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Abstract. In this paper, we investigate the synchronization of chaotic systems consisting
of non-identical parametrically excited oscillators. Thebackstepping design, which is a
recursive procedure that combines the choice of a Lyapunov function with the design of a
controller is generalized and employed so as to achieve global chaos synchronization
between a parametrically excited gyroscope and each of the parametrically excited
pendulum and Duffing oscillator. Numerical simulations areimplemented to verify the
results.
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1 Introduction

Chaotic behaviour is a well-known phenomenon in physics, engineering, biology, and
many other scientific disciplines. Recently, it has received much attention [1, 2]. The
control and synchronization of chaotic systems, represents a challenge, since a chaotic
system is extremely sensitive to small pertubations. Notwithstanding, the possibility
of control and synchronization of chaotic systems under certain conditions have been
established [1–8]. Due to the connection between control and synchronization, recent
studies cast the problem of synchronization in the framework of control theory.

In this light, various techniques have been proposed for achieving synchronization
between identical and non-identical systems. For instance, the active control scheme
proposed by Bai and Lonngren [9] has received considerable attention in the last few
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years due to its simplicity and robustness. This scheme has been modified over time,
but recently, Lei et al. [10] applied Lyapunov stability theory and Routh-Hurwitz criteria
to synchronize identical parametrically excited system byusing the active control tech-
nique. The backstepping design scheme which can guarantee global stability, tracking
and transient performance for a broad class of strict-feedback nonlinear systems, has
been widely employed for controlling, tracking and synchronizing many chaotic systems
[11–16] as well as hyperchaotic systems [18]. The advantages of backstepping include
applicability to a variety of chaotic systems with or without external excitation, need for
only one controller to realize synchronization, and have requirement of less control effort
in comparison with other control methods [12,13,18].

In [12], Tan et al. proposed an adaptive backstepping designfor synchronizing
identical chaotic systems. However, in practice most system are non-identical. There-
fore, it is very necessary to synchronize two non-identicalchaotic systems. Since non-
identical chaotic systems have different nonlinear functions, different number of equilib-
rium points, different phase maps and shapes, synchronization of non-identical chaotic
systems is difficult to achieve and hence has received less attention [19–21,23,24].

Ge et al. [19] constructed control functions based on linearcoupling of the state
variables of the drive and response systems. However, the state variables need to be
seperated from the others and coupled into a linear couplingterm to add into the syn-
chronized systems. This is difficult to realize in practice.In [20], the controller was
designed by constructing the Lyapunov function or calculating Lyapunov exponent to
realize synchronization, but the calculations of Lyapunovexponent is usually difficult. To
address the problems associated with the applications of the controllers in [19, 20], Lü et
al. [21] presented a nonlinear feedback control strategy for synchronizing different chaotic
systems. In addition, the method of active control has been applied by Njah and Vincent
[22] to synchronize between single and double well Duffing-Van der Pol oscillator and
Vincent in [23] applied the method to achieve synchronization between different 4-D
chaotic systems while Zhang et al. [18] proposed an active-backstepping method to solve
this problem. All the approaches described in [18–21,23,24], including the active-sliding
mode control [24] employed control functions which are numerically equal to the dimen-
sion of the system. This requirement makes the controllers very complex for practical
applications. A recent analysis in [16, 17] shows that the adaptive backstepping design
[12], besides its efficiency would also reduce considerablythe controller complexity, since
only one control function is required to achieve the synchronization goal. Thus, in this
paper we proposed a generalized adaptive backstepping strategy for synchronizing non-
identical chaotic systems. This problem has not been treated previously in the literature
to the best of our knowledge.

Specifically, we illustrate this approach using non-identical parametrically excited
systems. Parametrically excited systems have been widely explored for modeling the
dynamic behaviour of many engineering systems such as offshore platforms, buildings
under earthquakes, orientation information [25–28] and soon. However, not much atten-
tion has been given to the study of synchronization of parametrically excited systems.
A few reports, can be found in [10, 28–32]. In [10] the synchronization of identical
parametrically excited pendulum and the Duffing oscillators were considered separately
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by Lei et al., while in [29–31], the synchronization of identical nonlinear gyroscope
were treated. In all of the above reports, synchronization between non-identical system
were not treated except in [32], where we considered the synchronization of different
parametrically driven oscillators using active control method.

The rest of the paper is organized as follows: in the following section, we formulate
the problem, while in Section 3, we give a brief description of the systems under consider-
ation. The adaptive synchronization between the parametric gyroscope and pendulum are
presented in Section 4 and that between the parametric gyroscope and Duffing oscillator is
presented in Section 5. Numerical simulations are also given to verify the results. Finally,
the paper is concluded in Section 6.

2 Problem formulation

Consider a chaotic system described by

ẋ = A(t)x + f(x), (1)

wherex(t) ∈ R
n is an n-dimensional state vector of the system,A(t) ∈ R

n is a time-
periodic matrix for the system parameter, andf : R

n → R
n is the nonlinear part of

the drive system which is continuously differentiable and satisfies the global Lipschitz
condition,

‖f(x1) − f(x2)‖ ≤ c‖x1 − x2‖, ∀x1, x2 ∈ R
n for some c > 0. (2)

The response system is given by

ẏ = B(t)y + g(y) + u(t), (3)

wherey(t) ∈ R
n denotes the state vector of the responding system,B(t) ∈ R

n is the
matrix of the response system parameter, andg : R

n → R
n is the nonlinear part of the

responding system.u(t) ∈ R
n is a controller which is to be designed.

If A(t) = B(t) andf(x) = g(y), thenx andy are the states of two identical systems.
If A(t) 6= B(t) or/andf(x) 6= g(y), thenx andy are the states of two different chaotic
systems. The case for two different chaotic systems is what we treat here.

By properly choosingu, synchronization between the drive and response system can
be achieved. The dynamics of the synchronization errors canbe obtained as

ė = C(t)e + g(y) − f(x) + u(t), (4)

whereC(t) = B(t)−A(t) is the matrix of the linear part of the error dynamics parameter
ande = y − x. Hence, the synchronization goal is to makelimt→+∞‖e(t)‖ = 0.

In the absence of the controlu(t), the error system (4) would have an equilibrium at
(0, 0). If a controlu(t) is chosen such that the equilibrium(0, 0) remains unchanged,
then the synchronization problem can be transformed to thatof realizing asymptotic
stabilization of system (4) about(0, 0). Thus our objective is to design an adaptive
feedback controller for system (3) that guarantees global stability at the origin.
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The backstepping design procedure containsn steps. At first an intermediate control
function αi shall be developed using an appropriate Lyapunov function,Vi. Next an
update for the parameter estimate is designed, thereafter,the stabilizing functionαi and
an update law are designed to render the derivative of the chosen Lyapunov function
negative definite. We illustrate the approach with examplesin Sections 4 and 5.

3 System description

Detailed description of the systems under study can be foundin [27, 29, 31, 33] and
references therein.

The equation governing the motion of theparametrically excited gyrois given by [29]

ẋ1 = y1,

ẏ1 = g(x1) − ay1 − by3
1 + β sinx1 + f sin ωt sinx1,

(5)

whereg(x1) = −α2 (1−cos x1)
2

sin3 x1

.
The nonlinear gyro given by equation (5) is taken to be the driver system. It exhibits

varieties of dynamical behaviour including chaotic motion– displayed in Fig. 1 for the
following parametersα2 = 100, β = 1, a = 0.5, b = 0.05, ω = 2, andf = 35.5.
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Fig. 1. The phase portrait of the chaotic gyro.

The first slave system under consideration is aparametrically excited chaotic pen-
dulum, which can be described by [27]

ẋ2 = y2,

ẏ2 = −hy2 − sinx2 − ρ cosωt sinx2 + u(t),
(6)

whereu is a control input to be determined. The chaotic attractor ofthis pendulum (6) for
the following parametersh = 0.1, ρ = 2.0 andω = 2.0 is displayed in Fig. 2.
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Fig. 2. The phase portrait of the chaotic pendulum.

The second slave system is aparametrically excited Duffing systemsubject to har-
monic parametric excitation in the form [33]

ẋ2 = y2,

ẏ2 = −γy2 + x2 − x2
3 + µx2 sin Ωt + u(t),

(7)

whereu is a control input to be determined.
The phase portrait of the chaotic attractor associated withDuffing system (7) for

γ = 0.2, µ = 0.5 andΩ = 1.0 is given in Fig. 3.
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Fig. 3. The phase portrait of the chaotic Duffing oscillator.
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4 Adaptive synchronization between the gyroscope and pendulum

Here we synchronize the parametric gyroscope (5) with the parametric pendulum (6),
where the gyro is the drive system and pendulum is the response system.

Let the error state between (5) and (6) beex = x2 − x1 andey = y2 − y1.
Using the above definition, we have the following error dynamics for the drive-

response system as:

ėx = y2 − y1,

ėy = −hy2 − sin x2 − ρ cosωt sin x2 − g(x1) + ay1

+ by1
3 − β sinx1 − f sin ωt sinx1 + u(t).

(8)

The objective is to find a control law so that system (8) is stabilized at the origin.
Starting from the first equation of system (8), an estimativestabilizing functionα1(ex) has
to be designed for the virtual controley in order to make the derivative ofV1(ex) = 1

2ex
2,

negative definite whenα1(ex) = −ex. Define the error variablew2 as

w2 = ey − α1(ex). (9)

Considering the(ex, w2) subspace given by

ėx = w2 − ex,

ẇ2 = −hey + y1(a − h + by1
2) − g(x1) − sin(ex + x1)(1 + ρ cosωt)

− sin x1(β + f sin ωt) + w2 − ex + u(t)

(10)

which form the complete system.
Choosing the Lyapunov function

V2(ex, w2) = V1(ex) +
1

2
w2

2 . (11)

The derivative of equation (11) along the error dynamics (10) is

V̇2 = −e2
x + w2

[

− hey + y1

(

a − h + by1
2
)

− g(x1) − sin(x2)(1 + ρ cosωt)

− sin x1(β + f sin ωt) + w2 + u(t)
]

. (12)

If

u(t) = −
[

− hey + y1

(

a − h + by1
2
)

− g(x1) − sin(x2)(1 + ρ cosωt)

− sin x1(β + f sin ωt) + 2w2

]

, (13)

then

V̇2 = −e2
x − w2

2 < 0 (14)
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is negative definite and according to Lasalle-Yoshizawa theorem [34], the error dynamics
will converge to zero ast → ∞, while the equilibrium(0, 0) remains global asymptoti-
cally stable. Thus, the synchronization between two non-identical parametrically excited
system is achieved via the adaptive backstepping design.

We performed numerical simulations for the systems with parameters as stated ear-
lier and the initial conditions are(x1, y1) = (1,−1) , (x2, y2) = (1, 1). In Fig. 4 and
Fig. 5, we display a situation where the control was de-activated and activated att = 0
respectively. It is very clear that the synchronization hasbeen achieved since the error
dynamics (e1, e2) between the drive and the response systems approaches zeroast → ∞.
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Fig. 4. Error dynamics of the coupled system when the active controller is de-activated
for a parametric gyro and pendulum: (a)ex, (b) ey.
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Fig. 5. Error dynamics of the coupled system when the active controller is activated for
a parametric gyro and pendulum: (a)ex, (b) ey.
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5 Adaptive synchronization between the gyroscope and Duffing
oscillator

Here we synchronize the parametric gyroscope (5) with the parametric Duffing oscilla-
tor (7), where the gyro is the drive system and Duffing oscillator is the response system.

Let the error state between (5) and (7) beex = x2 − x1 andey = y2 − y1.
Using above definition, we have the following error dynamicsfor the drive-response

system as:

ėx = y2 − y1,

ėy = −γy2 + x2 − x3
2 + µx2 sin Ωt − g(x1) + ay1

+ by3
1 − β sin x1 − f sin ωt sinx1 + u(t).

(15)

The objective is to find a control law so that system (15) is stabilized at the origin.
Starting from the first equation of system (15), an estimative stabilizing functionα1(ex)
has to be designed for the virtual controley in order to make the derivative ofV1(ex) =
1
2ex

2, negative definite whenα1(ex) = −ex. Define the error variablew2 as

w2 = ey − α1(ex). (16)

Considering the(ex, w2) subspace given by

ėx = w2 − ex,

ẇ2 = −γey + y1

(

a + by2
1 − γ

)

+ ex(1 − e2
x − 3exx1 − 3x2

1 + µ sinΩt)

+ x1

(

1 − x2
1 + µ sin Ωt

)

− g(x1) − sin x1(β + f sin ωt) + w2 + u(t),

(17)

which form the complete system.
Choosing the Lyapunov function

V2(ex, w2) = V1(ex) +
1

2
w2

2 . (18)

The derivative of equation (18) along the error dynamics (17) is

V̇2 = −e2
x + w2

[

− γey + y1

(

a + by2
1 − γ

)

+ ex

(

1 − e2
x − 3exx1 − 3x2

1 + µ sin Ωt
)

+ x1(1 − x2
1 + µ sin Ωt) − g(x1)

− sin x1(β + f sin ωt) + w2 + u(t)
]

. (19)

If u(t) is chosen such that

u(t) = −
[

− γey + y1

(

a + by2
1 − γ

)

+ ex

(

1 − e2
x − 3exx1 − 3x2

1 + µ sin Ωt
)

+ x1

(

1 − x2
1 + µ sinΩt

)

− g(x1) − sin x1(β + f sin ωt) + 2w2

]

, (20)

then

V̇2 = −e2
x − w2

2 < 0 (21)
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is negative definite and according to Lasalle-Yoshizawa theorem [34], the error dynamics
will converge to zero ast → ∞, while the equilibrium(0, 0) remains global asymp-
totically stable. Thus, the synchronization between the parametric gyroscope and the
parametric Duffing oscillator is achieved via the adaptive backstepping design.

We performed numerical simulations for the systems with parameters as stated ear-
lier and the initial conditions are(x1, y1) = (1,−1) , (x2, y2) = (1, 2.1). In Fig. 6 and
Fig. 7, we display a situation where the control was de-activated and activated att = 0. It
is very clear that the synchronization has been achieved since the error dynamics (e1, e2)
between the drive-response system approaches zero ast → ∞.
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Fig. 6. Error dynamics of the coupled system when the active controller is de-activated
for a parametric gyro and Duffing oscillator: (a)ex, (b) ey.
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Fig. 7. Error dynamics of the coupled system when the active controller is activated for
a parametric gyro and Duffing oscillator: (a)ex, (b) ey .
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6 Conclusions

Backstepping is a systematic Lyapunov method to design control algorithms which sta-
bilize nonlinear systems. In this paper, we have been able tosynchronize non-identical
parametrically excited systems via adaptive backsteppingdesign for the first time. The
work by Ge et al. [35], Tan et al [12] etc have been extended to achieve the set goal. To
the best of our knowledge, previous authors have not utilized the adaptive backstepping
design method to synchronize non-identical systems, of which the active control have
been found valuable. The adaptive method implemented here allows for flexibility in
the controller design and global stability based on the appropriate choice of Lyapunov
functions, thus, it can readily be extended to other non-identical chaotic systems other
than those with parametric excitation as well as higher dimensional chaotic systems. Our
results, complimented with numerical simulations, show that the method is effective and
feasible.
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