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Abstract. The steady two-dimensional laminar forced flow and heat transfer of a viscous
incompressible electrically conducting and heat-generating fluid past a permeable wedge
embedded in non-Darcy high-porosity ambient medium with uniform surface heat flux
has been studied. The governing equations are derived usingthe usual boundary layer and
Bossinesq approximations and accounting for the applied magnetic filed, permeability of
porous medium, variable porosity, inertia and heat generation effects. These equations
and boundary conditions are non-dimenstionalized and transformed using non-similarity
transformation. The resulting non-linear partial differential equations are then solved
numerically subject to the transformed boundary conditions by a finite difference method.
Comparisons with previously published works are performedand the results are found
to be in excellent agreement. Numerical and graphical results for the velocity and
temperature profiles as well as the skin friction and Nusseltnumber are presented and
discussed for various parametric conditions.
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1 Introduction

Convective heat transfer from surfaces embedded in porous media has been the topic of
several studies in recent year. This interest in the subjectstems from various engineering
applications in geothermal reservoirs, petroleum industries, transpiration cooling, storage
of nuclear waste materials, separation processes in chemical industries, building thermal
insulation, and solar heating systems. Early work on porousmedia used the Darcy law
that neglects important effects such as boundary and inertia effects. Vafai and Tien [1]
have reported a pioneering work on the boundary and inertia effects of porous media on
convective flow and heat transfer situations. In recent years, enhanced models of porous
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media have been reported. These models have been applied forsimulating more gene-
ralized situations such as flow through packed and fluidized beds and liquid metal flow
through dendritic structures in alloy casting (Nithiarasuet al. [2]). Some of these models
deal with variable porosity effects near the boundary in which the porosity distribution
exhibits a peak value there and then decays asymptotically beyond that value. The basis
for these models was the early experimental work of Benenatiand Brosilow [3] on void
fraction distribution in packed beds. Examples of such models are reported and employed
by Vafai [4], Vafai et al. [5], Poulikakos and Renken [6], andNithiarasu et al. [2]. Other
models have dealt with thermal dispersion or secondary flow effect in porous media which
result from mixing and recalculation of local fluid particles through tortuous paths formed
by the spherical particles in packed beds. Examples of thesemodels have been reported
by Cheng and Vortmeyer [7] and Amiri and Vafai [8].

Also, Darcy’s law has been the momentum equation used in manystudies of fluid
flow in porous media. Because Darcy’s law is of order one less than the Navier-Stokes
equation, only the impermeable boundary condition at a surface can be satisfied; the no-
slip boundary condition cannot. In contrast with rocks, soil, sand, and other media that do
fall within this category, certain porous materials, such as foam metals and fibrous media,
usually have high porosities. In these media, the boundary and inertia effects not included
in Darcy’s model may alter the flow and heat-transfer characteristics. It is therefore
necessary to determine the conditions under which these effects are important. When
the Reynolds number based on the pore size is greater than unity and there is a boundary
impermeable wall, the non-Darcy effects (the inertia and boundary effects) should be
included in the momentum equation. The inertia effects can be accommodated through
the so-called Forchheimer’s extension, while the boundaryeffects can be modeled, in a
formalization known as Brinkman’s extension, through the inclusion of a viscous shear-
stress term.

On other hand, hydromagnetic flows and heat transfer in porous media have been
considered extensively in recent years due to their occurrence in several engineering
processes such as compact heat exchangers, metallurgy, casting, filtration of liquid metals,
cooling of nuclear reactors and fusion control. Ram [9] considered hydromagnetic heat
and mass transfer through a porous medium in a rotating fluid.The steady free convection
flow over a vertical plate in highly porous media taking into account the convective and
viscous terms in the momentum equation has been investigated by Raptis and Kofousias
[10]. Takhar and Beg [11] have reported on the effects of transverse magnetic field on
mixed convection flow over a vertical plate embedded in porous medium. Rees and
Pop [12] examined the effect of the variable permeability onthe free convection flow
on a vertical surface in a porous medium. The natural convection flow over a thin vertical
cylinder, which is moving with a constant velocity in a non-Darcy high-porosity ambient
medium, has been studied by [13]. Takhar et al. [14] has investigated the natural convec-
tion boundary-layer flow of an absorbing and electrically-conducting fluid over a semi-
infinite, ideally transparent, inclined flat plate embeddedin a porous medium with variable
porosity. Effects of non-uniform wall temperature or mass transfer in finite sections of
an inclined plate on the MHD natural convection flow in a temperature stratified high-
porosity medium have considered by Takhar et al. [15]. The natural convection flow over
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a vertical heated surface in a porous medium has been studiedby Mittal [16]. The non-
Darcy effects on the natural convection boundary layer flow on an isothermal vertical flat
plate embedded in a high-porosity medium was considered by Chen et al. [17]. Minto et
al. [18], Yin [19], and Rees and Pop [20] carried out some morerecent studies on this
topic.

Finally, steady two-dimensional laminar forced flow and heat transfer from a wedge
was considered in great detail by Lin et al. [21]. They proposed a similarity solution
for an isothermal surface as well as for a uniform heat flux surface for a wide range of
Prandtl numbers. Koh and Hartnett [22] studied the incompressible laminar flow over a
porous wedge with suction and a variable wall temperature. Watanabe [23] investigated
thermal boundary layer flow over a uniform surface temperature wedge with a transpi-
ration velocity in forced flow. Yih [24] extended the above problem by considering the
heat transfer characteristics in the forced flow over wedge subjected to a uniform wall
heat flux. Hossain et al. [25] investigated also the same problem by having temperature
dependent viscosity as well as thermal conductivity on the forced flow past a wedge and
heat transfer of a viscous incompressible fluid with uniformsurface heat flux.

The aim of the present theoretical study is to investigate the effects of porosity,
permeability of the porous medium, inertia and magnetic field on the flow and heat
transfer of a viscous incompressible electrically conducting and heat-generating fluid past
a permeable wedge embedded in fluid-saturated high-porosity ambient medium, using the
extension of the Darcy-Forchheimer-Brinkman model, in thepresence the magnetic field
and internal heat generation effects. The surface of the wedge is maintained uniform sur-
face heat flux and is permeable to allow for possible fluid wallsuction. The resulting non-
linear partial differential equations are solved numerically by a finite difference method.
The results with uniform porosity and in the absence of permeability, inertia, magnetic
field and heat generation effects are compared with those Yih[24] and Hossain et al. [25]
with uniform both of the dynamical viscosity and thermal conductivity. Comparisons
with previously published works were performed and resultswere found to be in a good
agreement for different values ofPr and pressure gradient parameterm. Numerical and
graphical results for the velocity and temperature profilesas well as the skin friction and
Nusselt number are presented and discussed for various parametric conditions. Note that,
numerical and graphical results for a fluid having the value of Pr = 0.7 that is appropriate
for helium (400 ◦F), hydrogen (near about370 ◦F) and oxygen (near about10 ◦F) and
m = 1/3.

2 Problem formulation

The physical model of the problem and the coordinates systemare given in Fig. 1. Con-
sider the steady two-dimensional laminar forced flow of an incompressible viscous elec-
trically conducting and heat-generating fluid past a permeable wedge with uniform heat
flux. The wedge is embedded in a non-Darcy high-porosity medium. A uniform mag-
netic field is applied in the transverse direction y normal tothe wedge. According to
assumption that Bossinesq approximation is valid and usingthe extension of the Darcy-
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Figure 1: The flow configuration and the coordinate system
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Fig. 1. The flow configuration and the coordinate system.

Forchheimer-Brinkman model, the equation of continuity, momentum and energy of the
two dimensional under boundary layer form of the forced flow of the fluid past a wedge
in a non-Darcy high-porosity medium modified to account for the presence magnetic filed
and heat generation effects can be expressed as [23–25]:
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The boundary conditions are the no-slip at the surface and the ambient condition far away
from the surface and these are expressed as:

u = 0, v = Vw, −k
(

∂T

∂y

)

y=0

= qw at y = 0,

(4)
u→ U∞ = U0x

m, T → T∞ as y → ∞.

Hereu, v are fluid velocity components in thex- andy-direction, respectively,T is the
temperature of the fluid in the boundary layer region,Vw is the transpiration velocity,
which is positive for injection or blowing and negative for suction or withdrawal of fluid
through the wedge surface,U∞(x) being the free stream velocity,U0 is the constant
velocity of the potential flow out side the boundary layer,m = β/(2 − β) is the pres-
sure gradient parameter,β is the Hartee pressure gradient parameter which is related to
the total angle of the wedge,Ω, by Ω = πβ. ν, ρ, σ, Cp are the kinematic viscosity,
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the density of the fluid and electrical conductivity and specific heat, respectively;ε is
the porosity;K is the permeability of porous medium;C∗ is the inertia coefficient;
B, T∞, Q0(x) are the magnetic induction, ambient temperature and volumetric rate of
heat generation/absorption coefficient, respectively;α is thermal diffusivity;qw is the
surface heat flux,k the thermal conductivity; and subscriptsw and∞ denote conditions
at the wall and in the ambient fluid, respectively. It should be mentioned here that the
wedge and porous medium are both in local equilrim. In addition, positive values ofQ0

indicate heat generation (source) and negative values ofQ0 correspond to heat absorption
(sink).

It is convenient to reduce the number of equations form threeto two as well as
to transform them to dimensionless form. This can be done by applying the following
transformations
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to equations (1)–(3) and we find that (1) is identically satisfied and (2) and (3) reduce to,
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The boundary conditions as (4) can be expressed as

f(ξ, 0) = f ′(ξ, 0) = 0, θ′(ξ, 0) = −1, f ′(ξ,∞) = 1, θ(ξ,∞) = 0. (8)

In addition, the velocity components are

u = U∞f
′, v = −
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. (9)

Here ξ, η are the transformed coordinates, whereξ is the suction parameter andη is
the pseudo-similarity variable;ψ andf are the dimensional and dimensionless stream
functions, respectively;f ′ is the dimensionless velocity in the axial direction;θ is the
dimensionless temperature;Pr,Rex are the Prandtl number and local Reynolds number,
respectively.K is the dimensionless permeability parameter;C is the dimensionless iner-
tia coefficient expressing the relative importance of the inertia effect;M is the magnetic
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parameter. In the foregoing equations, the primes denote the differentiation with respect
to η. For surface blowing,Vw > 0 and henceξ < 0. On the other hand, for surface
suction,Vw < 0 and henceξ > 0.

It may be remarked that equations governing the forced flow over the wedge can
be reduced to those of Watanbe [23], Yih [24] and Hossain et al. [25] for M = Q = 0
(without magnetic and heat generation effects),ε = 1 (uniform medium),K−1 = C = 0
(in the absence of the permeability and inertia parameters).

The quantities of physical interest are the local Nusselt number and the local skin
friction coefficientCfx and these are expressed as

Cfx =
τwx

(1/2)ρU2
∞

and Nux =
qwx

k(T − T∞)
, (10)

whereτw is the shear stress at the surface

τw = µ

(

∂u

∂y

)

y=0

. (11)

Now incorporating the transformations given in (5) in the foregoing relations for the local
Nusselt numberNux and the local skin friction coefficientCfx hold:

1
√

2(1 +m)
CfxRe

1/2

x = f ′′(ξ, 0), (12)

and
√

2

1 +m

Nux

Re
1/2

x

=
1

θ(ξ, 0)
. (13)

3 Numerical scheme

The numerical scheme to solve equations (6) and (7) adopted here is based on a combina-
tion of the following concepts:

(a) The boundary conditions forη=∞ are replaced byf ′(ξ, ηmax)=1, θ(ξ, ηmax)=0,
whereηmax is a sufficiently large value ofη at which the boundary conditions (8) for
velocity is satisfied. We have setηmax = 6.0 in the present work.

(b) The two-dimensional domain of interest(ξ, η) is discretized with an equispaced mesh
in theξ-direction and another equispaced mesh in theη-direction.

(c) The partial derivatives with respect toξ andη are all evaluated by the central diffe-
rence approximations.

(d) Two iteration loops based on the successive substitution are used because of the
nonlinearity of the equations.
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(e) In each inner iteration loop, the value ofξ is fixed while each of equations (6) and (7)
is solved as a linear second order boundary value problem of ODE on theη domain.
The inner iteration is continued until the nonlinear solution converges for the fixed
value ofξ.

(f) In the outer iteration loop, the value ofξ is advanced. The derivatives with respect to
ξ are updated after every outer iteration step.

In the inner iteration step, the finite difference approximation for equations (6) and (7) is
solved as a boundary value problem. The numerical results are affected by the number of
mesh points in both directions. To obtain accurate results,a mesh sensitivity study was
performed. After some trials, in theη-direction190 mesh points were chosen whereas
in the ξ-direction41 mesh points were used. The tolerance for convergence was10−6.
Increasing the mesh points to a larger value led to identicalresults.

4 Results and discussion

Numerical solutions for the governing equations (6) and (7)under conditions (8) were
solved numerically by a finite difference method. In order tovalidate our results, we have
compared the local Nusselt numberNux/Re

1/2

x for M = Q = 0 (without magnetic and
heat generation effects),ε = 1 (uniform medium),K−1 = C = 0 (in the absence of
the permeability and inertia parameters) andξ = 0 (an impermeable wedge flow), with
various values ofm,Pr with theoretical results of Yih [24] and Hossain et al. [25].The
results are found to be in good agreement and the comparison is presented in Table 1. Here
we have found that the value of local Nusselt number increases whenever the value of the
pressure gradient parameterm increases at a given value ofPr. We also observe that if
Pr decreases, then there is a corresponding decrease in the value of local Nusselt number
for fixed value ofm means the boundary layer thickness increasing with the increase
of Pr.

The effects of porosity parameterε, inertia parameterC, dimensionless permeability
K, magnetic parameterM and heat source/sink parameterQ on the skin friction coeffi-
cient and Nusselt number (CfxRe

1/2

x /(
√

2(1+m)), Nux/Re
1/2

x ) are shown in Tables 2, 3,
respectively, whenPr = 0.72 andm = 1/3. From these tables, we can observe that
both skin friction coefficient and Nusselt number increaseswith the increase the values
of M,Q,C, ε, but decreases with the increase ofK. This in turn, produces increases
in this due in fact that the velocity gradient increases withthe increaseM,Q,C, ε, or
decreases with the increase ofK, but the opposite to temperature gradient. However,
Nusselt number is found to be weakly dependent onM,K, while the permeability and
magnetic parameters strongly affect the skin friction. On other hand, the inertiaC,
porosityε, heat source/sinkQ parameters are found to have significant effect on both
skin friction coefficient and Nusselt number. Also, as mentioned before,Q has no effect
on the fluid flow field, therefore, it has no effect on the skin-friction coefficient, that is
because equations (6) and (7) are uncoupled equations.
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Table 1. Comparison ofNux/Re
1/2

x to previously published data atε = 1, ξ = 0,
K−1 = C = 0 andM = Q = 0 for different valuesPr andm

Pr m Yih [24] Hossain et al. [25] Present
0.1 0.0 0.20063 0.2006 0.20064

1/3 0.21947 0.2193 0.21949
1.0 0.21950 0.2195 0.21953

1.0 0.0 0.45896 0.4589 0.45897
1/3 0.54197 0.5419 0.54198
1.0 0.57046 0.5704 0.57047

10.0 0.0 0.99786 0.9978 0.99789
1/3 1.23177 1.2317 1.23178
1.0 1.33879 1.3387 1.33880

Table 2. Values of the skin friction coefficient and Nusselt numberCfxRe
1/2

x /(
√

2(1+m)),

Nux/Re
1/2

x for differentε, ξ andQ atK = 0.75, C = 1.0 andM = 1.0

CfxRe
1/2

x /(
√

2(1 + m)) Nux/Re
1/2

x

ε Q ε = 0.4 ε = 0.9 ε = 0.4 ε = 0.9

0.0 −0.5 1.50266 2.38056 0.91553 0.96649
0.0 1.50266 2.38056 0.62247 0.69348
0.5 1.50266 2.38056 0.21067 0.32726

1.0 −0.5 3.12586 3.32738 1.54677 1.51279
0.0 3.12586 3.32738 1.2615 1.21184
0.5 3.12586 3.32738 0.86483 0.77993

2.0 −0.5 4.58968 4.37812 2.45339 2.33035
0.0 4.58968 4.37812 2.25723 2.09899
0.5 4.58968 4.37812 2.02976 1.81347

Table 3. Values of the skin friction coefficient and Nusselt numberCfxRe
1/2

x /(
√

2(1+m)),

Nux/Re
1/2

x for differentK, C andM at ε = 0.4, ζ = 0.5 andQ = 0.4

CfxRe
1/2

x /(
√

2(1 + m)) Nux/Re
1/2

x

C K M = 1.0 M = 2.0 M = 1.0 M = 2.0

1.0 0.25 2.84385 3.00901 0.39465 0.40208
0.5 2.46079 2.66253 0.37827 0.38666
1.0 2.23278 2.46079 0.36991 0.37827

5.0 0.25 3.64036 3.75365 0.43610 0.44023
0.5 3.39622 3.52152 0.42680 0.43164
1.0 3.26331 3.39622 0.42155 0.4268

10 0.25 4.34705 4.43495 0.46441 0.46676
0.5 4.16374 4.25672 0.4593 0.46193
1.0 4.06786 4.16374 0.45653 0.4593
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Figs. 2(a), 2(b) represents the effect of magnetic parameter M on the skin friction
coefficient and Nusselt number (CfxRe

1/2

x /(
√

2(1+m)),Nux/Re
1/2

x ), respectively, for
Pr = 0.7, m = 1/3, C = 1.0, Q = 0.5, K = 0.75, ε = 0.5, in the range0 ≤ ξ ≤ 1.
Both the skin friction coefficient and Nusselt number increases with increasingM andξ.
Consequently the momentum and thermal boundary layers are reduced. This results in
higher the skin friction coefficient and Nusselt number for increasingM , whereas there
is strongly affect on both the skin friction and Nusselt number for increasingξ.

The effect of the dimensionless permeabilityK on velocity and temperature profiles
(u/U∞, θ(ξ, η)) atPr = 0.7, m = 1/3 is shown in Figs. 3(a), 3(b), respectively. It can
be observed that the velocity reduces asK increases, while temperature enhances asK
increases which imply that the resistance of the medium decreases. This is due to the
increased restriction resulting from decreasing the porosity of porous medium.

(a) (b)

Fig. 2. Effect of M on (a) the skin friction coefficient and (b) Nusselt number,
respectively.

(a) (b)

Fig. 3. Effect ofK on the on (a) velocity and (b) temperature profiles, respectively.

The effect of inertia parameterC on velocity and temperature profiles
(u/U∞, θ(ξ, η)) at Pr = 0.7, m = 1/3 is shown in Figs. 4(a), 4(b). The decrease
in inertia parameter implies more resistance to the flow which results in decrease in
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the momentum boundary layer and hence in thermal boundary layer. Consequently the
velocity increases and temperature decreases asC increases.

The effect of porosity parameterε on velocity and temperature profiles (u/U∞,
θ(ξ, η)) at Pr = 0.7, m = 1/3 is shown in Figs. 5(a), 5(b), respectively. Sinceε = 1
corresponds to uniform medium, decreasingε implies less resistance is offered by the
medium. Consequently the velocity increases as increases,but temperature reduces.

The effect of magnetic parameterM on velocity and temperature profiles (u/U∞,
θ(ξ, η)) at Pr = 0.7, m = 1/3 is shown in Figs. 6(a), 6(b), respectively. It is clear
that due to an increase in values ofM there is an increasing in the velocity because
the unretarding effect on the magnetic force. Therefore, the momentum boundary layer
thickness becomes smaller, and separation of the boundary layer will occur later. Also, we
observe that the temperature profile decreases when the magnetic parameterM increases.
This means that the magnetic filed works to decrease the values of temperature in the flow
filed and then increases the gradient at the wall and decreases thickness of the thermal
boundary layer.

The effects of heat source/sink parameterQ and the suction parameterξ on the
temperature profile (u/U∞, θ(ξ, η)) at Pr = 0.7, m = 1/3 is shown in Fig. 7. It is

(a) (b)

Fig. 4. Effect ofC on (a) the velocity and (b) temperature profiles, respectively.

(a) (b)

Fig. 5. Effect ofξ on (a) the velocity and (b) temperature profiles, respectively.
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found that the temperature profile increases as heat source/sink parameterQ increases, but
the opposite with the suction parameterξ, therefore, the thermal boundary layer thickness
becomes small for the increase of the suction parameter, while, it becomes large for the
decrease of heat source/sink parameter. This is expected since heat generation (Q > 0)
causes the thermal boundary layer to become thicker and the temperature of the fluid to
increase, whereas the opposite effect with heat absorption(Q < 0), reducing temperature
of the fluid and the thermal buoyancy effect. In addition, heat generation/absorption
coefficient unaffected on the velocity flow, for the same cause mentioned above. Also,
imposition of fluid suctionξ ≻ 0 at a surface reduces the region of viscous domination
close to the wall, which causes decreasing in the fluid’s temperature profile.

(a) (b)

Fig. 6. Effect ofM on (a) the velocity and (b) temperature profiles, respectively.

Fig. 7. Effect ofQ on the temperature profiles.

5 Conclusions

The steady two-dimensional laminar forced flow of an incompressible viscous electrically
conducting and heat-generating fluid past an impermeable wedge at uniform heat flux
embedded in a non-Darcy high-porosity medium has been studied numerically. The
governing equations are derived using the usual boundary layer and Bossinesq appro-
ximations and accounting for the applied magnetic filed, permeability of porous medium,
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variable porosity, inertia and heat generation effects. These equations are transformed
using non-similarity transformation and then solved numerically by a finite difference
method. Numerical and graphical results for the velocity and temperature profiles as
well as the skin friction and Nusselt number are presented and discussed for various
parametric conditions. It was found that the Nusselt numberbe weakly dependent on
the permeability, magnetic parameters, whereas there are strongly affect the skin friction.
On other hand, the Nusselt number and the skin friction are significantly affected by the
inertia, porosity, suction and heat generation/absorption parameters.
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