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Abstract. The problem of classification of spatial Gaussian process observation into
one of two populations specified by different regression mean models and common
stationary covariance with unknown sill parameter is considered. Unknown parameters
are estimated from training sample and these estimators areplugged in the Bayes
discriminant function. The asymptotic expansion of the expected error rate associated
with Bayes plug-in discriminant function is derived. Numerical analysis of the accuracy
of approximation based on derived asymptotic expansion in the small training sample
case is carried out. Comparison of two spatial sampling designs based on values of this
approximation is done.
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1 Introduction

In classical discriminant analysis sometimes called supervised classification, the observa-
tions to be classified and observations in training sample are assumed to be independent.
However, in practical situations with temporally and spatially distributed data this is
usually not the case. Data that are close together in time or space are likely to be
correlated. Thus, to include temporal or spatial dependencies in the classification problem
is very important.

When populations are completely specified an optimal classification rule in the sense
of minimum misclassification probability is the Bayesian classification rule (BCR). In
practice, however, the complete statistical description of populations is usually not pos-
sible. Training sample is required for the estimation of theprobabilistic characteristics of
both populations. When estimators of unknown parameters are used, the expressions for
the expected error rate are very cumbersome even for the simplest procedures of DA. This
makes it difficult to build some qualitative conclusions. Therefore, asymptotic expansions
of the expected error rate are especially important.
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Many authors have investigated the performance of the plug-in version of the BCR
when parameters are estimated from training samples with independent observations or
training samples, where observations are temporally dependent (see e.g., [1, 2]).
Switzer [3] was the first to treat classification of spatial data, a work that was extended
in [4]. However, neither of these authors analyse the error rate of classification.̌Saltytė
and Dučinskas [5] derived the asymptotic expansion of the expected error rate when
classifying the observation of a univariate Gaussian random field into one of two classes
with different regression mean models and common variance.This result was generalized
to multivariate spatial-temporal regression model inŠaltytė-Benth and Dučinskas [6].
However, in these papers the interclass spatial correlation was assumed equal zero. Also,
the observation to be classified were assumed independent from training samples in all
publications listed above.

In this paper, both restrictions are deleted, i.e. interclass spatial correlations and
spatial correlations between observation to be classified and training sample assumed are
not equal zero. Performance of the plug-in linear discriminant function when the param-
eters are estimated from training sample formed by classified observations of Gaussian
random field is analyzed. We use the maximum likelihood (ML) estimators of unknown
parameters of means and common variance assuming that the spatial correlation is known.
Similar problems for group spatial classification is considered in [7].

2 The main concepts and definitions

The main objective of this paper is to classify the observations of spatial Gaussian process
{

Z(s) : s ∈ D ⊂ Rm
}

.

The model of observationZ(s) in populationΩl is

Z(s) = x′(s)βl + ε(s), (1)

wherex(s) is aq×1 vector of non random regressors andβl is aq×1 vector of parameters,
l = 1, 2. The error term is generated by zero – mean stationary spatial Gaussian process
{ε(s) : s ∈ D ⊂ Rm} with covariance function defined by nuggetless model for all
s, u ∈ D

cov{ε(s), ε(u)} = r(s − u)σ2, (2)

wherer(s − u) is the spatial correlation function andσ2 is variance as a sill parameter.
Consider the problem of classification of the observationZ0 = Z(s0) into one of

two populations specified above with given training sampleT .
Training sampleT is specified byT ′ = (T ′

1, T
′
2), whereTl is thenl × 1 vector ofnl

observations ofZ(s) from Ωl, l = 1, 2, n = n1 + n2.
Then the model ofT is

T = Xβ + E, (3)
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whereX is then × 2q design matrix,β′ = (β′
1, β

′
2) andE is then-vector of random

errors that has multivariate Gaussian distributionNn(0, σ2R).
The design matrixX in (3) is specified by

X = X1 ⊕ X2,

where symbol⊕ denotes the direct sum of matrices andXl is the nl × q matrix of
regressors forTl, l = 1, 2.

Denote byr0 the vector of correlations betweenZ0 andT . SinceZ0 is correlated
with training sample, we have to deal with conditional distribution of Z0 givenT = t
with meansµ0

lt and varianceσ2
0t that are defined by

µ0
lt = E(Z0|T ; Ωl) = x′

0βl + α0(T − Xβ), l = 1, 2, (4)

σ2
0t = V (Z0|T ; Ωl) = σ2k, (5)

where

x′
0 = x′(s0), α0 = r′0R

−1, k = 1 − r′0R
−1r0. (6)

Under the assumption that the populations are completely specified and for known
prior probabilities of populationsπ1 and π2 (π1 + π2 = 1), the Bayes discriminant
function (BDF) minimizing the probability of misclassification (PMC) is formed by the
log-ratio of conditional densities

Wt(Z0) =

(

Z0 −
1

2

(

µ0
1t + µ0

2t

)

)

(

µ0
1t − µ0

2t

)

/σ2
0t + γ, (7)

whereγ = ln(π1/π2).
In practical applications the parameters of the PDF are usually not known. Then the

estimators of unknown parameters can be found from trainingsamples taken separately
from Ω1 andΩ2. When estimators of unknown parameters are used, the plug-in version
of BDF (BPDF) is obtained.

Let µ̂0
1T , µ̂0

2T andσ̂2
0T be the estimators ofµ0

1T , µ0
2T andσ2

0T , respectively, obtained
by replacingβ andσ2 in equations (4) and (5) with their estimatorsβ̂ andσ̂2 based onT .
PutΨ′ = (β′, σ2) andΨ̂′ = (β̂′, σ̂2).

The BPDF is obtained by replacing the parametersβ, σ2 in (7) with their estimators.
Then the BPDF for random T is

WT (Z0; Ψ̂) =

(

Z0 − α0(T − Xβ̂) − 1

2
x′

0Hβ̂

)

(x′
0Gβ̂)

(

kσ̂2
)

+ γ, (8)

with H = (Iq , Iq) andG = (Iq ,−Iq), whereIq denotes the identity matrix of orderq.

Definition 1. The actual error rate for BPDF is defined as

P
(

Ψ̂
)

=

2
∑

l=1

πlP̂0l, (9)
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where, forl = 1, 2,

P̂0l = P0T

(

(−1)lWT (Z0; Ψ̂) > 0|Ωl

)

, (10)

is the conditional probability thatWT

(

Z0; Ψ̂
)

misclassifiesZ0 when it comes fromΩl

(conditional probability is based on conditional distribution of Z0 with meanµ0
lT and

varianceσ2
0T ).

In the considered case, the actual error rate specified in (9), (10) fordB(z0; Ψ̂) can
be rewritten as

P (Ψ̂) =

2
∑

l=1

πlΦ(Q̂l), (11)

whereΦ(·) is the standard normal distribution function, and

Q̂l = (−1)l
(

(al + bβ̂)′x′
0Gβ̂ + σ̂2γk

)/

(

σ

√

β̂′G′x0 x′
0Gβ̂k

)

, (12)

where forl = 1, 2

al = x′
0βl − α0Xβ, b = α0X − x′

0H/2. (13)

Definition 2. The expectation of the actual error rate with respect to the distribution ofT ,
designated asET {P (Ψ̂)}, is called the expected error rate (EER).

It is known (see [8]), that the ML estimators ofβ andσ2 based onT are

β̂ML = X
(

X ′R−1X
)−1

X ′R−1T, (14)

σ̂2
ML = (T − Xβ̂ML)′R−1(T − Xβ̂ML)/n. (15)

Using the properties of multivariate Gaussian distribution it is easy to prove that

β̂ML ∼ N2q(β, Σβ), Σβ = σ2
(

X ′R−1X
)−1

, (16)

σ̂2
ML ∼ σ2χ2

n−2q/(n − 2q). (17)

ML estimator ofβ and bias adjusted ML estimator ofσ2 are used in BPDF, i.e.̂β =
β̂ML, σ̂2 = σ̂2

MLn/(n − 2q).
Then by using (14)–(17) it is easy to show (see e.g., [9]) that

ET (∆β̂) = 0, ET (∆β̂′∆β̂) = Σβ , ET

(

∆σ̂2∆β̂
)

= 0, (18)

ET

(

∆σ̂2
)

= 0, ET (∆σ̂)2 = 2σ4/(n − 2q), (19)

where

∆β̂ = β̂ − β, ∆σ̂2 = σ̂2 − σ2.

Put

∆2
0 = (µ1T − µ2T )2/

(

kσ2
)

. (20)

Let λmax(R) be the largest eigenvalue ofR and letϕ(·) be the standard normal distribu-
tion density function.
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3 The asymptotic expansion of EER

Make the following assumptions:

(A1) n(X ′X)−1 → V , asn → ∞, whereV is positively definite2q × 2q matrix with
finite determinant;

(A2) rank(X) = 2q; λmax(R) < v < +∞, asn → ∞;

(A3) n1/n2 → u, asn1, n2 → ∞, 0 < u < ∞.

Theorem 1. Suppose that observationZ0 to be classified by BPDF and let assumptions
(A1)–(A3) hold. Then the asymptotic expansion of EER is

ET

(

P (Ψ̂)
)

=

2
∑

l=1

πlΦ(Ql)

+ π1ϕ(Q1)
{

C + 2γ2/(n − 2q)
}

/2∆0 + O
(

1/n2
)

, (21)

where for l = 1, 2

Ql = −∆0/2 + (−1)lγ/∆0, (22)

C = ΛΣβΛ′∆2
0/k, Λ = α0X − x′

0

(

H/2 + γG/∆2
0

)

. (23)

Proof. ExpandingP (Ψ̂) in the Taylor series about pointŝβ = β andσ̂2 = σ2, we have

P
(

Ψ̂
)

= Pβ + P ′
β∆β̂ + P̂σ∆σ̂2

+
1

2

(

∆′β̂P̂ ′′
β ∆β̂ + 2∆β̂′P̂ ′′

βσ2 + P̂ ′′
σ2(∆σ̂)2

)

+ R3, (24)

whereR3 is Lagrange remainder.
Taking the expectation of the right side of (24) and using (18), (19) we get

ET

(

P (Ψ̂)
)

= Pβ +
1

2
tr(P̂ ′′

β Σβ) + P̂ ′′
σ2

σ4

n − 2q
+ ET (R3). (25)

Note that

P̂ ′′
β = π1ϕ(Q1)

(

Λ′x′
0Gββ′G′x0Λ/k2

)

(26)

and

P̂ ′′
σ2 = π1ϕ(Q1)γ

2/
(

σ4∆0

)

. (27)

Remember, that Lagrange remainderR3 is the third order polynomial with respect
to the components of∆β̂ and∆σ̂2. Coefficients of this polynomial are the third order
partial derivatives ofP (Ψ̂) with respect toβ̂ andσ̂2 estimated in the neighbourhood of
their true values.
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K. Dučinskas

It is obvious that all third order moments of components of normally distributed
vector∆β̂ are equal 0 and

ET

(

∆σ̂2
)3

= 8/(n − 2q)2 = O
(

1/n2
)

.

Third order partial derivatives ofΦ(θ̂l) with respect tôβ andσ̂2 are bounded by the
uniformly integrable functions in the same neighbourhood.

Then we can conclude that

ET (R3) = O
(

1/n2
)

. (28)

Notice that

∆2
0 = (x′

0Gβ)2/(kσ)2. (29)

Putting (26)–(29) into (25) we complete the proof of the theorem.

It is easy to notice that this formula agrees with the formulas derived before by other
authors (see e.g., [2]).

4 Example and discussions

The first numerical example is considered to confirm the accuracy of the approximation
based on proposed asymptotic expansion of the expected error rate in the finite (even
small) training sample case.

In this example, observations are assumed to arise from univariate spatial Gaus-
sian process onD with unknown constant mean and an isotropic exponential correlation
function given byr(h) = exp{−|h|/α}. Then semivariogram has the formγ(h) =
σ2(1 − exp{h/α}).

With an insignificant loss of generality the cases withm = 1, n1 = n2 = n0

and π1 = π2 = 0.5 are considered. The Machalanobis distance between marginal
distributions ofZ0 is specified by∆ = |(β1 − β2)/σ|. Then from (5), (6) and (20) it
follows thatk = 1 − r′0R

−1r0, ∆0 = ∆/
√

k, γ = 0.
Denote theoretical values of EER by TER.
Assume thatD is a5 × 5 square grid points onR2

+ with unit spacing.
For greater interpretability, correlationr(h) function is reparametrized as

r(h) = ρ|h|, whereρ represents the correlation between adjacent points inD. Using
K-optimal spatial sampling design (SSD) (see [10]) forρ ∈ [0.25; 1) andn1 = n2 = 2
we have

D1 = {(0, 3), (3, 4)}, D2 = {(1, 0), (4, 3)},

whereDi is the set of points inD, where training sampleTi is taken,i = 1, 2.
Let the observation to be classified is taken at points0 = (2, 2).
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The values of AER and the values of index of relative accuracyof proposed asymp-
totic expansion specified by

η = |AER− TER|/TER

are given in Table 1 for various values of and for training sample design described above.
Independent observations case (ρ = 0) is included in Table 1 in order to estimate the

effect of the spatial correlation to the expected error rate.
Table 1 shows that AER values increases with spatial correlation.

Table 1. Values of AER,η for theK-optimal SSDn1 = n2 = 2 andπ1 = π2 = 0.5

∆ AER η AER η

ρ = 0 ρ = 0.25

0.2 0.46513 0.05910 0.46352 0.06198
0.6 0.39639 0.12350 0.39174 0.13057
1.0 0.33054 0.13503 0.32337 0.14497
1.4 0.26929 0.11267 0.26036 0.12446
1.8 0.21400 0.07451 0.20419 0.08703
2.2 0.16562 0.03693 0.15578 0.04898
2.6 0.12465 0.01061 0.11546 0.02105
3.0 0.09109 0.00141 0.08304 0.00632

ρ = 0.5 ρ = 0.7

0.2 0.45788 0.07155 0.44693 0.08900
0.6 0.37549 0.15162 0.34448 0.18464
1.0 0.29842 0.17120 0.25234 0.20497
1.4 0.22948 0.15163 0.17516 0.17812
1.8 0.17049 0.11192 0.11491 0.12797
2.2 0.12223 0.06952 0.07109 0.07652
2.6 0.08446 0.03648 0.04141 0.03823
3.0 0.05619 0.01638 0.02268 0.01613

ρ = 0.8 ρ = 0.9

0.2 0.43512 0.10673 0.40788 0.14390
0.6 0.31204 0.21332 0.24227 0.25848
1.0 0.20702 0.22758 0.12200 0.24158
1.4 0.12642 0.18748 0.05144 0.16326
1.8 0.07075 0.12474 0.01799 0.08168
2.2 0.03617 0.06730 0.00519 0.03076
2.6 0.01685 0.02970 0.00123 0.00912
3.0 0.00714 0.01091 0.00024 0.00241

Analysing the content of the Table 1 we can conclude the proposed approximation
of EER based on derived asymptotic expansion is sufficientlyaccurate even in small
training sample (n = 4) case, because the values of the index of relative accuracy is
not so large (η ∈ [0.0241; 0.25848]). It is interesting to notice thatη attains its minimal
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and maximal values (these values are underlined in the Table1) in the same case with
strongest dependence among observations (i.e.,ρ = 0.9) but with different degree of
separation between populations (i.e.,∆ = 0.3 and∆ = 0.6). It is to be noted that in
case of strongly separated populations (∆ ≥ 1) the proposed approximation often is more
accurate, than in case of “close” populations (∆ < 1).

So the results of numerical analysis give us strong arguments to hope that proposed
asymptotic expansion will yield useful approximations of expected error rate of classifi-
cation of spatially correlated Gaussian observations in finite training (even small) sample
case.

The second example numerically illustrates the comparisonof two SSD based on the
minimum of AER criterion.

Assume thatD is a 2 × 2 square grid points onR2
+ with unit spacing. Let the

observation to be classified is taken at points0 = (1, 1) and T is taken in the second order
neighbourhood ofs0 i.e. n = 8.

Consider two SSDξ1 andξ2 specified by

ξ1 = {s0, D1 ={(1, 2), (2, 2), (2, 1), (2, 0)}, D2 ={(1, 0), (0, 0), (0, 1), (0, 2)}},
ξ2 = {s0, D1 ={(1, 2), (2, 1), (0, 1), (1, 0)}, D2 ={(0, 0), (0, 2), (2, 0), (2, 2)}}.
They are illustrated in Fig. 1.

Fig. 1. Two different SSD withD1 andD2 points signed as• and∗, respectively.

Letd(l)
i be the sum of distances froms0 to pionts inDi, for SSDξl, i = 1, 2, l = 1, 2.

Thend
(l)
12 = |d(l)

1 − d
(l)
2 | represents the degree the population labels assymetry in training

sample. In the considered situation we haved
(1)
12 = 0, d

(2)
12 = 4(

√
2 − 1).

Two levels of populations seperability i.e.∆ = 0.2 and∆ = 2.0 are considered.
Optimality of the SSD for supervised classificationξl is evaluated by AERl, l = 1, 2.

The values of AERl for l = 1, 2 are given in Table 2 for various values ofρ andα,
that represent the range of spatial correlation between observations of spatial Gaussian
process.

Analyzing the figures in Table 2 we can conclude that optimality of SSD depends an
degree of population labels assymmetry in training sample,i.e. the minimum of proposed
criterion is attained for symmetric SSDξ1 (d12 = 0). The larger value of AER is obtained
for ξ2 with largerd12.
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The conclusions described above are valid for both levels ofpopulations serepability
(∆ = 0.2 and∆ = 2.0) and for various values of the range for spatial correlations.

Table 2. Values of AERl, l = 1, 2 for ∆ = 0.2 and∆ = 2.0 andπ1 = π2

ρ α AER1 AER2 AER1 AER2

∆ = 0.2 ∆ = 2.0

0.14 0.5 0.45954 0.45977 0.15497 0.15613
0.37 1.0 0.45111 0.45220 0.10962 0.11477
0.51 1.5 0.44275 0.44464 0.07493 0.08171
0.62 2.0 0.43514 0.43769 0.05123 0.05801
0.67 2.5 0.42822 0.43130 0.03521 0.04127
0.72 3.0 0.42186 0.42540 0.02434 0.02946
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