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Abstract. In this paper, a nonlinear mathematical model is proposed and analyzed for
the survival of biological species affected by a pollutant present in the environment.
It is considered that the emission of the pollutant into the environment is dynamic
in nature and depends on the environmental tax imposed on theemitters. It is also
assumed that the environmental tax is imposed to control theemission of pollutants
only when the concentration level of pollutants in the environment crosses a limit
over which the pollutants starts causing harm to the population under consideration.
Criteria for local stability, global stability and permanence are obtained using theory
of ordinary differential equations. Numerical simulations are carried out to investigate
the dynamics of the system using fourth order Runge–Kutta Method. It is found that,
as the emission rate of pollutants in the environment increases, the density of biological
species decreases. It may also be pointed out that the biological species may even become
extinct if the rate of emission of pollutants increases continuously. However, if some
environmental taxes are imposed to control the rate of emission of these pollutants into
the environment, the density of biological species can be maintained at a desired level.

Keywords: biological species, toxicant, environmental tax, numerical simulation,
Runge–Kutta.

1 Introduction

Due to the rapid pace of industrialization, various kind of pollutants like oxides of sulphur
or oxides of carbon enter into both aquatic and terrestrial environment. These pollutants
may be emitted into the environment from different sources (e.g. industries, vehicles,
thermal power plant, refineries, etc.) as well as by incessant use of natural resources
without recharging and cleaning them. All these pollutantsadversely affect the ecosystem
– water, air, vegetation, forestry resources and the land which in turn affect the survival
of large number of biological species directly as well as indirectly by deteriorating the
resource biomass on which some biological species are dependent [1–5]. The examples
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of this kind of problems may be found in the ecosystems in which the air pollution affects
the forests and then the survival of forest dependent biological species. In order to use
and irregulate these toxic substances wisely, we must assess the risk of the populations
exposed to toxicants. Therefore, it is very important to study the effects of toxicants on
biological populations and to obtain conditions for sustainability of population.

In recent decades, several investigators have proposed andanalyzed mathematical
models to study the effects of toxicants on biological species [6–9]. In particular, Hallam
et al. [8, 9] have proposed and analyzed mathematical modelsto study the effects of
toxicants on biological species when these are emitted intothe environment from external
sources. Hauping and Zhien [10] have proposed a mathematical model to study the effect
of a toxicant on naturally stable two species communities. In these investigations the
effects of a toxicant simultaneously on growth rate and carrying capacity of the species
have not been considered. However, Freedman and Shukla [7] proposed models to study
the effects of a toxicant on single-species and predator-prey systems by assuming that the
intrinsic growth rate of species decreases as the uptake concentration of the toxicant in-
creases while its carrying capacity decreases with the environmental concentration of the
toxicant. Shukla et al. [11] have studied the effects of primary and secondary pollutants on
a renewable resource using the same consideration. Shukla et al. [12] have also studied the
survival of two competing species in a polluted environmentusing similar assumptions
and showed that the usual competitive outcomes may be altered in the presence of a
toxicant, see also [13]. Buonomo et al. [14] have proposed a mathematical model to study
the effects of toxicants on a biological population and obtained a threshold value which
determines permanence or extinction of biological population.

The environmental problem in India is growing rapidly. Industrial pollution, soil
erosion, deforestation, rapid industrialization, urbanization, and land degradation are all
worsening problems that need to be addressed. So there must be some strategies to
improve the quality of environment declines and whosoever is responsible for causing
damage must pay the costs of measures taking the remedy to illeffects. In the recent years,
environmental policy makers have suggested that environmental taxes including pollution
charges (emission/effluent tax/pollution tax) are one answer to improve the environment
at right time. They also suggested for India to tackle the issue of increasing pollution
that “Reduce tax on employees and employers and put a tax on pollution”. Such taxes
make the polluters pay and thus internalize environmental externalities, revealing the true
social cost of production in prices. Examples of environmental taxes include (i) carbon
taxes (where industry is taxed for every unit of carbon dioxide emitted, which incentivizes
firms to find energy-efficient and low-carbon alternatives),the more carbon dioxide one
emits the more he pays in taxes (ii) congestion charges (where motorists pay a fee for
entering the “congestion zone” which encourages them to make fewer journeys in these
areas), and (iii) fuel duties (where petrol is taxed to encourage to motorists to buy more-
efficient cars or use their cars loss frequently). This type of strategies have already been
adopted in some countries and the concept of polluters must pay has been popularized.
The government of India is considering to impose a special fee on vehicles entering the
central business districts of metropolitan cities as part of steps to cut carbon emission
and reduce traffic congestion (25/12/2008, Economy Times (New Delhi)). Thomas et
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al. [15] proposed and analyzed a mathematical model to studythe effect of pollutant on a
single species population and obtained some criteria to restrict the amount of toxicant
in the environment to ensure the survival of the species. Schultink [1] showed that
environmental pollution limits or impact standard may be used to define the public risk
tolerance limits and carrying capacity constraints. He also proved that thematic indicators
and derived indices may be effective in resource assessmentand economic evaluation.
But in the above mentioned studies, impacts of environmental tax to limit the pollution
and its effect on biological species have not been considered.

Keeping in mind the above, in this paper, we propose and analyze a mathematical
model to introduce the concept of environmental tax (pollution tax) and its effects on the
survival of biological population in a polluted environment. Stability theory of ordinary
differential equations is used to analyze the model. To compliment these analytical
findings, we present a numerical simulation using fourth order Runge–Kutta method.

2 The mathematical model

Consider a biological species such as plant/tree population in a forest stand affected by
the pollutant emitted into the environment by different type of industrial process. It is
assumed that the growth rate of the species decreases with the uptake of pollutant by the
species. It is also assumed that the introduction of the pollutant from the different sources
is dynamic in nature and depends on the environmental tax imposed on the emitters. Tax
is imposed only if concentration of pollutant in the environment crosses a permissible
limit (limit up to which there is no harm to the population) and method of imposing tax is
devised on the basis of emission of pollutants by a particular industry e.g. if an industry
emits one unit of carbon mono oxide in a day, tax of one unit rupee would be imposed
on the same. A four-dimensional mathematical model governing the situation is given as
follows

ẋ(t) = x(t)
(

r0 − r1U(t) − fx(t)
)

,

U̇(t) = kT (t) − lU(t) − mU(t),
(1)

Ṫ (t) = Q − k1T (t)x(t) − hT (t) + l1U(t)x(t) − ρg
(

I(t)
)

,

İ(t) = uT0

(

T (t)
)[

θ
(

T (t) − T0

)

− θ0I(t)
]

,

wherex(0) = x0 ≥ 0, U(0) = U0 ≥ 0, T (0) = T0 ≥ 0;

r0, r1, f, k, l, m, k1, h, l1, Q, ρ, θ, θ0, T0 > 0;

uT0
(T ) =

{

0 if T < T0,

1 if T > T0,
for T0 ≥ 0.

In model (1),x(t) is the density of biological species,U(t) is the uptake con-
centration of the pollutant by the species,T (t) is the concentration of pollutant in the
environment andI(t) is the environmental tax imposed on the emitters at timet ≥ 0. r0
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is the intrinsic growth rate of the population in the environment without pollutant,r1 is
the decreasing rate of the intrinsic growth rate associatedwith the uptake of the pollutant.
The first equation of (1) assumes that the populationx(t) satisfies the logistic equation
and the pollutant causes the intrinsic growth rate of the population to decrease linearly.
We can see that ifr0 − r1U ≤ 0, thenx(t) will get extinct in the end, so we suppose

U <
r0

r1
. (2)

k is the uptake rate coefficient of pollutant due to the biological population.l andm are the
depletion rate coefficients ofU due to egestion and depuration of pollutants, respectively.
ConstantQ represents the rate of introduction of pollutant into the environment,ρ is the
tax repulsion coefficient andg(I) is the function ofI, the environmental tax, introduced to
control the emission of pollutants, collected in unit period of time from various industries
of the ecosystem as they emit pollutants. When there is no tax, this emission of the
pollutants is considered asQ, which is constant at particular point of time but with the
imposition of tax, this introduction is limited by the factor ρg(I). This indicates that with
the increase in total environmental tax, concentration of pollutants in the environment
decreases with time. For our analysis, we consider this function g(I) as a very simple
identity function, i.e.g(I) = I. k1 is the depletion rate coefficient ofT due to its uptake
by the biological species,h is the loss rate of pollutant due to various natural processes
including biological transformation, volatization, gravitational deposition on the ground
leading to chemical hydrolysis etc.,l1 is the increase rate of pollutant due to egestion
of the species. Tax is imposed only ifT crosses the permissible limitT0 (limit upto
which there is no harm to the population).θ is the tax rate coefficient and the termθ0I

in the fourth equation of system (1) is considered due to somepractical difficulties on
implementing the foolproof tax system. In every tax system,there are some pilferages,
natural and administrative problems and faults of the system due to which the increase of
the tax amount is not directly proportional to the difference of T andT0. The unit step
functionuT0

(T ) is introduced to ensure that whenT is less thanT0, no tax is introduced
to the system, change ofI with t becomes zero. The factorθ0 is small in comparison to
θ and it can be safely considered that whenI is small so that right hand side of fourth
equation of (1) remains positive. For all practical purposes we are concerned with a
system in which the concentration of pollutants has crossedthe harmful limit and there is
no need to use the step function. Therefore, in the rest of this paper, we consider the value
of step function as1 and mathematical model as given below:

ẋ(t) = x(t)
(

r0 − r1U(t) − fx(t)
)

,

U̇(t) = kT (t) − lU(t) − mU(t),
(3)

Ṫ (t) = Q − k1T (t)x(t) − hT (t) + l1U(t)x(t) − ρI(t),

İ(t) = θ
(

T (t) − T0

)

− θ0I(t),

wherex(0) = x0 ≥ 0, U(0) = U0 ≥ 0, T (0) = T0 ≥ 0.
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3 Boundedness of solutions

To analyze the model (3), we need the bounds of dependent variables involved. For this
we find the region of attraction in the following lemma.

Lemma 1. If h > k and l + m − l1r0

f
> 0. Then the set

Ω =

{

(x, U, T, I) : 0 ≤ x ≤
r0

f
, 0 ≤ U + T ≤

Q

δ
, 0 ≤ I ≤

Qθ

δθ0

}

,

where δ = min{l +m− l1r0

f
, h− k}, attracts all solutions initiating in the interior of the

positive octant.

Proof. It is assumed here that all the initial values of variables considered in model (3)
belongs to the regionΩ and are positive.

From the first equation of system (3), we have

ẋ ≤ x(r0 − fx).

This implies that,lim supt→∞ x(t) ≤ r0

f
.

From the second and third equation of model (3), we get

U̇ + Ṫ ≤ Q + kT − lU − mU − hT + l1Ux

≤ Q −

(

l + m −
l1r0

f

)

U − (h − k)T

≤ Q − δ(U + T ),

whereδ = min{l+m− l1r0

f
, h−k}. This implies that,lim supt→∞(U(t)+T (t)) ≤ Q

δ
.

Now from the last equation of model (3), we have

İ ≤ θT − θ0I ≤
Qθ

δ
− θ0I.

This implies that,lim supt→∞ I(t) ≤ Qθ
δθ0

. This completes the proof of the Lemma 1.

Biological interpretation of conditions involved in Lemma 1

The conditionh > k implies that the loss rate of pollutants due to various natural pro-
cesses should be greater than the uptake rate coefficient of pollutant due to the biological
population for the boundedness of solutions. The conditionl+m

l1
> r0

f
implies that if the

depletion rate coefficients ofU due to egestion and depuration of pollutants i.e.l andm

respectively are small and increase rate of pollutants due to egestion of the species i.e.l1
is large then the solutions of the system (3) may not be bounded.

4 Equilibrium analysis

The system (3) has two non-negative equilibria inx, U, T, I space namely,E0(0, Ū , T̄ , Ī)
andE1(x̂, Û , T̂ , Î).
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Existence of E0(0, Ū , T̄ , Ī)

In this caseŪ , T̄ , Ī are obtained by solving the following equations:

kT̄ − lŪ − mŪ = 0,

Q − ρĪ − hT̄ = 0,

θ
(

T̄ − T0

)

− θ0Ī = 0.

Clearly,T̄ = Qθ0+ρθT0

ρθ+hθ0

> 0, Ū = k(Qθ0+ρθT0)
(l+m)(ρθ+hθ0)

> 0, andĪ = θ(Q−hT0)
ρθ+hθ0

> 0 if and only
if Q > hT0.

Existence of E1(x̂, Û , T̂ , Î)

In this casêx, û, T̂ , Î are the positive solutions of the following equations

r0 − r1U − fx = 0, (4)

U =
A

k1x + h − l1kx
l+m

+ ρθ
θ0

, (5)

T =
(l + m)A

k
(

k1x + h − l1kx
l+m

+ ρθ
θ0

) , (6)

I =
θ(l + m)A

kθ0

(

k1x + h − l1kx
l+m

+ ρθ
θ0

) −
θT0

θ0
, (7)

where

A =
k

l + m

(

Q +
ρθT0

θ0

)

.

It is noted from the equation (5) thatU is a function ofx only. In order to show the
existence ofE1 we define a functionF (x) from equation (4), after using (5), as follows

F (x) = (r0 − fx)

(

k1x + h −
l1kx

l + m
+

ρθ

θ0

)

− r1A. (8)

Now, from (8), we get

F (0) = r0

(

h +
ρθ

θ0

)

− r1A.

This impliesF (0) > 0, iff r0(h + ρθ
θ0

) > r1A. Also from (8), we have

F

(

r0

f

)

= −r1A < 0.
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Now sinceF (x) is quadratic inx andF (0) > 0 andF ( r0

f
) < 0, soF (x) = 0 will have

a unique root̂x in the interval0 < x̂ < r0

f
which is obtained by solving

F (x̂) = 0.

After knowing the value of̂x, values ofÛ , T̂ andÎ can be found from equations (5), (6)
and (7), respectively.

5 Stability analysis

5.1 Local Stability

If E∗(x∗, U∗, T ∗, I∗) is an equilibrium, then the local stability can be determined from
the eigenvalues of the variational matrixV (E∗), whose entries are given by the differ-
entiating the right hand side of system (3) with respect tox, U, T, I and evaluating at
x∗, U∗, T ∗, I∗, i.e.

V (E∗) =









r0 − r1U
∗ − 2fx∗ −r1x

∗ 0 0
0 −(l + m) k 0

−k1T
∗ + l1U

∗ l1x
∗ −(k1x

∗ + h) −ρ

0 0 θ −θ0









.

Using the notationV (E0) for the variational matrix of equilibriumE0, we get

V (E0) =









r0 − r1Ū 0 0 0
0 −(l + m) k 0

−k1T̄ + l1Ū 0 −h −ρ

0 0 θ −θ0









.

The eigenvalues ofV (E0) arer0 − r1Ū , −(l + m) andλ̄±, where

λ̄± =
1

2

[

− (θ0 + h) ±
√

(θ0 + h)2 − 4(hθ0 + ρθ)
]

.

The signs of the real parts of̄λ± are negative. This implies thatE0 is locally asympto-
tically stable in theU − T − I plane. As to thex-direction,E0 is stable ifŪ > r0

r1

and
unstable ifŪ < r0

r1

(necessary condition forE1 to exists). ThereforeE0 is a saddle point
if E1 exists otherwise it is locally asymptotically stable. Here, we also note thatE0 is
neutral atŪ = r0

r1

becausēU = r0

r1

is the bifurcation point i.e. at̄U = r0

r1

stability change
occurs.

The stability behavior ofE1 is not obvious from the corresponding variational ma-
trix. Therefore by using Liapunov’s method in the followingtheorem, we find sufficient
conditions forE1 to be locally asymptotically stable.

Theorem 1. Let the following inequality holds

max

{

r2
1x̂

2,

(

2k(k1T̂ − l1Û)

h + k1x̂

)2
}

< fx̂(l + m), (9)
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then E1 is locally asymptotically stable.

Proof. We first linearize system (3) around the positive equilibrium E1 by taking the
transformations wherex = x1 + x̂, U = U1 + Û , T = T1 + T̂ , I = I1 + Î, wherex1,
U1, T1 andI1 are small perturbations aboutE1. Then we consider the following positive
definite function in the linearised system of model (3),

W1 =
1

2
x2

1 +
1

2
U2

1 +
c1

2
T 2

1 +
c2

2
I2
1 ,

wherec1, c2 are some positive constants to be chosen appropriately.
Now, differentiatingW1 with respect to timet we can findẆ1 along the solutions

of linearised system of (3) as follows

Ẇ1 =

[

−
1

2
fx̂x2

1 − r1x̂U1x1 −
1

2
(l + m)U2

1

]

+

[

−
1

2
(l + m)U2

1 + (k + c1l1x̂)T1U1 −
1

2
c1(h + k1x̂)T 2

1

]

+

[

−
1

2
c1(h + k1x̂)T 2

1 − c1

(

k1T̂ − l1Û
)

x1T1 −
1

2
fx̂x2

1

]

− c1ρI1T1 + c2θI1T1 − c2θ0I
2
1 .

Now choosingc1 = k
l1x̂

andc2 = c1ρ
θ

, we note that the sufficient conditions forẆ1 to be
negative definite are that the following inequalities hold

r2
1x̂

2 < fx̂(l + m),

4k2 < c1(l + m)(h + k1x̂),

c1

(

k1T̂ − l1Û
)2

< fx̂(h + k1x̂).

Summarizing above inequalities, we note that theẆ1 would be negative definite under
the inequality (9) showing thatW1 is a Lyapunov’s function. This completes the proof of
the Theorem 1.

5.2 Global stability

Theorem 2. Let the following inequality holds in Ω

max

{

r2
1 ,

(

2kk1T̂

h

)2
}

< f(l + m), (10)

then E1 is globally asymptotically stable.

Proof. Consider the following positive definite function aboutE1

W2 =

(

x − x̂ − x̂ ln
x

x̂

)

+
1

2

(

U − Û
)2

+
c3

2

(

T − T̂
)2

+
c4

2

(

I − Î
)2

, (11)
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wherec3, c4 are some positive constants to be chosen appropriately.
Computing the time derivative of (10) along solutions of system (3) and after doing

some algebraic manipulations, we get

Ẇ2 =

[

−
1

2
f(x − x̂)2 − r1(x − x̂)

(

U − Û
)

−
1

2
(l + m)

(

U − Û
)2
]

+

[

−
1

2
(l + m)

(

U − Û
)2

+ (k + c3l1x̂)
(

U − Û
)(

T − T̂
)

−
1

2
c3(h + k1x)

(

T − T̂
)2
]

+

[

−
1

2
c3(h + k1x)

(

T − T̂
)2

− c3

(

k1T̂ − l1U
)

(x − x̂)
(

T − T̂
)

−
1

2
f(x − x̂)2

]

− c3ρ
(

I − Î
)(

T − T̂
)

+ c4θ
(

I − Î
)(

T − T̂
)

− c4θ0

(

I − Î
)2

.

Now choosingc3 = k
l1x̂

andc4 = c3ρ
θ

we note that the sufficient conditions forẆ2 to be
negative definite are given by the following inequalities

r2
1 < (l + m)f,

4k2 < c3(l + m)(h + k1x),

c3

(

k1T̂ − l1U
)2

< f(h + k1x).

(12)

After maximizing the L.H.S. and minimizing the R.H.S. of theinequalities given in (12),
the stability conditions can be obtained appropriately.

r2
1 < (l + m)f, (13a)

4k2 < c3(l + m)h, (13b)

c3k
2
1T̂

2 < fh. (13c)

Now summarizing inequalities (13a)–(13c), we note thatẆ2 would be negative
definite under the inequality (10) showing thatW2 is a Liapunov’s function and hence the
Theorem 2 is proved.

Remark 1. If r1 are is large, then condition (10) may not be satisfied. This implies that if
the decreasing rate of the intrinsic growth rate of the population due to the uptake of the
pollutant is large, then it destabilizes the system.

Remark 2. If k andk1 are large, then condition (10) may not be satisfied. This implies
that if the uptake rate coefficient of pollutant due to the biological species and depletion
rate coefficient of pollutant due to its uptake by the biological species are large, then it
also destabilizes the system.
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Remark 3. If h, l andm are small, then the condition (10) may not be satisfied. This
implies that if the loss rate of pollutants due to various natural processes, depletion
rate coefficients of uptake concentration of pollutants by the species due to egestion and
depuration of pollutants, respectively are small, then it destabilizes the system.

6 Permanence of solutions

Biologically, persistence means the survival of all populations in future time. Math-
ematically, persistence of a system means that strictly positive solutions do not have
omega limit points on the boundary of the non-negative cone.Persistence may be defined
mathematically as, a populationN(t) is said to persist (sometimes called strongly persist)
if N(0) > 0 impliesN(t) > 0 andlim inft→∞ N(t) > 0. Further, a populationN(t)
is said to be uniformly persistent (also known as permanence) if N(t) persists and there
existsζ > 0 independent ofN(0) > 0 such thatlim inft→∞ N(t) ≥ ζ. Finally, we say
that a system persists (uniformly) whenever each componentpersists (uniformly).

Theorem 3. Assume that Q > T0(h + k1r0

f
). Then the system (3) is uniformly persis-

tent if

δ > max

{

r1Q

r0
,
ρθ

θ0

(

Q

Q − T0

(

h + k1r0

f

)

)}

.

Proof. From the first equation of model (3), we get

ẋ ≥ x

(

r0 − r1
Q

δ
− fx

)

.

This implies that,

lim inf
t→∞

x(t) ≥
1

f

(

r0 − r1
Q

δ

)

.

From the third equation of model (3), we get

Ṫ ≥ Q

(

1 −
ρθ

δθ0

)

−

(

h +
k1r0

f

)

T.

This implies that,

lim inf
t→∞

T (t) ≥
Q

h + k1r0

f

(

1 −
ρθ

δθ0

)

.

Now from the second equation of model (3), we get

U̇ ≥
kQ

h + k1r0

f

(

1 −
ρθ

δθ0

)

− (l + m)U.
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This implies that,

lim inf
t→∞

U(t) ≥
kQ

(l + m)(h + k1r0

f
)

(

1 −
ρθ

δθ0

)

.

Lastly, from the fourth equation of model (3), we get

İ ≥ θ

[

Q
(

1 − ρθ
δθ0

)

h + k1r0

f

− T0

]

− θ0I.

This implies that,

lim inf
t→∞

I(t) ≥
θ

θ0

[

Q
(

1 − ρθ
δθ0

)

h + k1r0

f

− T0

]

.

According to the above arguments and Lemma 1, we have

1

f

(

r0 −
r1Q

δ

)

≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤
r0

f
,

kQ

(l + m)
(

h + k1r0

f

)

(

1 −
ρθ

δθ0

)

≤ lim inf
t→∞

U(t) ≤ lim sup
t→∞

U(t) ≤
Q

δ
,

Q

h + k1r0

f

(

1 −
ρθ

δθ0

)

≤ lim inf
t→∞

T (t) ≤ lim sup
t→∞

T (t) ≤
Q

δ
,

θ

θ0

[

Q
(

1 − ρθ
δθ0

)

h + k1r0

f

− T0

]

≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤
Qθ

δθ0
.

This completes the proof of the Theorem 3.

7 Numerical simulations and discussion

To visualize the above analytical findings and the behavior of the system (3) for different
rates of emission of pollutants as well as in the presence andabsence of environmental
tax, numerical simulation is done here. For this, the system(3) is integrated using fourth
order Runge–Kutta Method under the following set of parameters

h = 12, k = 3, r1 = 0.8, l = 0.2, m = 4, k1 = 0.1, r0 = 8,

f = 4, l1 = 0.02, ρ = 5, θ = 10, θ0 = 5, T0 = 0.25, Q = 10.
(14)

With the above values of parameters it is found that the interior equilibrium exists and is
given by

x̂ = 1.9194, Û = 0.4028, T̂ = 0.5639, Î = 0.6279.
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Here, we note that the conditions of local stability, globalstability and permanence are
satisfied. Using MATLAB software package, graphs are plotted for different values of
important parametersQ, ρ andθ in order to conclude and confirm some important points.

In Fig. 1, the biological species is plotted against time fordifferent rate of emission
of pollutants. From this plot, we note that as the emission rate of pollutants in the
environment increases, the equilibrium density of biological population decreases.

Variations of the biological population (x) uptake concentration of pollutant by the
population (U ) and pollutant (T ) with time in the presence and absence of the environ-
mental tax are plotted in Figs. 2, 3 and 4, respectively. Fromthese plots, we can infer that
the presence of the environmental tax increases the endemiclevel of biological population
and decreases the endemic levels of uptake concentration ofpollutant by the population
and pollutant, respectively for the same value ofQ.

0 2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Time (t)

x

Q = 10
Q = 30
Q = 50
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Fig. 2. Variation of x with time in the
presence and absence of environmental tax
for the set of parameter values given in (14).
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In Figs. 5, 6, the variation of population with time is shown for differentρ andθ,
respectively. It is concluded that with the increase of these parameters, the equilibrium
density of population increases. It is observed that the equilibrium density of the popula-
tion is more sensitive to the parameterρ, the tax repulsion coefficient, in comparison to
θ, the tax rate coefficient. Thus the tax repulsion coefficient, ρ, which characterizes the
sensitivity of the industries which emit pollutants and paythe required tax on the basis of
the amount of the emission is the key parameter which we need to choose very carefully
in order to maintain the equilibrium level of population.
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Fig. 5. Variation ofx with time for different
tax repulsion coefficients (ρ) and other

values of parameters are same as in (14).
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Fig. 6. Variation ofx with time for different
tax rate coefficients (θ) and other values of

parameters are same as in (14).

Simulation is performed for different initial starts I, II,III, IV in Fig. 7 to graphically
illustrate the global stability of the interior equilibrium point,E1, in thex−U plane, where
initial starts are

Initial start I: [1 0.045 0.6 1];
Initial start II: [3 0.045 0.6 1];
Initial start III: [1 0.6 0.6 1];
Initial start IV: [3 0.6 0.6 1].

It is depicted from the graph that the solutions of the systemconverge to equilibrium
pointE1 for different value of initial starts, indicating that the system is globally asymp-
totically around this point. Now to depict the global stability of the interior equilibrium
pointE1, in thex − T plane, we have performed simulations for different initialstarts I,
II, III, IV, V in Fig. 8, where initial starts are

Initial start I: [1 0.45 0.2 1];
Initial start II: [1 0.45 1.2 1];
Initial start III: [4 0.45 0.2 1];
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Initial start IV: [4 0.45 1.2 1];
Initial start V: [2.5 0.45 1.2 1].
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Fig. 7. Variation of population with uptake
concentration of toxicant for different initial

starts I, II, III and IV.
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8 Conclusions

The main focus of this paper is to model the process of the survival of a biological
population, when the population is affected by a pollutant emitted into the environment
by external sources. It is assumed that the biological population is growing logistically
in the environment. It is further assumed that the introduction of the pollutant from
external sources is dynamic in nature and its cumulative rate of emission is reduced due
to the levy of taxes. Existence of all the equilibria and stabilities of the same have been
carried out. The first equilibrium corresponds to the extinction of the population. When
the first equilibrium is unstable, the second equilibrium exists and is locally as well as
globally asymptotically stable under certain conditions.Conditions which influence the
permanence of the system are also given. By numerical simulation, it is shown that as
the cumulative rate of the emission of the pollutant from external sources increases, the
endemic level of population decreases and may become extinct. So we need to control
the emission rate of pollutants from external sources. Moreover, we note that when taxes
are imposed on emitters of pollutants, the endemic level of population increases and shift
more near to the level when the ecosystem is toxicant free.

The environmental taxes enhance the environmental qualityand revenue. First,
pollution taxes provide a measure of certainty to regulatedfirms. Second, pollution taxes
raise revenue for the federal budget. These revenues could help finance some of the tax
reform initiatives and to reduce rates on distorting taxes or fund cleanup programs. Also,
the strategy of charging tax on the basis of emission of pollutants proves as a disincentive
to the industries and the regulator may attempt to increase efficiency, maintain a fair dis-
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tributional impact, minimize the costs of administration and compliance, and implement
an efficient use of revenue.
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