, v) \in \Lambda$, (2) becomes

$$
\begin{aligned}
\phi_{\mid \Lambda}(u, v)= & A(p)\|u\|_{1, p}^{p}+A(q)\|v\|_{1, q}^{q}-A(\gamma)\left[\lambda \int a(x)|u|^{\gamma}+\mu \int d(x)|v|^{\gamma}\right] \\
& -A(1)\langle f, u\rangle-A(1)\langle g, v\rangle
\end{aligned}
$$

where for all $t>0, A(t)=1 / t-1 /(\alpha+\beta)$.
We introduce the operators $J_{1}, J_{2}, D_{1}, D_{2}, B_{1}, B_{2}: X \rightarrow X^{*}$ in the following way

$$
\begin{aligned}
\left\langle J_{1}(u, v),(w, z)\right\rangle_{X} & :=\int|\nabla u|^{p-2} \nabla u \nabla w, \\
\left\langle J_{2}(u, v),(w, z)\right\rangle_{X} & :=\int|\nabla v|^{q-2} \nabla v \nabla z, \\
\left\langle D_{1}(u, v),(w, z)\right\rangle_{X} & :=\int a(x)|u|^{\gamma-2} u w, \\
\left\langle D_{2}(u, v),(w, z)\right\rangle_{X} & :=\int d(x)|v|^{\gamma-2} v z, \\
\left\langle B_{1}(u, v),(w, z)\right\rangle_{X} & :=\int b(x)|u|^{\alpha-2}|v|^{\beta} u w, \\
\left\langle B_{2}(u, v),(w, z)\right\rangle_{X} & :=\int b(x)|u|^{\alpha}|v|^{\beta-2} v z .
\end{aligned}
$$

2 Main results

Our main result is the following:
Theorem 1. Suppose that $(f, g) \in W_{0}^{-1, p^{\prime}}(\Omega) \times W_{0}^{-1, q^{\prime}}(\Omega)$, non of the functions f and g is identically to zero on Ω and:
(a) $1<\gamma<\min (p, q)$,
(b) $\gamma<\alpha+\beta$,
(c) $\alpha+\beta>\max (p, q)$.

Then, there exists a pair $\left(u^{*}, v^{*}\right) \in \Lambda$ such that the sequence $\left(u_{n}, v_{n}\right)$ converges strongly to $\left(u^{*}, v^{*}\right)$ in X, Moreover, $\left(u^{*}, v^{*}\right)$ is a solution of system (1) satisfies the property $\phi\left(u^{*}, v^{*}\right)<0$.

Definition 2. We say that ϕ satisfies the Palais-Smale condition $(P S)_{c}$ if every sequence $\left(u_{m}, v_{m}\right) \subset X$ such that $\phi\left(u_{m}, v_{m}\right)$ is bounded and $\phi^{\prime}\left(u_{m}, v_{m}\right) \rightarrow 0$ in X^{*} as $m \rightarrow \infty$, is relatively compact in X.

Lemma 1. The operators $J_{i}, D_{i}, B_{i}, i=1,2$, are well defined. Also $J_{i}, i=1,2$, are continuous and the operators $D_{i}, B_{i}, i=1,2$, are compact.

Proof. This lemma is proved in [3].

Lemma 2. Let $\left(u_{n}, v_{n}\right)$ be a bounded sequence in X such that $\phi\left(u_{n}, v_{n}\right)$ is bounded and $\phi^{\prime}\left(u_{n}, v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then $\left(u_{n}, v_{n}\right)$ has a convergent subsequence.

Proof. Since the sequence $\left(u_{n}, v_{n}\right)$ is bounded in X, we may consider that there is a subsequence (denote again by $\left(u_{n}, v_{n}\right)$), which is weakly convergent in X.

Moreover, we have that

$$
\begin{aligned}
& \left\langle\phi^{\prime}\left(u_{n}, v_{n}\right)-\phi^{\prime}\left(u_{m}, v_{m}\right),\left(u_{n}-u_{m}, v_{n}-v_{m}\right)\right\rangle \\
& \quad=\int\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right)\left(\nabla u_{n}-\nabla u_{m}\right) \\
& \quad+\int\left(\left|\nabla v_{n}\right|^{q-2} \nabla v_{n}-\left|\nabla v_{m}\right|^{q-2} \nabla v_{m}\right)\left(\nabla v_{n}-\nabla v_{m}\right) \\
& \quad-\lambda \int a(x)\left(\left|u_{n}\right|^{\gamma-2} u_{n}-\left|u_{m}\right|^{\gamma-2} u_{m}\right)\left(u_{n}-u_{m}\right) \\
& \quad-\mu \int d(x)\left(\left|v_{n}\right|^{\gamma-2} v_{n}-\left|v_{m}\right|^{\gamma-2} v_{m}\right)\left(v_{n}-v_{m}\right) \\
& \quad-\frac{\alpha}{\alpha+\beta} \int b(x)\left(\left|u_{n}\right|^{\alpha-2}\left|v_{n}\right|^{\beta} u_{n}-\left|u_{m}\right|^{\alpha-2}\left|v_{m}\right|^{\beta} u_{m}\right)\left(u_{n}-u_{m}\right) \\
& \quad-\frac{\beta}{\alpha+\beta} \int b(x)\left(\left|u_{n}\right|^{\alpha}\left|v_{n}\right|^{\beta-2} v_{n}-\left|u_{m}\right|^{\alpha}\left|v_{m}\right|^{\beta-2} v_{m}\right)\left(v_{n}-v_{m}\right) \\
& \quad-\int\left(f\left(x_{n}\right)-f\left(x_{m}\right)\right)\left(u_{n}-u_{m}\right)-\int\left(g\left(x_{n}\right)-g\left(x_{m}\right)\right)\left(v_{n}-v_{m}\right) .
\end{aligned}
$$

Since $\left(u_{n}, v_{n}\right)$ converges strongly in $L^{p}(\Omega) \times L^{q}(\Omega)$, it is a Cauchy sequence in $L^{p}(\Omega) \times L^{q}(\Omega)$. Using Holder inequality (since $\alpha / p+\beta / q=1$ and $\left.(\alpha-1) / \alpha+1 / \alpha=1\right)$ we have

$$
\begin{aligned}
& \int b(x)\left|u_{n}\right|^{\alpha-2}\left|v_{n}\right|^{\beta} u_{n}\left(u_{n}-u_{m}\right) \\
& \quad \leq\|b\|_{\infty} \int\left|u_{n}\right|^{\alpha-1}\left|v_{n}\right|^{\beta}\left|u_{n}-u_{m}\right| \\
& \quad \leq\|b\|_{\infty}\left[\int\left(\left|u_{n}\right|^{\alpha-1}\left|u_{n}-u_{m}\right|\right)^{\frac{p}{\alpha}}\right]^{\frac{\alpha}{p}}\left[\int\left(\left|v_{n}\right|^{\beta}\right)^{\frac{q}{\beta}}\right]^{\frac{\beta}{q}} \\
& \quad \leq\|b\|_{\infty}\left[\left|u_{n}\right|^{\frac{(\alpha-1) p}{\alpha}}\left|u_{n}-u_{m}\right|^{\frac{p}{\alpha}}\right]^{\frac{\alpha}{p}}\left\|v_{n}\right\|_{q}^{\beta} \\
& \quad \leq\|b\|_{\infty}\left[\int\left(\left|u_{n}\right|^{\frac{(\alpha-1) p}{\alpha}}\right)^{\frac{\alpha}{\alpha-1}}\right]^{\frac{\alpha}{p} \times \frac{\alpha-1}{\alpha}}\left[\int\left|u_{n}-u_{m}\right|^{\frac{p}{\alpha} \times \alpha}\right]^{\frac{\alpha}{p} \times \frac{1}{\alpha}}\left\|v_{n}\right\|_{q}^{\beta} \\
& \quad=\|b\|_{\infty}\left\|u_{n}\right\|_{p}^{\alpha-1}\left\|u_{n}-u_{m}\right\|_{p}\left\|v_{n}\right\|_{q}^{\beta} \rightarrow 0 .
\end{aligned}
$$

Similarly

$$
\int b(x)\left(\left|u_{n}\right|^{\alpha}\left|v_{n}\right|^{\beta-2} v_{n}-\left|u_{m}\right|^{\alpha}\left|v_{m}\right|^{\beta-2} v_{m}\right)\left(v_{n}-v_{m}\right) \rightarrow 0 .
$$

From the compactness of the operators $B_{i}, D_{i}(i=1,2)$, [4], continuity of f and g, we
obtain (passing to a subsequence, if necessary) that

$$
\begin{aligned}
& \int\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right)\left(\nabla u_{n}-\nabla u_{m}\right) \\
& \quad+\int\left(\left|\nabla v_{n}\right|^{q-2} \nabla v_{n}-\left|\nabla v_{m}\right|^{q-2} \nabla v_{m}\right)\left(\nabla v_{n}-\nabla v_{m}\right) \rightarrow 0
\end{aligned}
$$

which implies (see [5]) that $\left(u_{n}, v_{n}\right)$ converges strongly in X.
Lemma 3. Let $c \in R$. Then the functional $\phi(u, v)$ satisfies the $(P S)_{c}$ condition.
Proof. According to Lemma 2, it sufficient to prove that the sequence $\left(u_{n}, v_{n}\right)$ is bounded in X. We have

Let $\left(u_{n}, v_{n}\right)$ be such a sequence, that is

$$
\phi\left(u_{n}, v_{n}\right)=c+o_{n}(1) \quad \text { and } \quad \phi^{\prime}\left(u_{n}, v_{n}\right)=o_{n}\left(\left\|\left(u_{n}, v_{n}\right)\right\|_{X}\right) \text {, }
$$

then

$$
\begin{aligned}
& \phi\left(u_{n}, v_{n}\right)-\frac{1}{\alpha+\beta}\left\langle\phi^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}, v_{n}\right)\right\rangle \\
& =A(p)\left\|u_{n}\right\|_{1, p}^{p}+A(q)\left\|v_{n}\right\|_{1, q}^{q}-A(\gamma)\left[\lambda \int a(x)\left|u_{n}\right|^{\gamma}+\mu \int b(x)\left|v_{n}\right|^{\gamma}\right] \\
& \quad-A(1)\left\langle f, u_{n}\right\rangle-A(1)\left\langle g, v_{n}\right\rangle \\
& = \\
& =c+o_{n}\left(\left\|\left(u_{n}, v_{n}\right)\right\|_{X}\right)+o_{n}(1) .
\end{aligned}
$$

Using successively the Holder's inequality and the Young inequality on the terms $\left\langle f, u_{n}\right\rangle$ and $\left\langle g, v_{n}\right\rangle$, we can write

$$
\begin{aligned}
& {\left[A(p)\left\|u_{n}\right\|_{1, p}^{p}-\frac{A(1)}{p} \theta^{p}\left\|u_{n}\right\|_{1, p}^{p}-\lambda A(\gamma)\left\|u_{n}\right\|_{1, p}^{\gamma}\right]} \\
& +\left[A(q)\left\|v_{n}\right\|_{1, q}^{q}-\frac{A(1)}{q} \nu^{q}\left\|v_{n}\right\|_{1, q}^{q}-\mu A(\gamma)\left\|v_{n}\right\|_{1, q}^{\gamma}\right] \\
& \quad \leq \frac{A(1)}{p^{\prime}} \theta^{-p^{\prime}}\|f\|_{-1, p^{\prime}}^{p^{\prime}}+\frac{A(1)}{q^{\prime}} \nu^{-q^{\prime}}\|g\|_{-1, q^{\prime}}^{q^{\prime}}+c+o_{n}\left(\|\left(u_{n}, v_{n} \|\right)+o_{n}(1) .\right.
\end{aligned}
$$

Since the real numbers θ and ν being arbitrary, a suitable choose of θ and ν assure the boundedness of the sequence $\left(u_{n}, v_{n}\right)$.

Lemma 4. The critical value of ϕ on $\Lambda, m_{1}=\inf _{(u, v) \in \Lambda} \phi(u, v)$, has the following property:

$$
m_{1}<\min \left[-\frac{\|f\|_{-1, p^{\prime}}^{p^{\prime}}}{p^{\prime}},-\frac{\|g\|_{-1, q^{\prime}}^{q^{\prime}}}{q^{\prime}}\right]
$$

Proof. Let u_{f} be the unique solution of the Dirichlet problem

$$
\begin{cases}-\Delta_{p} u=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

and let v_{g} be the unique solution of the problem

$$
\begin{cases}-\Delta_{q} v=g & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

It is clear that $\left(u_{f}, 0\right),\left(0, v_{g}\right)$ are two elements of Λ and we have

$$
\begin{aligned}
& m_{1} \leq \phi\left(u_{f}, 0\right)=\left[\frac{1}{p}\left\|\nabla u_{f}\right\|_{p}^{p}-\left\langle f, u_{f}\right\rangle\right]=-\left(1-\frac{1}{p}\right)\left\|\nabla u_{f}\right\|_{p}^{p}=-\frac{1}{p^{\prime}}\left\|\nabla u_{f}\right\|_{p}^{p}, \\
& m_{1} \leq \phi\left(0, v_{g}\right)=\left[\frac{1}{q}\left\|\nabla v_{g}\right\|_{q}^{q}-\left\langle g, v_{g}\right\rangle\right]=-\left(1-\frac{1}{q}\right)\left\|\nabla v_{g}\right\|_{q}^{q}=-\frac{1}{q^{\prime}}\left\|\nabla v_{g}\right\|_{q}^{q} .
\end{aligned}
$$

Similarly to proof of J. Velin [13, 4.2], we can show that

$$
\begin{aligned}
\|f\|_{-1, p^{\prime}}^{p^{\prime}} & =\left\|\nabla u_{f}\right\|_{p}^{p}, \\
\|g\|_{-1, q^{\prime}}^{q^{\prime}} & =\left\|\nabla v_{g}\right\|_{q}^{q} .
\end{aligned}
$$

Then

$$
m_{1} \leq \min \left[-\frac{1}{p^{\prime}}\|f\|_{-1, p^{\prime}}^{p^{\prime}},-\frac{1}{q^{\prime}}\|g\|_{-1, q^{\prime}}^{q^{\prime}}\right] .
$$

Thus, the Lemma is proved.

3 Proof of the Theorem 1

We show that ϕ is bounded below on Λ. Let (u, v) be an arbitrary element in Λ. We have

$$
\begin{aligned}
\phi_{\mid \Lambda}(u, v) \geq & {\left[A(p)\|u\|_{1, p}^{p}-\frac{A(1)}{p} \theta^{p}\|u\|_{1, p}^{p}\right]+\left[A(q)\|v\|_{1, q}^{q}-\frac{A(1)}{q} \nu^{q}\|v\|_{1, q}^{q}\right] } \\
& -\frac{A(1)}{p^{\prime}} \theta^{-p^{\prime}}\|f\|_{-1, p^{\prime}}^{p^{\prime}}+\frac{A(1)}{q^{\prime}} \nu^{-q^{\prime}}\|g\|_{-1, q^{\prime}}^{q^{\prime}} .
\end{aligned}
$$

This inequality follows from $a(x), d(x)$ are sign chaining functions and we can choose $(u, v) \in X$ with these properties that $\sup u \subseteq \Omega_{1}=\{x \in \Omega ; a(x)<0\}$ and $\sup v \subseteq \Omega_{2}=\{x \in \Omega ; d(x)<0\}$.

We choose $\theta=\{p A(p) / A(1)\}^{1 / p}$ and $\nu=\{q A(q) / A(1)\}^{1 / q}$. Consequently, we have, for every $(u, v) \in \Lambda$

$$
\phi(u, v) \geq-\frac{A(1)}{p^{\prime}} \theta^{-p^{\prime}}\|f\|_{-1, p^{\prime}}^{p^{\prime}}-\frac{A(1)}{q^{\prime}} \nu^{-q^{\prime}}\|g\|_{-1, q^{\prime}}^{q^{\prime}} .
$$

Hence, we have shown that ϕ is bounded blow on Λ. Then Ekeland variational principle [6] imply the existence of a solution of (1), such that $\phi\left(u^{*}, v^{*}\right)<0$

References

1. J. Chabrowski, On multiple solutions for nonhomogeneous system of elliptic equation, Rev. Mat. Univ. Complutense Madr., 9(1), pp. 207-234, 1996.
2. S. Benmouloud, R. Echarghaoui, S.M. Sbai, Existence result for quasilinear elliptic problem on unbounded domains, Nonlinear Anal., Theory Methods Appl., 71(5-6) (A), pp. 1552-1561, 2009.
3. N.M. Stavrakakis, N.B. Zographopoulos, Existence results for quasilinear elliptic systems in R^{N}, Electron. J. Differ. Equ., 1999(39), pp. 1-15, 1999.
4. A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, pp. 349-381, 1973.
5. P.Drabek, Y.X. Huang, Bifurcation problems for the p-Laplacian in R^{N}, Trans. Am. Math. Soc., 349(1), pp. 171-188, 1997.
6. I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47, pp. 324-353, 1994.
7. K. Adriouch, A. El Hamidi, On local compactness in quasilinear elliptic problems, Differ. Integral Equ., 20(1), pp.77-92, 2007.
8. C.O. Alves, A. El Hamidi, Nehari manifold and existence of positive solutions to a class of quasilinear problema, Nonlinear Anal., Theory Methods Appl., 60(4), pp. 611-624, 2005.
9. H. Brezis, E. Lieb, A relation between pointwise convergent of functions and convergence of functional, Proc. Am. Math. Soc., 88, pp. 486-490, 1983.
10. G. Dinca, P. Jebelean, J. Mawhin, Variational and topological methods for Dirichlet problems with P-Laplacian, Port. Math. (N.S.), 58(3), pp.339-378, 2001.
11. A. El Hamidi, J.M. Rakotoson, Compactness and quasilinear problems with critical exponent Differ. Integral Equ., 18, pp. 1201-1220, 2005.
12. G. Tarantello, Nonhomogenous elliptic equations involving critical Sobolev exponent, Ann. Henri Poincaré, 9(3), pp. 281-304, 1992.
13. J. Velin, Existence result for some nonlinear elliptic system with lack of compactness, Nonlinear Anal., Theory Methods Appl., 52, pp. 1017-1034, 2003.
14. J. Velin, F. de Thelin, Existence and nonexistence of nontrivial solutions for some nonlinear elliptic system, Rev. Mat. Univ. Complutense Madr., 6(1), pp. 153-194, 1993.
