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Abstract. The velocity field and the adequate shear stress, corresponding to the flow
of a generalized second grade fluid in an annular region between two infinite coaxial
cylinders, are determined by means of Laplace and finite Hankel transforms. The motion
is produced by the inner cylinder which is rotating about itsaxis due to a constant torque
f per unit length. The solutions that have been obtained satisfy all imposed initial and
boundary conditions. Forβ → 1 or β → 1 andα1 → 0, the corresponding solutions
for an ordinary second grade fluid, respectively, for the Newtonian fluid, performing the
same motion, are obtained as limiting cases.
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1 Introduction

Among the many constitutive assumptions that have been employed to study the non-
Newtonian fluid behavior, one class that has gained support from both the experimentalists
and the theoreticians is that of Rivlin-Ericksen fluids of second grade. The Cauchy stress
tensorT for such fluids is related to the fluid motion by [1–3]

T = −p I + µA1 + α1A2 + α2A
2
1, (1)

where−p is the hydrostatic pressure,I is the unit tensor,µ is the coefficient of viscosity,
α1 andα2 are the normal stress moduli andA1, A2 are the kinematic tensors defined
through

A1 = gradv + ( gradv)T , A2 =
dA1

dt
+ A1( gradv) + ( gradv)T

A1. (2)

In the above relations,v is the velocity,ddt
denotes the material time derivative andgrad

is the gradient operator. Since the fluid is incompressible,it can undergo only isochoric
motions.
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The flows to be here considered have the velocity field of the form [4–6]

v = v(r, t) = w(r, t) eθ, (3)

whereeθ is the unit vector along theθ-direction of the cylindrical coordinate system
r, θ andz. For such flows the constraint of incompressibility is automatically satisfied.
Introducing (3) into the constitutive equation (1), we find that

τ(r, t) =

(

µ + α1
∂

∂t

)[

∂w(r, t)

∂r
−

w(r, t)

r

]

, (4)

whereτ(r, t) = Srθ(r, t) is the tangential shear stress that is different of zero. In the
absence of a pressure gradient in the flow direction and neglecting the body forces, the
balance of the linear momentum leads to the relevant equation

ρ
∂w(r, t)

∂t
=

(

∂

∂r
+

2

r

)

τ(r, t). (5)

Eliminatingτ(r, t) between equations (4) and (5), we get the governing equation

∂w(r, t)

∂t
=

(

ν + α
∂

∂t

)(

∂2

∂r2
+

1

r

∂

∂r
−

1

r2

)

w(r, t), (6)

whereν = µ/ρ is the kinematic viscosity of the fluid,ρ is its constant density and
α = α1/ρ.

In the last time, the fractional calculus has encountered much success in the de-
scription of visco-elasticity [5, 7–12]. Especially, the rheological constitutive equations
with fractional derivatives play an important role in the description of the behavior of the
polymer solutions and melts. Generally, these equations are derived from those for non-
Newtonian fluids by replacing the inner time derivatives of an integer order with the so
called Riemann-Liouville operator [13,14]

Dβ
t f(t) =

1

Γ(1 − β)

d

dt

t
∫

0

f(τ)

(t − τ)β
dτ, 0 ≤ β < 1, (7)

whereΓ(.) is the Gamma function.
Consequently, the governing equations corresponding to the motion (3) of a gene-

ralized second grade fluid are (cf. [5, Eqs. (2), (4)]) or [10,Eqs. (7), (9)]

∂w(r, t)

∂t
=

(

ν + αDβ
t

)

(

∂2

∂r2
+

1

r

∂

∂r
−

1

r2

)

w(r, t), (8a)

τ(r, t) =
(

µ + α1D
β
t

)

(

∂

∂r
−

1

r

)

w(r, t). (8b)
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where the new material constantα1 (for simplicity, we are keeping the same notation)
goes to the initialα1 for β → 1.

In this paper, we are interested into the motion of a generalized second grade fluid
whose governing equations are given by equations (8). More exactly, we would like to
extend the results of the Section 5 from [4] to a larger class of fluids. The fractional partial
differential equations (8), with adequate initial and boundary conditions, can be solved in
principle by several methods, the integral transforms technique representing a systematic,
efficient and powerful tool. The Laplace transform will be used to eliminate the time
variable and the finite Hankel transform to eliminate the spatial variable.

2 Taylor–Couette flow between two infinite cylinders

Consider an incompressible generalized second grade fluid at rest in the annular region
between two infinitely long co-axial cylinders. At timet = 0+, let the inner cylinder
of radiusR1 be set in rotation about its axis by a constant torque per unitlength 2πR1f
and let the outer cylinder of radiusR2 be held stationary. Owing to the shear, the fluid
between cylinders is gradually moved, its velocity being ofthe form (3). The governing
equations are given by equations (8) and the appropriate initial and boundary conditions
are (see also [4, Eqs. (5.2), (5.3)]

w(r, 0) = 0, r ∈ [R1, R2], (9)

τ(R1, t) =
(

µ + α1D
β
t

)

(

∂w(r, t)

∂r
−

w(r, t)

r

)∣

∣

∣

∣

r=R1

= f,
(10)

w(R2, t) = 0, t > 0,

wheref is a constant.

3 Calculation of the velocity field

Applying the Laplace transform to the equations (8a) and (10), we get

qw(r, q) = (ν + αqβ)

(

∂2

∂r2
+

1

r

∂

∂r
−

1

r2

)

w(r, q), (11)

τ (R1, q) = (µ + α1q
β)

(

∂

∂r
−

1

R1

)

w(R1, q) =
f

q
, w(R2, q) = 0, (12)

wherew(r, q), and τ (R1, q) are the Laplace transforms of the functionsw(r, t) and
τ(R1, t) respectively. We denote by

wH(rn, q) =

R2
∫

R1

rw(r, q)B(rrn) dr, (13)
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the finite Hankel transform of the functionw(r, q), where

B(rrn) = J1(rrn)Y2(R1rn) − J2(R1rn)Y1(rrn), (14)

rn are the positive roots of the equationB(R2r) = 0 andJp(.), Yp(.) are the Bessel
functions of the first and second kind of orderp.

By means of equations (12) and of the identity

J1(z)Y2(z) − J2(z)Y1(z) = −
2

πz
, (15)

we can easily prove that

R2
∫

R1

r

(

∂2

∂r2
+

1

r

∂

∂r
−

1

r2

)

w(r, q)B(rrn)dr

= −r2
n wH(rn, q) +

2

πrn

(

∂

∂r
−

1

R1

)

w(R1, q). (16)

Combining (11), (12) and (16), we find that

wH(rn, q) =
2f

πrn

1

q

1

ρq + α1qβr2
n + µ r2

n

, (17)

or equivalently

wH(rn, q) =
2f

πr3
n

1

q(µ + α1qβ)
−

2f

πr3
n

1

(µ + α1qβ)(q + αqβr2
n + νr2

n)

= w1H(rn, q) + w2H(rn, q), (18)

where

w1H(rn, q) =
2f

πr3
n

1

q(µ + α1qβ)
, (19a)

w2H(rn, q) = −
2f

πr3
n

1

(µ + α1qβ)(q + αqβr2
n + νr2

n)
. (19b)

The inverse Hankel transforms ofw1H(rn, q) andw2H(rn, q), are given by (see (A.1)
from Appendix)

w1(r, q) =
R2

1f(r2 − R2
2)

2R
2

2r

1

q(µ + α1qβ)
, (20a)

w2(r, q) =
π2

2

∞
∑

n=1

r2
nJ2

1 (R2rn)B(rrn)

J2
2 (R1rn) − J2

1 (R2rn)
w2H(rn, q). (20b)
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The inverse Laplace transform of the last factorH(q) = 1
µ+α1qβ = 1

α1

1
qβ+ µ

α1

, from

equation (20a) is

h(t) = L−1[H(q)] =
1

α1
Gβ,0,1

(

−
µ

α1
, t

)

=
1

α1

∞
∑

k=0

(

−
µ

α1

)k
t(k+1)β−1

Γ[(k + 1)β]
, (21)

where the generalized functionGa,b,c(. , .) is defined by [15, Eqs. (97), (101)]

Ga,b,c(d, t) = L−1

{

qb

(qa − d)c

}

=
∞
∑

k=0

dkΓ(c + k)

Γ(c)Γ(k + 1)

t(c+k)a−b−1

Γ[(c + k)a − b]
,

Re(ac − b) > 0,

∣

∣

∣

∣

d

qa

∣

∣

∣

∣

< 1.

(22)

By taking the inverse Laplace transform of equation (20a) and using (21), we find that

w1(r, t) =
R2

1f(r2 − R2
2)

2R
2

2r
L−1

[

1

q
H(q)

]

=
R2

1f(r2 − R2
2)

2R
2

2r

t
∫

0

h(s)ds

=
R2

1f(r2 − R2
2)

2R
2

2rα1

∞
∑

k=0

(

−
µ

α1

)k
t(k+1)β

Γ[(k + 1)β + 1]

=
R2

1f(r2 − R2
2)

2R
2

2rα1

Gβ,−1, 1

(

−
µ

α1
,t

)

. (23)

In order to determine the inverse Laplace transform of the functionw2(r, q), we
rewrite the functionw2H(rn, q) in the form

w2H(rn, q) = −
2f

πr3
n

H(q).H1(rn, q), H1(rn, q) =
1

q + αqβr2
n + νr2

n

. (24)

Using again equation (22) and the following expansion of thefunctionH1(rn, q)

H1(rn, q) =
q−β

(q1−β + αr2
n) + νr2

nq−β
=

∞
∑

k=0

(−νr2
n)k q−β(k+1)

(q1−β + αr2
n)k+1

, (25)

we get

h1(rn, t) = L−1[H1(rn, q)] =

∞
∑

k=o

(

− νr2
n

)k
G1−β,−β(k+1),k+1

(

− αr2
n, t

)

. (26)

Applying the Laplace transform to equation (20b) and using equations (21), (24), (26)
and the property

L−1[H(q)H1(rn, q)] = h(t) ∗ h1(rn, t) =

t
∫

0

h(t − s)h1(rn, s)ds,
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we find that

w2(r, t) = L−1[w2(r, q)] = −
πf

α1

∞
∑

n=1

J2
1 (R2rn)B(rrn)

rn[J2
2 (R1rn) − J2

1 (R2rn)]

×

∞
∑

k=o

(−νr2
n)k

t
∫

0

Gβ,0,1

(

−
µ

α1
, t−s

)

G1−β,−β(k+1),k+1

(

−αr2
n, s

)

ds, (27)

Consequently, the velocity fieldw(r, t) is given by

w(r, t) =
R2

1f(r2 − R2
2)

2R
2

2rα1

Gβ,−1,1

(

−
µ

α1
, t

)

−
πf

α1

∞
∑

n=1

J2
1 (R2rn)B(rrn)

rn[J2
2 (R1rn) − J2

1 (R2rn)]

×

∞
∑

k=o

(

− νr2
n

)k

t
∫

0

Gβ,0,1

(

−
µ

α1
, t−s

)

G1−β,−β(k+1), k+1

(

−αr2
n, s

)

ds. (28)

4 Calculation of the shear stress

Applying the Laplace transform to equation (8b), we find that

τ (r, q) =
(

µ + α1q
β
)

(

∂

∂r
−

1

r

)

w(r, q)

=
(

µ + α1q
β
)

[(

∂

∂r
−

1

r

)

w1(r, q) +

(

∂

∂r
−

1

r

)

w2(r, q)

]

, (29)

Using equation (20), we obtain

τ (r, q) =
R2

1f

r2

1

q
+ πf

∞
∑

n=1

J2
1 (R2rn)B1(rrn)

J2
2 (R1rn) − J2

1 (R2rn)

1

(q + αqβr2
n + νr2

n)
. (30)

whereB1(rrn) = J2(rrn)Y2(R1rn)−J2(R1rn)Y2(rrn). Now taking the inverse Laplace
transform of both sides of equation (30) and using (25), we get

τ(r, t) =
R2

1f

r2
+πf

∞
∑

n=1

J2
1 (R2rn)B1(rrn)

J2
2 (R1rn) − J2

1 (R2rn)

×

∞
∑

k=o

(

− νr2
n

)k
G1−β,−βk−β,k+1

(

− αr2
n, t

)

. (31)
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5 The special caseβ → 1

Makingβ → 1 into equations (28) and (31), we obtain the similar solutions

w(r, t) =
R2

1f(r2 − R2
2)

2R
2

2rα1

G1,−1,1

(

−
µ

α1
, t

)

−
πf

α1

∞
∑

n=1

J2
1 (R2rn)B(rrn)

rn[J2
2 (R1rn) − J2

1 (R2rn)]

×

∞
∑

k=o

(

− νr2
n

)k

t
∫

0

G1,0,1

(

−
µ

α1
, t−s

)

G0,−k−1,k+1

(

−αr2
n, s

)

ds (32)

and

τ(r, t) =
R2

1f

r2
+πf

∞
∑

n=1

J2
1 (R2rn)B1(rrn)

J2
2 (R1rn) − J2

1 (R2rn)

×

∞
∑

k=o

(

− νr2
n

)k
G0,−k−1,k+1

(

−αr2
n, t

)

, (33)

for a second grade fluid performing the same motion. Now, using the identities (A.2) and
(A.3), w(r, t) andτ(r, t) can be written in the simplified forms

w(r, t) =
R2

1f(r2 − R2
2)

2R
2

2rµ

[

1 − exp

(

−
µ t

α1

)]

−
πf

α1

∞
∑

n=1

J2
1 (R2rn)B(rrn)

rn[J2
2 (R1rn) − J2

1 (R2rn)]

×

t
∫

0

exp

(

−
µ

α1
(t − s)

)

1

1 + αr2
n

exp

(

−
νr2

ns

1 + αr2
n

)

ds, (34)

τ(r, t) =
R2

1f

r2
+πf

∞
∑

n=1

J2
1 (R2rn)B1(rrn)

J2
2 (R1rn) − J2

1 (R2rn)

1

1 + αr2
n

exp

(

−
νr2

nt

1 + αr2
n

)

. (35)

The expression (34) ofw(r, t) can be further processed to give the simpler form

w(r, t) =
R2

1f(r2 − R2
2)

2R
2

2rµ

−
πf

µ

∞
∑

n=1

J2
1 (R2rn)B(rrn)

rn[J2
2 (R1rn) − J2

1 (R2rn)]
exp

(

−
νr2

nt

1 + αr2
n

)

. (36)

which is identical to equation (5.17) from [4], obtained by adifferent technique.
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Makingα1 and thenα → 0 into equations (36) and (35), the velocity field

w(r, t) =
R2

1f(r2−R2
2)

2R
2

2rµ
−

πf

µ

∞
∑

n=1

J2
1 (R2rn)B(rrn)

rn[J2
2 (R1rn)−J2

1 (R2rn)]
exp

(

−νr2
nt

)

(37)

and the associated shear stress

τ(r, t) =
R2

1f

r2
+ πf

∞
∑

n=1

J2
1 (R2rn)B1(rrn)

J2
2 (R1rn) − J2

1 (R2rn)
exp

(

− νr2
nt

)

, (38)

corresponding to a Newtonian fluid are recovered.

6 Conclusions

The aim of this paper is to provide exact solutions for the velocity field and shear stress
corresponding to the flow of a generalized second grade fluid between two infinite coaxial
cylinders, the inner one being subject to a constant torque.These solutions, obtained
by means of the Laplace and finite Hankel transforms, are presented under series form
in terms of the generalizedGa,b,c(., .) functions. They satisfy all imposed initial and
boundary conditions. Indeed, makingr = R1 into (31) and having in mind the definition
of the transcendental functionB1(rrn), it immediately resultsτ(R1, t) = f . As regards
the second boundary condition(10)2, it can be easily proved using the expansion (22) for
Gβ,−1,1(., t) and the known relation

Dα(tβ) =
tβ−αΓ(β + 1)

Γ(β − α + 1)
.

In the special case whenβ → 1, the solutions that have been obtained take the
simplified forms (32) and (33) corresponding to an ordinary second grade fluid performing
the same motion. Of course, these last solutions can be further processed to give the
simpler forms (36) and (35), the first of them being identicalto equation (5.17) obtained
in [4] by a different technique. Finally, makingα1 and thenα → 0 into (36) and (35), the
similar solutions for a Newtonian fluid are recovered. Furthermore, makingt → ∞ into
equations (37) and (38), the solutions

w(r) =
R2

1f(r2 − R2
2)

2R
2

2rµ
, τ(r) =

R2
1f

r2
, (39)

corresponding to the steady motion are obtained. They are the same for both types of
fluids, Newtonian or second grade.

Finally, in order to reveal some relevant physical aspects of the obtained results, the
diagrams of the velocity and the shear stress are presented for different values of the time
t and of the fractional parameterβ. Figs. 1 and 2 clearly show that the velocityv(r, t) and
the shear stressτ(r, t) (in absolute value) are increasing functions oft. From Figs. 3 and
4 it results that the velocity and the shear stress increasesfor increasingβ. For β → 1
their diagrams tend to those for an ordinary second grade fluid. The units of the material
parameters are SI units and the rootsrn have been approximated by(2n−1)π

[2(R2−R1)] .
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Fig.1. Profiles of the velocity (r,t) given by Eq. (28), for f = -1, = 0.0011746,

= 1.48, R = 0.2, R = 0.8, = 2, = 0.8 and different values of t.
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Fig. 1. Profiles of the velocityw(r, t) given
by (28), forf =−1, ν =0.0011746, µ=1.48,
r1 = 0.2, r2 = 0.8, α1 = 2, β = 0.8 and

different values oft.

Fig.2. Profiles of the velocity (r,t) given by Eq. (28), for f = -1, = 0.0011746,

= 1.48, R = 0.2, R = 0.8, = 0.8 and different values of t and .
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Fig. 2. Profiles of the velocityw(r, t) given
by (28), forf =−1, ν =0.0011746, µ=1.48,
r1 = 0.2, r2 = 0.8, α1 = 2, β = 0.8 and

different values oft andα1.

Fig.3. Profiles of the velocity (r,t) given by Eq. (28), for f = -1, = 0.0011746,

= 1.48, R = 0.2, R = 0.8, = 2, and different values of t and .
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Fig. 3. Profiles of the velocityw(r, t) given
by (28), forf =−1, ν =0.0011746, µ=1.48,
r1 = 0.2, r2 = 0.8, α = 0.0015 and different

values oft andβ.

Fig.4. Profiles of the shear stress (r,t) given by Eq. (31), for f = -1, = 0.0011746,

= 1.48, R = 0.2, R = 0.8, = 0.0015  and different values of t and .
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Fig. 4. Profiles of the shear stressτ (r, t) given
by (31), forf =−1, ν =0.0011746, µ=1.48,
r1 = 0.2, r2 = 0.8, α1 = 2, β = 0.8 and

different values oft.

Appendix

R2
1(r

2 − R2
2)

2R
2

2r
= π

∞
∑

n=1

J2
1 (R2rn)B(rrn)

rn[J2
2 (R1rn) − J2

1 (R2rn)]
, (A.1)

G1, 0, 1

(

−
µ

α1
, t

)

= exp

(

−
µ t

α1

)

,

G1,−1, 1

(

−
µ

α1
, t

)

=

(

α1

µ

)[

1 − exp

(

−
µ t

α1

)]

,

(A.2)
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∞
∑

k=o

(

− νr2
n

)k
G0,−k−1, k+1

(

− αr2
n, t

)

=
1

1 + αr2
n

exp

(

−
νr2

nt

1 + αr2
n

)

. (A.3)
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