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Abstract. This paper investigates the problem of globally asymptotically stable in
probability by state-feedback for a class of stochastic high-order nonlinear systems with
a ratio of odd integers power. By extending the adding a powerintegrator technique and
choosing an appropriate Lyapunov function, a linear smoothstate-feedback controller is
explicitly constructed to render the system globally asymptotically stable in probability.
Furthermore, we address the problem of state-feedback inverse optimal stabilization in
probability. A simulation example is provided to show the effectiveness of the proposed
approach.
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1 Introduction

Consider the following stochastic high-order nonlinear systems described by:

dxi =
(

di(t)x
r
i+1 + fi(x̄i)

)

dt + φi(x̄i)
T dω, i = 1, . . . , n − 1,

dxn =
(

dn(t)ur + fn(x)
)

dt + φn(x)T dω,
(1)

wherex = (x1, . . . , xn)T ∈ R
n andu ∈ R are the system state, and control input,

respectively.x̄i = (x1, . . . , xi)
T , i = 1, . . . , n, x̄n = x. r ∈ R

∗ , {q ∈ R : q ≥ 1,
q = n

m ≥ 1 with positive odd integersn, m}. ω is anm-dimensional standard Wiener
process defined on a complete probability space(Ω,F , P ) with Ω being a sample space,
F being a filtration, andP being a probability measure.fi : R

i → R, andφi : R
i → R

m,
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Natural Science Foundation of China.

39



L. Liu, N. Duan

i = 1, . . . , n, are assumed to be at leastC1 functions withfi(0) = 0 andφi(0) = 0.
di(t) (i = 1, . . . , n) is aC1 function of timet, which represents an unknown time-varying
parameter.

Whenr = d1 = . . . = dn ≡ 1, system (1) reduces to the well-known normal
form, whose design of globally asymptotically stable state-feedback controller was firstly
given by [1]. Since then, by adopting different approaches,much research work has been
focused on the state-feedback for more general stochastic nonlinear systems under various
structures or growth conditions, e.g., [2–8] and references therein.

In the case ofr being positive odd integer andr > 1, similar to its deterministic
counterpart in [9] and the related papers, some interestingfeatures of (1) are that the
Jacobian linearization of the system is neither controllable nor feedback linearizable, so
the existing design tools are hardly applicable to (1). Recently, [10] addressed state-
feedback stabilization for high-order stochastic nonlinear systems with stochastic inverse
dynamics for the first time, [11–13] considered respectively the state-feedback stabiliza-
tion problem for more general systems with different systemstructures. All the existing
results on state-feedback stabilization are achieved under the assumption that the power
of stochastic nonlinear system is positive odd integer. While for more general stochastic
high-order nonlinear system in which system’s power is onlya ratio of odd integers (i.e.
r ∈ R

∗), to the best of authors’ knowledge, the problem of state-feedback stabilization
has not yet been considered.

In this paper, by extending the adding a power integrator technique and choosing an
appropriate Lyapunov function, we develop a systematic design algorithm that achieves a
smooth state-feedback controller, which ensures that the equilibrium at the origin of the
closed-loop system is globally asymptotically stable in probability. Furthermore, we also
address the problem of state-feedback inverse optimal stabilization in probability.

Notations. The following notations will be used throughout the paper.R+ denotes the
set of all nonnegative real numbers andR

n denotes the realn-dimensional space. For a
given vector or matrixX , XT denotes its transpose,Tr{X} denotes its trace whenX is
square, and|X | is the Euclidean norm of a vectorX . Ci denotes the set of all functions
with continuousith partial derivatives.K denotes the set of all functions:R+ → R+,
which are continuous, strictly increasing and vanishing atzero;K∞ denotes the set of
all functions which are of classK and unbounded;KL denotes the set of all functions
β(s, t) : R+×R+ → R+, which are ofK for each fixedt, and decrease to zero ast → ∞
for each fixeds. For a classK∞ functionγ whose derivative exists and is also a class
K∞ function,ℓγ denotes the transformℓγ(s)=s(γ̇)−1(s)−γ((γ̇)−1(s)), where(γ̇)−1(s)

stands for the inverse function ofdγ(s)
ds for any variables, LfV (x) , ∂V

∂x f(x).

2 Preliminary results and useful lemmas

Consider the following stochastic nonlinear system

dx = f(x) dt + g(x)T dω, x(0) = x0 ∈ R
n, (2)
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wherex ∈ R
n is the state of the system,ω is anm-dimensional standard Wiener process

defined on the complete probability space(Ω,F , P ). The Borel measurable functions
f : R

n → R
n andgT : R

n → R
n×m are locally Lipschitz inx ∈ R

n.
The following definitions and lemmas will be used throughoutthe paper.

Definition 1 ( [14]). For any givenV (x) ∈ C2 associated with stochastic system (2), the
differential operatorL is defined as:

LV (x) ,
∂V

∂x
f(x) +

1

2
Tr

{

g(x)
∂2V

∂x2
g(x)T

}

. (3)

Definition 2 ( [14]). For the stochastic system (2) withf(0) = 0, g(0) = 0, the
equilibrium x(t) = 0 of (2) is globally asymptotically stable (GAS) in probability if
for anyε > 0, there exists a classKL functionβ(·, ·) such thatP

{

|x(t)| < β(|x0|, t)
}

≥
1 − ε for any t ≥ 0 and x0 ∈ R

n \ {0}.

Lemma 1 ( [15]). For x ∈ R, y ∈ R, andp ≥ 1 is a constant, the following inequality
hold:

|x + y|p ≤ 2p−1|xp + yp|,

if p ∈ R
∗, then

|x − y|p ≤ 2p−1|xp − yp|.

Lemma 2 ( [15]). Let c, d be positive constants, given any positive numberγ > 0, the
following inequality holds:

|x|c|y|d ≤
c

c + d
γ|x|c+d +

d

c + d
γ−

c

d |y|c+d.

Lemma 3 ( [16]). Letx1, . . . , xn, p be positive real numbers, then

(x1 + . . . + xn)p ≤ max
{

np−1, 1
}(

x
p
1 + . . . + xp

n

)

.

Lemma 4( [15]). Letp ∈ R
∗ andx, y be real-valued functions, then for a constantc > 0

|xp − yp| ≤ p|x − y|
(

xp−1 + yp−1
)

≤ c|x − y|
∣

∣(x − y)p−1 + yp−1
∣

∣.

Lemma 5 ( [14]). Consider the stochastic system(2), if there exist aC2 functionV (x),
classK∞ functionsα1 andα2, constantsc1 > 0 andc2 ≥ 0, and a nonnegative function
W (x) such that

α1(|x|) ≤ V (x) ≤ α2(|x|), LV ≤ −c1W (x) + c2,

then
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(i) For (2), there exists an almost surely unique solution on[0,∞);

(ii) When c2 = 0, f(0) = 0, g(0) = 0, and W (x) = α3(|x|), where α3(·)
is a class K function, the equilibrium x = 0 is GAS in probability and
P{limt→∞ |x(t)| = 0} = 1.

Consider the following stochastic nonlinear system

dx = f̂(x) dt + ĝ1(x) dω + ĝ2(x)urdt, x0 ∈ R
n, (4)

wherex andω have the same definitions as those in (2).f̂ : R
n → R

n, ĝ1 : R
n → R

n×m

andĝ2 : R
n → R

n are some locally Lipschitz Borel measurable functions, andu is the
input. We give the result on the problem of inverse optimal stabilization in probability.

Lemma 6. Consider the control law

u = α(x) = −

[

R(x)−1(Lĝ2
V )T ℓγ(|(Lĝ2

V )R(x)−
1
2 |)

|(Lĝ2
V )R(x)−

1
2 |2

]
1
r

, (5)

whereV (x) is a Lyapunov function candidate,γ(·) is a classK∞ function whose deriva-
tive exists and is also a classK∞ function, andR(x) = R(x)T > 0 is a matrix-valued
function. If the control law(5) achieves GAS in probability for(4) with respect toV (x),
then the control law

u∗ = α∗(x) = −

[

β

2
R(x)−1(Lĝ2

V )T (γ̇)−1(|(Lĝ2
V )R(x)−

1
2 |)

|(Lĝ2
V )R(x)−

1
2 |

]
1
r

, β ≥ 2 (6)

solves the problem of inverse optimal stabilization in probability for (4) by minimizing the
cost function

J(u) = E

{ ∞
∫

0

[

l(x) + β2γ

(

2

β

∣

∣R(x)
1
2 ur
∣

∣

)]

dτ

}

, (7)

where

l(x) = 2β

[

ℓγ

(∣

∣(Lĝ2
V )R(x)−

1
2

∣

∣

)

− Lf̂V −
1

2
Tr

{

ĝ1(x)T ∂2V (x)

∂x2
ĝ1(x)

}]

+ β(β − 2)ℓγ

(
∣

∣(Lĝ2
V )R(x)−

1
2

∣

∣

)

.

Proof. Choosingû = ur, (4) becomes the same form as (3.66) in Theorem 3.9 of [14],
hence this lemma can be proved easily.

3 Controller design and analysis

The objective of this paper is to design a state-feedback controller for system (1) such
that the closed-loop system is GAS in probability at the origin and the controller is also
optimal in probability.

In this paper, we need the following Assumptions.
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Assumption 1. For eachdi(t), i = 1, . . . , n, there are positive real numbersλi andµi

such that

0 < λi ≤ di(t) ≤ µi.

Assumption 2. Givenr defined in(1), there are nonnegative constantsa1 anda2 such
that

|fi(x̄i)| ≤ a1

i
∑

m=1

|xm|r, |φi(x̄i)| ≤ a2

i
∑

m=1

|xm|
1+r

2 .

Remark 1. Assumption 2 is similar to Assumption 1 in [13], whose significance and
necessity is illustrated in that paper.

Defineλ , min{λ1, . . . , λn}, µ , max{µ1, . . . , µn}. We give the design proce-
dure of controller as follows.

Step 1. Introducingξ1 = x1 and constructing the first Lyapunov functionV1(x1) =
1
4k1ξ

4
1 , wherek1 > 0 is a constant, with the help of (1), (3) and Assumption 2, it can be

verified that

LV1 = k1ξ
3
1

(

d1(t)x
r
2 + f1(x1)

)

+
3

2
k1ξ

2
1Tr
{

φ1(x1)φ1(x1)
T
}

= d1(t)k1ξ
3
1xr

2 + k1ξ
3
1f1(x1) +

3

2
k1ξ

2
1 |φ1(x1)|

2

≤ k1ξ
3
1

(

d1(t)x
r
2 − λx∗r

2

)

+ λk1ξ
3
1x∗r

2 +

(

a1 +
3

2
a2
2

)

k1ξ
3+r
1 . (8)

Choosing the first smooth virtual controller

x∗

2 = −b1ξ1, b1 =

(

c1,1 + (a1 + 3
2a2

2)k1

λk1

)
1
r

, c1,1 > 0, (9)

and noting that−ξ3
1x∗r

2 ≥ 0, 0 < λ ≤ d1(t) ≤ µ, one gets

LV1 ≤ −c1,1ξ
3+r
1 + k1ξ

3
1

(

d1(t)x
r
2 − λx∗r

2

)

≤ −c1,1ξ
3+r
1 + k1d1(t)ξ

3
1(xr

2 − x∗r
2 )

≤ −c1,1ξ
3+r
1 + µk1|ξ1|

3|xr
2 − x∗r

2 |. (10)

Step 2.Defineξ2 = x2 − x∗

2 = x2 + b1x1. From (1) it follows that

dξ2 =
(

d2(t)x
r
3 + b1d1(t)x

r
2 + f2(x̄2) + b1f1(x1)

)

dt

+
(

φ2(x̄2) + b1φ1(x1)
)T

dω. (11)
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Choosing Lyanunov functionV2(x1, x2) = V1(x1) + 1
4k2ξ

4
2 , wherek2 > 0 is a constant,

by (3), (10) and (11), one has

LV2 ≤ − c1,1ξ
3+r
1 + d2(t)k2ξ

3
2xr

3 + µk1|ξ1|
3|xr

2 − x∗r
2 | + b1d1(t)k2ξ

3
2xr

2

+ k2ξ
3
2

(

f2(x̄2) + b1f1(x1)
)

+
3

2
k2ξ

2
2 |φ2(x̄2) + b1φ1(x1)|

2
. (12)

Using Lemmas 1, 2, 4, Assumptions 1, 2, one obtains

µk1|ξ1|
3|xr

2 − x∗r
2 |

≤ µck1|ξ1|
3|x2 − x∗

2|
∣

∣(x2 − x∗

2)
r−1 + x∗r−1

2

∣

∣

≤ µck1|ξ1|
3|ξ2|

r + µck1b
r−1
1 |ξ1|

2+r|ξ2|

≤ (b2,1,1 + b2,2,1)ξ
3+r
1 + ρ2,1ξ

3+r
2 , (13)

b1d1(t)k2ξ
3
2xr

2

≤ µb1k2|ξ2|
3|ξ2 − b1ξ1|

r

≤ 2r−1µb1k2|ξ2|
3
(

|ξ2|
r + |b1ξ1|

r
)

= 2r−1µk2b
1+r
1 |ξ1|

r|ξ2|
3 + 2r−1µb1k2ξ

3+r
2

≤ b2,1,2ξ
3+r
1 + ρ2,2ξ

3+r
2 , (14)

k2ξ
3
2

(

f2(x̄2) + b1f1(x1)
)

≤ k2|ξ2|
3
(

(a1 + a1b1)|ξ1|
r + a1|x2|

r
)

≤ k2|ξ2|
3
(

(a1 + a1b1 + 2r−1a1b
r
1)|ξ1|

r + 2r−1a1|ξ2|
r
)

= a1k2

(

1 + b1 + 2r−1br
1

)

|ξ1|
r|ξ2|

3 + 2r−1a1k2ξ
3+r
2

≤ b2,1,3ξ
3+r
1 + ρ2,3ξ

3+r
2 , (15)

3

2
k2ξ

2
2 |φ2(x̄2) + b1φ1(x1)|

2

≤ 3k2ξ
2
2

(

φ2
2(x̄2) + b2

1φ
2
1(x1)

)

≤ 3k2a
2
2ξ

2
2

((

2 + b2
1

)

ξ1+r
1 + 2x1+r

2

)

≤ 3k2a
2
2ξ

2
2

((

2 + b2
1 + 21+rb1+r

1

)

ξ1+r
1 + 21+rξ1+r

2

)

= 3k2a
2
2

(

2 + b2
1 + 21+rb1+r

1

)

ξ1+r
1 ξ2

2 + 3 · 21+rk2a
2
2ξ

3+r
2

≤ b2,1,4ξ
3+r
1 + ρ2,4ξ

3+r
2 , (16)

whereρ2,1, ρ2,2, ρ2,3, ρ2,4, b2,1,1, b2,2,1, b2,1,2, b2,1,3, b2,1,4 are some designed positive
constants. One substitutes (13)–(16) into (12) yields

LV2 ≤ −c2,1ξ
3+r
1 + k2ξ

3
2

(

d2(t)x
r
3 − λx∗r

3

)

+ λk2ξ
3
2x∗r

3 + ρ2ξ
3+r
2 , (17)

whereρ2 = ρ2,1+ρ2,2+ρ2,3+ρ2,4, c2,1 = c1,1−b2,1,1−b2,2,1−b2,1,2−b2,1,3−b2,1,4 > 0,
which together with the smooth virtual controller

x∗

3 = −b2ξ2, b2 =

(

c2,2 + ρ2

λk2

)
1
r

, c2,2 > 0, (18)
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and−ξ3
2x∗r

3 ≥ 0, 0 < λ ≤ d2(t) ≤ µ, leads to

LV2 ≤ −c2,1ξ
3+r
1 − c2,2ξ

3+r
2 + k2ξ

3
2

(

d2(t)x
r
3 − λx∗r

3

)

≤ −c2,1ξ
3+r
1 − c2,2ξ

3+r
2 + k2d2(t)ξ

3
2

(

xr
3 − x∗r

3

)

≤ −c2,1ξ
3+r
1 − c2,2ξ

3+r
2 + µk2|ξ2|

3
∣

∣xr
3 − x∗r

3

∣

∣. (19)

Stepi (i = 3, . . . , n). Suppose that at stepi − 1, there exist a set of virtual controllers
x∗

1, . . . , x
∗

i defined by

x∗

1 = 0, ξ1 = x1 − x∗

1 = x1,

x∗

k = −bk−1ξk−1, ξk = xk − x∗

k = xk + bk−1ξk−1, k = 2, . . . , i, (20)

such that the(i − 1)th Lyapunov function candidateVi−1(x1, . . . , xi−1) = 1
4

∑i−1
j=1 kjξ

4
j

satisfies

LVi−1 ≤ −ci−1,1ξ
3+r
1 − ci−1,2ξ

3+r
2 − . . . − ci−1,i−1ξ

3+r
i−1

+ µki−1|ξi−1|
3|xr

i − x∗r
i |, (21)

whereb1, . . . , bi−1 > 0 are designed parameters,ci−1,j , kj , (j = 1, . . . , i−1) are positive
constants. In the sequel, we will prove that (21) still holdsfor theith Lyapunov function
candidate

Vi(x1, . . . , xi) = Vi−1(x1, . . . , xi−1) +
1

4
kiξ

4
i . (22)

By (20) and (1), one has

ξi = xi + bi−1xi−1 + . . . + bi−1 . . . b1x1, (23)

and

dξi =

(

di(t)x
r
i+1+

i−1
∑

k=1

bi−1 . . . bkdk(t)xr
k+1+fi(x̄i)+

i−1
∑

k=1

bi−1 . . . bkfk(x̄k)

)

dt

+

(

φi(x̄i)+

i−1
∑

k=1

bi−1 . . . bkφk(x̄k)

)T

dω. (24)

From (21), (22) and (24), one gets

LVi ≤ −

i−1
∑

j=1

ci−1,jξ
3+r
j + di(t)kiξ

3
i xr

i+1 + µki−1|ξi−1|
3|xr

i − x∗r
i |

+ kiξ
3
i

i−1
∑

k=1

bi−1 . . . bkdk(t)xr
k+1+kiξ

3
i

(

fi(x̄i)+

i−1
∑

k=1

bi−1 . . . bkfk(x̄k)

)

+
3

2
kiξ

2
i

∣

∣

∣

∣

∣

φi(x̄i) +

i−1
∑

k=1

bi−1 . . . bkφk(x̄k)

∣

∣

∣

∣

∣

2

. (25)
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We concentrate on the last four terms in (25). Using (20), Lemmas 1–4 and Assump-
tions 1, 2, one gets

µki−1|ξi−1|
3|xr

i − x∗r
i |

≤ µcki−1|ξi−1|
3|ξi|

∣

∣(xi − x∗

i )
r−1 + x∗r−1

i

∣

∣

≤ (bi,i−1,1 + bi,i,1)ξ
3+r
i−1 + ρi,1ξ

3+r
i , (26)

kiξ
3
i

i−1
∑

k=1

bi−1 . . . bkdk(t)xr
k+1

≤ µki|ξi|
3

i−1
∑

k=1

bi−1 . . . bk|ξk+1 − bkξk|
r

≤ 2r−1µki|ξi|
3

i−1
∑

k=1

bi−1 . . . bk

(

|ξk+1|
r + |bkξk|

r
)

= 2r−1µki|ξi|
3
(

bi−1 . . . b2b
1+r
1 |ξ1|

r +
(

bi−1 . . . b1 + bi−1 . . . b3b
1+r
2

)

|ξ2|
r

+ . . . +
(

bi−1bi−2 + b1+r
i−1

)

|ξi−1|
r + bi−1|ξi|

r
)

≤ bi,1,2ξ
3+r
1 + . . . + bi,i−1,2ξ

3+r
i−1 + ρi,2ξ

3+r
i , (27)

kiξ
3
i

(

fi(x̄i) +

i−1
∑

k=1

bi−1 . . . bkfk(x̄k)

)

≤ a1ki|ξi|
3

(

i
∑

m=1

|xm|r +

i−1
∑

k=1

bi−1 . . . bk

k
∑

j=1

|xj |
r

)

= a1ki|ξi|
3
(

di,1,1|x1|
r + di,2,1|x2|

r + . . . + di,i−1,1|xi−1|
r + |xi|

r
)

≤ a1ki|ξi|
3
((

di,1,1 + 2r−1di,2,1b
r
1

)

|ξ1|
r + 2r−1

(

di,2,1 + di,3,1b
r
2

)

|ξ2|
r

+ . . . + 2r−1
(

di,i−1,1 + br
i−1

)

|ξi−1|
r + |ξi|

r
)

≤ bi,1,3ξ
3+r
1 + . . . + bi,i−1,3ξ

3+r
i−1 + ρi,3ξ

3+r
i , (28)

3

2
kiξ

2
i

∣

∣

∣

∣

∣

φi(x̄i) +
i−1
∑

k=1

bi−1 . . . bkφk(x̄k)

∣

∣

∣

∣

∣

2

≤ 3kiξ
2
i

(

|φi(x̄i)|
2 +

(

i−1
∑

k=1

bi−1 . . . bk|φk(x̄k)|

)2)

≤ 3kia
2
2ξ

2
i

(

di,1,2x
1+r
1 + di,2,2x

1+r
2 + . . . + di,i−1,2x

1+r
i−1 + ix1+r

i

)

≤ 3kia
2
2ξ

2
i

((

di,1,2 + 2rdi,2,2b
1+r
1

)

ξ1+r
1 + 2r

(

di,2,2 + di,3,2b
1+r
2

)

ξ1+r
2

+ . . . + 2r
(

di,i−1,2 + ib1+r
i−1

)

ξ1+r
i−1 + 2riξ1+r

i

)

≤ bi,1,4ξ
3+r
1 + . . . + bi,i−1,4ξ

3+r
i−1 + ρi,4ξ

3+r
i , (29)

whereρi,1, ρi,2, ρi,3, ρi,4, bi,i−1,1, bi,i,1, bi,1,2, . . ., bi,i−1,2, bi,1,3, . . ., bi,i−1,3, bi,1,4, . . .,
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bi,i−1,4 are positive constants with

ci,1 = ci−1,1 − bi,1,2 − bi,1,3 − bi,1,4 > 0,

...

ci,i−2 = ci−1,i−2 − bi,i−2,2 − bi,i−2,3 − bi,i−2,4 > 0,

ci,i−1 = ci−1,i−1 − bi,i−1,1 − bi,i,1 − bi,i−1,2 − bi,i−1,3 − bi,i−1,4 > 0, (30)

anddi,1,1 = 1+
∑i−1

k=1 bi−1 . . . bk, di,2,1 = 1+
∑i−1

k=2 bi−1 . . . bk, . . ., di,i−1,1 = 1+bi−1,
di,1,2 = (i− 1)

∑i−1
k=1 k(bi−1 . . . bk)2 + i, di,2,2 = (i− 1)

∑i−1
k=2 k(bi−1 . . . bk)2 + i, . . .,

di,i−1,2 = (i−1)2b2
i−1 +i. Substituting (26)–(30) into (25) and noting that−ξ3

i x∗r
i+1 ≥ 0

and0 < λ ≤ di(t) ≤ µ, the virtual controller

x∗

i+1 = −biξi, bi =

(

ci,i + ρi

λki

)
1
r

, ci,i > 0, (31)

leads to

LVi ≤ −ci,1ξ
3+r
1 − . . . − ci,i−1ξ

3+r
i−1 − ci,iξ

3+r
i + kiξ

3
i

(

di(t)x
r
i+1 − λx∗r

i+1

)

≤ −ci,1ξ
3+r
1 − . . . − ci,i−1ξ

3+r
i−1 − ci,iξ

3+r
i + kidi(t)ξ

3
i

(

xr
i+1 − x∗r

i+1

)

≤ −

i
∑

j=1

ci,jξ
3+r
j + µki

∣

∣ξi|
3
∣

∣xr
i+1 − x∗r

i+1

∣

∣, (32)

whereρi = ρi,1 + ρi,2 + ρi,3 + ρi,4 is a positive real number.
Wheni = n, by choosing the actual control law

u = x∗

n+1 = −bnξn, bn =

(

cn,n + ρn

λkn

)
1
r

, cn,n > 0, (33)

one has

LVn ≤ −

n
∑

i=1

cn,iξ
3+r
i , (34)

where

Vn(x1, . . . , xn) =
1

4

n
∑

i=1

kiξ
4
i (35)

andcn,i(i = 1, . . . , n) are positive real numbers.

Remark 2. For general systems, in the design procedure of controller,we can only give
the existence ofρi,1, ρi,2, ρi,3, andρi,4 (i = 2, . . . , n) obtained by using Lemmas 1–4
rather than their explicit definitions. While for a practical example, by appropriately
choosing design parameters,ρi,1, ρi,2, ρi,3, andρi,4 (i = 2, . . . , n) can be concretely
obtained, so the state-feedback controller (33) can be implemented, see Section 4 for the
details.
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We are now in a position to state the main result in this paper.

Theorem 1. If Assumptions1, 2hold for the stochastic nonlinear systems(1), under the
smooth state-feedback controller(33), then

(i) The closed-loop system consisting of(1), (9), (18), (20), (31)and(33)has an almost
surely unique solution on[0,∞) for any initial valuex0;

(ii) The equilibrium at the origin of the closed-loop system is GAS in probability and
the states can be regulated to the origin almost surely, moreprecisely,

P

{

lim
t→∞

n
∑

i=1

|xi(t)| = 0

}

= 1;

(iii) Specially, whendi(t) ≡ 1, i = 1, . . . , n, the control law

u∗ = −ξn

(

r + 3

6
βbr

n

)
1
r

, β ≥ 2 (36)

guarantees that the equilibrium at the origin of the closed-loop system is GAS in
probability and also minimizes the cost functional

J(u) = E

{ ∞
∫

0

[

l(x) + knb−3
n β2 r

r + 3

(

r + 3

3

)

−
3
r

(

2

β

)

r+3

r

ur+3

]

dτ

}

, (37)

wherel(x) is defined in Lemma6.

Proof. Using (1), (20), (34), (35) and Lemma 5, it is obvious that (i)and (ii) hold.
Now, we prove conclusion (iii). By (1), one gets

dx =











xr
2 + f1(x1)

...
xr

n + fn−1(x̄n−1)
fn(x)











dt +











φ1(x1)
T

...
φn−1(x̄n−1)

T

φn(x)T











dω +











0
...
0
1











urdt

, f̂(x) dt + ĝ1(x) dω + ĝ2(x)ur dt. (38)

Using (5), (35) and (38), one has

Lĝ2
Vn =

∂Vn

∂x
ĝ2 = knξ3

n, (39)

and

u = −
(

k−1
n ξ−3

n ℓγ

(
∣

∣knξ3
nR(x)−

1
2

∣

∣

))
1
r , (40)
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whereR(x) > 0 is a scalar-valued function. Choosing

γ(s) =
r

r + 3
s

r+3

r , (41)

one gets(γ̇)−1(s) = sr/3, which one substitutes into the definition ofℓγ(s) to obtain

ℓγ(s) = ss
r

3 −
r

r + 3
s

r+3

3 =
3

r + 3
s

r+3

3 . (42)

Choosing

R(x) =

(

r + 3

3
k
−

r

3
n br

n

)

−
6

r+3

, (43)

by (40), (42), one has

u = −

(

k−1
n ξ−3

n ℓγ

(∣

∣

∣

∣

∣

knξ3
n

(

r + 3

3
k
−

r

3
n br

n

)
3

r+3

∣

∣

∣

∣

∣

))
1
r

= −

(

ξ−3
n

3

r + 3
ξr+3
n

r + 3

3
br
n

)
1
r

= −bnξn, (44)

which has exactly the same form as (33). Since (44) achieves GAS in probability, by (6),
(39), (41) and (43), one can get the inverse optimal controller (36). From (7), (41) and
(43), one can obtain the cost function (37).

Remark 3. Let us compare the main contributions in this paper with [13]from the
following aspects: (i) We further to address the problem of state-feedback inverse optimal
stabilization in probability, which was not considered by [13]. (ii) The system’s powerr
in this paper is a ratio of odd integers, which is more generalthanp1 = . . . = pn = p

in [13], wherep is a positive odd integer. (iii) All inequalities in [13] areonly suitable
for the case ofr being positive integer, while forr being any positive real number, these
inequalities need to be reproved. (iv) Compared with [13], the operations of most of
inequalities in the design procedure of controller, whose powers involve more operations
between fraction and integer, are much more complicated.

4 A simulation example

Consider the following system

dx1 = x
5
3

2 dt +
1

10
x

4
3

1 dω,

dx2 =

(

(6 + cos t)u
5
3 +

1

5
x

5
3

1

)

dt +
1

20
x2 sin x2 dω, (45)
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whered1(t) = 1, d2(t) = 6 + cos t, f1(x1) = 0, φ1(x1) = 1
10x

4/3
1 , f2(x̄2) = 1

5x
5/3
1 ,

φ2(x̄2) = 1
20x2 sinx2. Obviously,λ1 = µ1 = 1, λ2 = 5, µ2 = 6. Next, we need to

prove the following inequality:

∣

∣

∣

∣

1

20
x2 sinx2

∣

∣

∣

∣

≤
1

10
x

4
3

2 . (46)

When|x2| = 0, one has| 1
20x2 sinx2| = 1

10x
4/3
2 ; when0 < |x2| < 1, one has|

1
20

sin x2

x2
| ≤

1
20 < 1

10 ≤ 1
10 |x2|

−
2
3 , so| 1

20x2 sinx2| ≤
1
10x

4/3
2 ; when|x2| ≥ 1, one has| 1

20x2 sin x2| ≤
1
20 |x2| ≤

1
10 |x2|

4
3 .

From (46), we geta1 = 1
5 , a2 = 1

10 in Assumption 2.
Next, we apply the above design procedure to (45). Introducing ξ1 = x1 − x∗

1

with x∗

1 = 0 and choosingV1(x1) = 1
4k1ξ

4
1 , it is easy to deduce from (45) thatLV1 ≤

−c1ξ
14
3

1 + k1ξ
3
1(x

5
3

2 − x
∗

5
3

2 ) with x∗

2 = −b1ξ1 = −( c1

k1
+ 3

200 )
3
5 x1.

Next, defineξ2 = x2 − x∗

2 = x2 + b1x1, obviously,dξ2 = ((6 + cos t)u5/3 +
1
5x

5/3
1 + b1x

5/3
2 ) dt + ( 1

20x2 sinx2 + b1
10x

4/3
1 ) dω. By lemmas 1,2,4, one obtains

∣

∣

∣

∣

k1ξ
3
1

(

x
5
3

2 − x
∗

5
3

2

)

∣

∣

∣

∣

≤ (d1+d2)ξ
14
3

1 +
5

14

(

9

14d1

)
9
5
(

5k1

3

)
14
5

ξ
14
3

2 +
3

14

(

11

14d2

)
11
3
(

10k1

3
b

2
3

1

)
14
3

ξ
14
3

2

, (d1 + d2)ξ
14
3

1 + ρ2,1ξ
14
3

2 ,

∣

∣

∣

∣

k2ξ
3
2

(

1

5
x

5
3

1 + b1x
5
3

2

)∣

∣

∣

∣

≤ k2|ξ2|
3

((

2
2
3 b

8
3

1 +
1

5

)

|ξ1|
5
3 + 2

2
3 b1|ξ2|

5
3

)

≤ d3ξ
14
3

1 +

(

9

14

(

5

14d3

)
5
9
(

k2

(

2
2
3 b

8
3

1 +
1

5

))
14
9

+ 2
2
3 b1k2

)

ξ
14
3

2

, d3ξ
14
3

1 + ρ2,2ξ
14
3

2 ,

3

2
k2ξ

2
2

∣

∣

∣

∣

1

20
x2 sin x2 +

b1

10
x

4
3

1

∣

∣

∣

∣

2

≤ 0.03k2ξ
2
2

((

2
5
3 b

8
3

1 + b2
1

)

ξ
8
3

1 + 2
5
3 ξ

8
3

2

)

≤ d4ξ
14
3

1 +

(

3

7

(

4

7d4

)
4
3
(

0.03k2

(

2
5
3 b

8
3

1 + b2
1

))
7
3 + 0.03k2 · 2

5
3

)

ξ
14
3

2

, d4ξ
14
3

1 + ρ2,3ξ
14
3

2 .
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ChoosingV2(x1, x2) = V1(x1) + 1
4k2ξ

4
2 , a direct calculation leads to

LV2 ≤ − c1ξ
14
3

1 + k1ξ
3
1

(

x
5
3

2 − x
∗

5
3

2

)

+ k2ξ
3
2

(

(6 + cos t)u
5
3 +

1

5
x

5
3

1 + b1x
5
3

2

)

+
3

2
k2ξ

2
2

∣

∣

∣

∣

1

20
x2 sin x2 +

b1

10
x

4
3

1

∣

∣

∣

∣

2

≤ − (c1 − d1 − d2 − d3 − d4)ξ
14
3

1 + (6 + cos t)k2ξ
3
2u

5
3 (47)

+ (ρ2,1 + ρ2,2 + ρ2,3)ξ
14
3

2 , (48)

wherek1, k2, d1, d2, d3, d4 are positive design constants. In simulation, we choosec1 =
2, c2 = d1 = d2 = d4 = 0.25, d3 = 1, k1 = k2 = 0.1 to obtainb1 = 6.0369,
ρ2,1 = 22.7717, ρ2,2 = 36.9291, ρ2,3 = 2.2228, and the control law

u = −b2ξ2 = −18.0627(6.0369x1 + x2). (49)

Substituting (49) into (48) leads toLV2 ≤ − 1
4 (ξ

14
3

1 + ξ
14
3

2 ).
In simulation, we choose the initial valuesx1(0) = −0.3 andx2(0) = 1.6. Fig. 1

gives the response of the closed-loop system (45) and (49), which demonstrates the
effectiveness of the control scheme.
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Fig. 1. The response of the closed-loop system (45) and (49).
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5 Conclusions

This paper deals with the state-feedback stabilization problem for a class of stochastic
nonlinear systems with a ratio of odd integers power for the first time. The designed
smooth state-feedback controller ensures that the equilibrium at the origin of the closed-
loop system is GAS in probability and the states can be regulated to the origin almost
surely. Furthermore, the problem of inverse optimal stabilization in probability is also
solved.

Some issues under current investigation are how to generalize the result in this paper
to more general class of stochastic nonlinear systems with aratio of odd integers power;
how to design an output-feedback controller for system (1).
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