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Abstract. In this paper we propose an application ofN -distance theory for testing
the hypothesis of uniformity on hypersphereSp−1. The work is a continuation of our
research started in [1, 2]. Particular attention is devotedto p = 2, 3 cases. A brief
comparative Monte Carlo power study for proposed criteria is provided.

Keywords: tests of uniformity,N -distances.

1 Introduction

Several invariant tests for uniformity of a distribution onthe circle, the sphere and the
hemisphere have been proposed by Rayleigh [3, 4], Watson [5,6], Ajne [7], Beran [8]
and others. In this paper we propose an application ofN -distance theory for testing
the hypothesis of uniformity of spherical data. The proposed procedures have a number
of advantages: consistency against all fixed alternatives,invariance of the test statistics
under rotations of the sample, computational simplicity and ease of application even in
high-dimensional cases.

We start from a brief review ofN -distance theory. Then some new criteria of
uniformity onSp−1 based onN -metrics are introduced. Particular attention is devoted to
p = 2 (circular data) andp = 3 (spherical data). In these cases the asymptotic behavior
of proposed tests under the null hypothesis is established using two approaches: first is
based on an adaptation of methods of goodness of fit tests described in [1,2], and second
using Gine theory based on Sobolev norms [9,10].

At the end of the paper we present a brief comparative Monte Carlo power study
for proposed uniformity criteria.S1 andS2 cases are considered. Analyzed tests are
compared with classical criteria: Rayleigh, Giné and Ajneusing a variety of alternative
hypotheses (see also [3]). Results of simulations show thatthe proposed tests are powerful
competitors to existing classical criteria.
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2 N -distances

Tests, proposed in this article are based on a class of probability metrics –N -distances,
introduced by Klebanov in [11]. These metrics, generated bynegative definite kernels
are very convenient and allow obtaining new statistical criteria for testing parametric and
nonparametric hypothesis in arbitrary dimension.

Let (X,U) be a measurable space andB the set of all probability measuresµ on it.
Suppose thatL is a real continuous function, and denote byBL the set of all probability
measuresµ on (X,U) under condition

∫

X

∫

X

L(x, y) dµ(x) dµ(y) <∞.

Denote by

N(µ, ν) := 2

∫

X

∫

X

L(x, y) dµ(x) dν(y) −
∫

X

∫

X

L(x, y) dµ(x) dµ(y)

−
∫

X

∫

X

L(x, y) dν(x) dν(y), (1)

whereµ, ν ∈ BL.
The theorem, proved by Klebanov [11], says that ifL(x, y) = L(y, x) and

L(x, x) = 0 ∀x, y ∈ X the inequality

N(µ, ν) ≥ 0

holds for all measuresµ, ν ∈ BL with equality in the caseµ = ν only, if and only ifL
is a strongly negative definite kernel. This fact allows us toobtain consistent tests against
all fixed alternatives.

Some examples of strongly negative definite kernels for practical usage can be
found in Section 4 or in [1,2,11].

3 Tests of uniformity on the hypersphere

3.1 Statement of the problem

Consider the sampleX1, . . . , Xn of observations of random variableX , whereXi ∈
Rp and‖Xi‖ = 1, i = 1, . . . , n. Let us test the hypothesisH0 thatX has a uniform
distribution onSp−1.

The statistics for testingH0 based onN -distance with the kernelL(x, y) have the
form

Tn = n

[

2

n

n
∑

i=1

EY{L(Xi, Y )} − 1

n2

n
∑

i,j=1

L(Xi, Xj) − E
{

L
(

Y, Y ′
)}

]

, (2)

16



N -distance tests of uniformity on the hypersphere

whereX,Y, Y ′ are independent random variables from the uniform distribution onSp−1

andEY{L(Xi, Y )} =
∫

L(Xi, y) dFY (y) is a mathematical expectation calculated by
Y with fixedXi, i = 1, . . . , n.

We should reject the null hypothesis in case of large values of our test statistics, that
is if Tn > cα, wherecα can be found from the equation:

P0(Tn > cα) = α,

whereP0 is the probability distribution corresponding to the null hypothesis andα is the
size of the test.

For our further research let us consider a strongly negativedefinite kernels of the
form L(x, y) = G(‖x − y‖), where‖ · ‖ is the Euclidean norm. In other words,G(·)
depends on the length of the chord between two points on hypersphere. As an example of
such kernels we propose the following ones

L(x, y) = ‖x− y‖α, 0 < α < 2,

L(x, y) =
‖x− y‖

1 + ‖x− y‖ ,

L(x, y) = log
(

1 + ‖x− y‖2
)

.

Note, that considered kernels are rotation-invariant. This property implies that the math-
ematical expectation of the length of the chord between two independent uniformly dis-
tributed random variablesY andY ′ on Sp−1 is equal to the mean length of the chord
between a fixed point and a uniformly distributed random variableY onSp−1. Thus, we
can rewrite (2) in the form

Tn = n

[

E
{

G
(

‖Y − Y ′‖
)}

− 1

n2

n
∑

i,j=1

G(‖Xi −Xj‖)
]

. (3)

In practice statisticsTn with the kernelL(x, y) = ‖x−y‖α, 0 < α < 2 can be calculated
using the following proposition.

Proposition 1. In cases ofp = 2, 3 statisticsTn have the form:

Tn =
(2R)αΓ(α+1

2 )Γ(1
2 )

πΓ(α+2
2 )

n− 1

n

n
∑

i,j=1

‖Xi −Xj‖α (p = 2),

Tn = (2R)α 2n

α+ 2
− 1

n

n
∑

i,j=1

‖Xi −Xj‖α (p = 3),

whereR is the radius of hypersphere andα ∈ (0, 2).

The proof of the Proposition 1 is presented in Section 5.
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In case ofL(x, y) = ‖x− y‖, the test statistic (3) is very similar to Ajne’s statistic
A, where instead of chord is taken the length of the smaller arc

A =
n

4
− 1

πn

n
∑

i,j=1

ψij ,

whereψij is the smaller of two angles betweenXi andXj , i, j = 1, 2, . . . , n.
One can see, that the Ajne’s test is not consistent against all alternatives, as an

example consider the distribution on the circle concentrated in two diametrically opposite
points with equal probabilities. Taking instead of arc the length of the chord lead to a
consistency of theN -distance test against all fixed alternatives.

Tn

n

P−→ N(X,Y ), n→ ∞,

whereN(X,Y ) is theN -distance given by (1) between probability distributions of ran-
dom variablesX andY . If X 6=d Y , thenN(X,Y ) > 0 andTn → ∞, asn→ ∞.

Further we consider the asymptotic distribution of statistics Tn given by (2) un-
der the null hypothesis. Particular attention is devoted tocircular and spherical data
(p = 2, 3). In these cases the asymptotic behavior of proposed tests under the null
hypothesis is established using two approaches. First is based on an adaptation of methods
of goodness of fit tests described in [1,2], and second using Giné theory based on Sobolev
norms [9,10].

For an arbitrary dimension (p ≥ 3) it is rather difficult from the computational point
of view to establish the distribution of test statisticsTn analytically, in this case the critical
region of our criteria can be determined with the help of simulations of independent
samples from the uniform distribution onSp−1.

3.2 Asymptotic distribution

3.2.1 Uniformity on the circleS1

For our further research, without loss of generality, we consider the circleS1 with unit
length, that is withR = 1

2π
. Let us transform the circle, and therefore our initial sample

X1, . . . , Xn, Xi = (Xi1, Xi2),X2
i1 +X2

i2 = R2 to the interval[0, 1) by making a cut in
arbitrary pointx0 of the circle

x↔ x∗, x ∈ S1, x∗ ∈ [0, 1),

wherex∗ is the the length of the smaller arcx0x. It is easy to see, that ifX has a uniform
distribution onS1, after described transformation we will get the random variableX∗

with uniform distribution on[0, 1).
LetL(x, y) be a strongly negative definite kernel inR2, then the functionH(x∗, y∗)

on [0, 1) defined as

H(x∗, y∗) := L(x, y) (4)
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is a strongly negative definite kernel on[0, 1). In this caseN -distance statisticT ∗
n , based

onH(x∗, y∗), for testing the uniformity on[0, 1) has the form (see [1,2])

T ∗
n = −n

1
∫

0

1
∫

0

H(x∗, y∗) d
(

Fn(x∗) − x∗
)

d
(

F (y∗) − y∗
)

,

whereFn(x∗) is the empirical distribution function, based on the sampleX∗
1 , . . . , X

∗
n,

X∗
i ∈ [0, 1), i = 1, . . . , n.

Due to (4) the following equality holds

Tn = T ∗
n , (5)

whereTn is defined by (2).
Thus, instead of testing the initial hypothesis onS1 usingTn, we can test the unifor-

mity on [0, 1) for X∗ on the basis of statisticsT ∗
n with the same asymptotic distribution.

The limit distribution ofT ∗
n is established in Theorem 1 in [1] and leads to the result:

Theorem 1. Under the null hypothesis, statisticsTn have the same asymptotic distribu-
tion as the quadratic form

T =
∞
∑

k=1

∞
∑

j=1

akj

π2kj
ζkζj , (6)

whereζk are independent random variables from the standard normal distribution and

akj = −2

1
∫

0

1
∫

0

H(x∗, y∗) d sin(πkx∗) d sin(πjy∗).

It is easy to see, that in caseL(x, y) is a rotation-invariant function on the circle,
the considered transformation ofS1 to [0, 1) does not depend on the choice of the point
of cut.

Proposition 2. If strongly negative definite kernelL(x, y) = ‖x−y‖α, where0 < α < 2,
x, y ∈ S1, then

H(x∗, y∗) =

[

sinπd

π

]α

,

where d = min(|x∗ − y∗|, 1 − |x∗ − y∗|), x∗, y∗ ∈ [0, 1).

The proof of the Proposition 2 is presented in Section 5.
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3.2.2 Uniformity on the sphereS2

In case of the sphere we also first try to substitute the initial hypothesis of uniformity on
S2 by testing the uniformity on the unit square. Consider sphere S2 with unit surface
area, that isR2 = 1

4π
.

Note, that ifX∗ = (X∗
1 , X

∗
2 ) has the uniform distribution on[0, 1)2 then random

variableX = (X1, X2, X3)

X1 = R cos θ1, X2 = R sin θ1 cos θ0, X3 = R sin θ1 sin θ0, (7)

where

θ0 = 2πX∗
1 , θ1 = arccos(1 − 2X∗

2 )

has the uniform distribution onS2.
Consider the strongly negative definite kernelH(x∗, y∗) on [0, 1)2 defined by

H(x∗, y∗) := L(x, y), (8)

whereL(x, y) is a strongly negative definite kernel inR3, x∗, y∗ ∈ [0, 1)2, x, y ∈ S2 and
the correspondence betweenx andx∗ follows from (7).

N -distance statistics, based onH(x∗, y∗), for testing the uniformity on[0, 1)2 has
the form (see [1,2])

T ∗
n = −n

∫

[0,1)2

∫

[0,1)2

H(x∗, y∗) d
(

Fn(x∗) − x∗1x
∗
2

)

d
(

F (y∗) − y∗1y
∗
2

)

,

whereFn(x∗), x∗ ∈ R2 is the empirical distribution function based on the transformed
sampleX∗.

The equations (7) and (8) implies that

Tn = T ∗
n . (9)

Thus, the asymptotic distribution ofTn coincides with the limit distribution ofT ∗
n , estab-

lished in Theorem 2 in [1].

Theorem 2. Under the null hypothesis statisticsTn will have the same asymptotic distri-
bution as quadratic form

T =

∞
∑

i,j,k,l=1

aijkl
√
αijαklζijζkl, (10)

whereζij are independent random variables from the standard normal distribution,

aijkl = −
∫

[0,1]4

H(x, y) dψij(x) dψkl(y), x, y ∈ R
2,
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αij andψij(x, y) are eigenvalues and eigenfunctions of the integral operator A

Af(x) =

∫

[0,1]2

K(x, y)f(y) dy (11)

with the kernel

K(x, y) =
2

∏

i=1

min(xi, yi) −
2

∏

i=1

xiyi.

Note, that ifL(x, y) is a rotation-invariant function on the sphere then the values of
statisticsTn andT ∗

n does not depend on the choice of coordinate system onS2.
The main difficulties in application of the Theorem 2 are connected with calcula-

tions of eigenfunctions of the integral operator (11). One of the possible solutions of
these problems is in detail discussed in [1]. Another approach is considered in the next
subsection, where the asymptotic distribution of proposedstatistics for some strongly
negative definite kernels is established with the help of Giné theory based on Sobolev
tests.

3.2.3 Alternative approach to limit distribution ofTn

In this section we propose an application of Giné theory of Sobolev invariant tests for
uniformity on compact Riemannian manifoldsM to establish the null limit distribution
of someN -distance statistics on the circle and sphere. A detailed review of Giné theory
can be found in [9,12].

LetM be the circlex2
1 + x2

2 = 1 in R2. Giné showed (see [9]) that in general case
Sobolev test statisticsSn({ak}) onM has the form

Sn({ak}) = 2n−1
∞
∑

k=1

a2
k

n
∑

i,j=1

cos k(Xi −Xj), (12)

where{a1, a2, . . .} is a sequence of real numbers such that
∑∞

i=1 a
2
k <∞.

The limit null distribution of (12) is established in Theorem 4.1 in [9] and coincides
with the distribution of random variable

∞
∑

k=1

a2
kχk,

whereχk are independent random variables with chi-square distribution with two
degrees of freedom.

Consider statisticsTn on M with strongly negative definite kernelL(x, y) =
‖x− y‖, x, y ∈ R2. From Proposition 1 we have

Tn =
4n

π
− 1

n

n
∑

i,j=1

‖Xi −Xj‖ =
4n

π
− 2

n

n
∑

i,j=1

sin
Xi −Xj

2
, (13)
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whereXi −Xj and‖Xi −Xj‖ denotes the length of the arc and chord betweenXi and
Xj respectively.

Under the null hypothesis the limit distribution ofTn is established by the theorem

Theorem 3. If X1, . . . , Xn is a sample of independent observations from the uniform
distribution on the circle with unit radius, then

π

4
Tn

d−→
∞
∑

k=1

a2
kχ

2
k, (14)

whereχ2
k are independent random variables with chi-square distribution with two degrees

of freedom and

a2
k =

1

2π

2π
∫

0

(

1 − π

2
sin

x

2

)

cos kxdx.

The proof of Theorem 3 is presented in Section 5.
We now pass over toN -distance and Sobolev tests on the sphere. IfM = S2 is the

unit spherex2
1 + x2

2 + x2
3 = 1 in R3, then the general expression of Sobolev test statistic

on the sphere has the form (see [9])

Sn({ak}) = n−1
∞
∑

k=1

(2k + 1)a2
k

n
∑

i,j=1

Pk

(

cos(X̂i, Xj)
)

, (15)

where{a1, a2, . . .} is a sequence of real numbers under condition
∑∞

i=1(2k+1)a2
k <∞,

X̂i, Xj is the smaller angle betweenXi andXj , Pk(·) are Legendre polynomials

Pk(x) = (k!2k)−1
(

dk/dxk
)(

x2 − 1
)k
.

Under the null hypothesis the limit distribution ofSn({ak}) coincides with the
distribution of random variable

∞
∑

k=1

a2
kχ

2
2k+1, (16)

whereχ2
2k+1 are independent random variables with chi-square distribution with 2k + 1

degrees of freedom.
Consider statisticsTn on S2 with strongly negative definite kernelL(x, y) =

‖x− y‖, x, y ∈ R3. From Proposition 1 we have

Tn =
4n

3
− 1

n

n
∑

i,j=1

‖Xi −Xj‖ =
4n

3
− 2

n

n
∑

i,j=1

sin
X̂i, Xj

2
, (17)

whereX̂i, Xj and‖Xi − Xj‖ denotes the smaller angle and the chord betweenXi and
Xj respectively.

The asymptotic distribution ofTn is established by the Theorem 4.
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Theorem 4. If X1, . . . , Xn is a sample of independent observations from the uniform
distribution onS2, then

3

4
Tn

d−→
∞
∑

k=1

a2
kχ

2
2k+1, (18)

whereχ2
2k+1 are independent random variables with chi-square distribution with2k + 1

degrees of freedom and

a2
k =

1

2

π
∫

0

(

1 − 3

2
sin

x

2

)

sinxPk(cosx) dx, (19)

wherePk(x) are Legendre polynomials.

The proof of the Theorem 4 is presented in Section 5.
The inverse values to the largest coefficientsa2

k given by (19) are calculated below:

5 35 105 231 429
715 1105 1615 2261 3059

4025 5175 6525 8091 9889

4 Empirical power results

Let us switch to a comparative Monte Carlo power study of proposed uniformity criteria.
N -distance tests with strongly negative definite kernelL(x, y) = ‖x − y‖ are compared
with classical criteria: Rayleigh (R) [3, 4], Watson (W) [5,6], Giné (G) [3] and Ajne
(A) [7,8] for circularS1 and sphericalS2 cases.

4.1 Simulation design

In all the cases we investigate the behavior of above mentioned tests for sample sizesn =
30, 50, 100 and significance levelα = 0.05. All the empirical results were produced
by the means of Monte Carlo simulations done with the help of Rstatistical package.
The first part of simulations (Table 1) is devoted to the circular case. In the second part
of our study (Table 2) we consider the uniformity test on the sphereS2. In both cases
for N -distance statistics we used the critical values obtained from the asymptotic null
distribution established in Theorems 3, 4.

The power of the tests was estimated from a simulation of200 samplesZ of
alternative distributions on the circle and sphere, which were modeled using the formulas:

• Circular data

Z = (cos 2πX, sin 2πX),

whereX is a random variable with the distributions from the first column of Table 1.
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• Spherical data

Z =
(

cos(2πX), sin(2πX)(1 − 2Y ), sin(2πX) sin
(

arccos(1 − 2Y )
))

,

whereX,Y are independent random variables with the distributions from the first
column of Table 2.

Proposed alternatives gave us a wide variety of types of departure from null hypoth-
esis and allowed to test the sensitivity of criteria to each of them.

4.2 Simulation results

Empirical results summarized in Tables 1, 2 illustrate thatnone of the tests are universally
superior. InS1 case proposedN -distance criteria, together with Watson test, showed one
of the best results against all considered alternatives forall sample sizes.

The empirical results for spherical data are summarized in Table 2. In comparison
with circular case, where all the criteria, except possiblyGiné test, showed more or
less similar results, the performance ofN -distance test was really good for all sample
sizes against truncated uniform and von Mises distributions. Giné test, which was not so
powerful against considered alternatives inS1 case, was really sensitive to contamination
of hypothesized distribution with truncated uniform in case of spherical data.

Table 1. Empirical power of tests of uniformity on the circle.

Alternative n W A R G Tn

U(0, 0.9)1 30 9 8 8 9 9
U(0, 0.9) 50 13 13 13 12 13
U(0, 0.9) 100 30 30 28 23 30

U(0, 0.8) 30 47 43 42 24 46
U(0, 0.8) 50 74 60 57 45 70
U(0, 0.8) 100 99 93 91 72 98

0.9U(0, 1) + 0.1U(0, 0.1) 30 9 8 9 9 9
0.9U(0, 1) + 0.1U(0, 0.1) 50 15 13 13 15 15
0.9U(0, 1) + 0.1U(0, 0.1) 100 30 28 23 27 29

0.8U(0, 1) + 0.2U(0, 0.1) 30 25 20 20 24 24
0.8U(0, 1) + 0.2U(0, 0.1) 50 54 40 40 47 54
0.8U(0, 1) + 0.2U(0, 0.1) 100 94 82 74 85 92

0.8U(0, 1) + 0.2U(0, 0.25) 30 20 19 20 8 20
0.8U(0, 1) + 0.2U(0, 0.25) 50 44 39 40 20 45
0.8U(0, 1) + 0.2U(0, 0.25) 100 73 67 66 32 71

1U(a, b) is a uniform distirbution on[a, b]
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Alternative n W A R G Tn

0.8U(0, 1) + 0.2U(0, 0.5) 30 11 11 12 5 11
0.8U(0, 1) + 0.2U(0, 0.5) 50 16 15 15 6 17
0.8U(0, 1) + 0.2U(0, 0.5) 100 41 42 42 9 41

vonMises(0, 0.5)2 30 36 36 38 5 37
vonMises(0, 0.5) 50 58 59 58 7 59
vonMises(0, 0.5) 100 88 88 88 10 88

vonMises(0, 0.3) 30 14 15 15 5 15
vonMises(0, 0.3) 50 27 26 27 7 29
vonMises(0, 0.3) 100 50 51 50 10 51

0.5U(0, 1) + 0.5vonMises(0, 0.5) 30 15 14 15 5 15
0.5U(0, 1) + 0.5vonMises(0, 0.5) 50 19 19 19 9 21
0.5U(0, 1) + 0.5vonMises(0, 0.5) 100 31 34 33 10 32

0.5U(0, 1) + 0.5vonMises(0, 0.8) 30 19 21 22 5 21
0.5U(0, 1) + 0.5vonMises(0, 0.8) 50 40 40 40 6 42
0.5U(0, 1) + 0.5vonMises(0, 0.8) 100 65 67 67 9 65

Table 2. Empirical power of tests of uniformity on the sphere.

Alternative n A R G Tn

U(0, 0.9) 30 16 15 10 18
U(0, 0.9) 50 23 20 18 24
U(0, 0.9) 100 53 50 43 58

U(0, 0.8) 30 61 61 34 69
U(0, 0.8) 50 86 85 57 93
U(0, 0.8) 100 99 99 91 100

vonMises(0, 0.5) 30 27 27 17 31
vonMises(0, 0.5) 50 38 32 30 42
vonMises(0, 0.5) 100 83 83 73 90

vonMises(0, 0.3) 30 13 13 8 14
vonMises(0, 0.3) 50 14 14 13 15
vonMises(0, 0.3) 100 39 38 28 44

0.9U(0, 1) + 0.1U(0, 0.1) 30 9 8 7 10
0.9U(0, 1) + 0.1U(0, 0.1) 50 13 12 16 14
0.9U(0, 1) + 0.1U(0, 0.1) 100 35 30 41 36

0.8U(0, 1) + 0.2U(0, 0.1) 30 11 11 11 12
0.8U(0, 1) + 0.2U(0, 0.1) 50 54 41 81 66
0.8U(0, 1) + 0.2U(0, 0.1) 100 96 92 99 99

2vonMises(µ, κ) is a von Mises distribution (also known as the circular normal distribution) with location
µ and concentrationκ parameters
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5 Proofs

5.1 The proof of Proposition 1

The stated formulas follow directly from (3) and the property

E‖Y − Y ′‖α = E‖Y − a‖α,

whereY, Y ′ are independent random variables from the uniform distribution onSp−1 and
a is a fixed arbitrary point onSp−1.

In the two-dimensional case, let us calculate the mathematical expectation of the
length of the chord between fixed pointa = (0, R) and an uniformly distributed random
variableY

E‖a− Y ‖α =
1

2πR

2π
∫

0

R
(

R2 cos2 φ+
(

R sin2 φ−R
)2)α

2 dφ

=
2

α

2
−1Rα

π

2π
∫

0

(1 − cosφ)
α

2 dφ =
2α+1Rα

π

π

2
∫

0

sinα φdφ

=
(2R)αΓ(α+1

2 )Γ(1
2 )

πΓ(α+2
2 )

.

In casep = 3 let us fix pointa = (0, 0, R) and calculate the average length of the
chord

E‖a− Y ‖α

=
1

4πR2

π
∫

−π

π
∫

0

R2 sin θ
(

R2
(

sin2 θ cos2 φ+ sin2 θ sin2 φ+ (cos θ−1)2
))

α

2 dθ dφ

=
2

α

2 Rα

4π

π
∫

−π

π
∫

0

(1 − cos θ)
α

2 sin θ dθ dφ = 2α+1Rα

π

2
∫

0

sinα+1 θ d sin θ

= (2R)α 2

α+ 2
.

5.2 The proof of Proposition 2

KernelL(x, y) in the circle equals to the length of the chord between two pointsx =
(x1, x2) andy = (y1, y2) in α power. After proposed transformation, the length of the
smaller arc betweenx andy equals tod = min(|x∗ − y∗|, 1 − |x∗ − y∗|). The length
of the chord in the circle withR = 1

2π
based on the angle2πd equals tosin πd

π
, and this

completes the proof of the statement.
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5.3 The proof of the Theorem 3

Let us express statisticsTn given by (13) in the form

Tn =
4

π
n−1

n
∑

i,j=1

h(Xi −Xj),

whereh(x) = 1 − π
2 sin

x
2 .

Functionh(x) can be represented in the form of a series by complete orthonormal
sequence of functions{

√
2 cos kx} on [0, 2π]

h(x) =
√

2

∞
∑

k=1

αk cos kx,

whereαk =
√

2
2π

∫ 2π

0 (1 − π
2 sin x

2 ) cos kxdx. Note, thatαk > 0, ∀k = 1, 2, . . ., really
after some simple calculations we have

2π
∫

0

(

1 − π

2
sin

x

2

)

cos kxdx = 4

π
∫

0

sinx sin2 kxdx− 4,

π
∫

0

sinx sin2 kxdx = −k2

πk
∫

0

sin

(

1

k
− 2

)

xdx− k2

2k + 1

πk
∫

0

sin
x

k
dx

=
4k3

(2k − 1)(2k + 1)
> 1 ∀k = 1, 2, . . . .

Thus statisticsTn can be rewritten in the form of Sobolev statistics (12)

4

π
Tn = 2n−1

∞
∑

k=1

a2
k

n
∑

i,j=1

cos k(Xi −Xj),

where
√

2a2
k = αk. After that the statement of the theorem follows directly from Theo-

rem 4.1 in [9].

5.4 The proof of the Theorem 4

The proof of the theorem can be done in nearly the same way as that of Theorem 3. Let
us first rewrite statisticsTn in the form

Tn =
4

3
n−1

n
∑

i,j=1

h
(

X̂i, Xj

)

,

whereh(x) = 1 − 3
2 sin x

2 . And then decomposeh(x) to the series by orthonormal
sequence of functions{

√
2k + 1Pk(cosx)} for x ∈ [0, π]

h(x) =

∞
∑

k=1

√
2k + 1αkPk(cosx),

27



A. Bakshaev

where

αk =

√
2k + 1

4π

2π
∫

0

π
∫

0

(

1 − 3

2
sin

θ

2

)

sin θPk(cos θ) dθ dφ.

As a result statisticsTn can be expressed in the form of Sobolev statistics (15)

4

3
Tn = n−1

∞
∑

k=1

(2k + 1)a2
k

n
∑

i,j=1

Pk

(

cos X̂i, Xj

)

,

where
√

2k + 1a2
k = αk. Applying Theorem 4.1 in [9] the assertion of the theorem

follows.
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