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Abstract. The steady flow of an incompressible viscous fluid above an infinite rotating
disk in a porous medium is studied with heat transfer. Numerical solutions of the
nonlinear governing equations which govern the hydrodynamics and energy transfer are
obtained. The effect of the porosity of the medium on the velocity and temperature
distributions is considered.
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1 Introduction

The pioneering study of fluid flow due to an infinite rotating disk was carried by von
Karman in [1, 1921]. Von Karman gave a formulation of the problem and then introduced
his famous transformations which reduced the governing partial differential equations to
ordinary differential equations. Cochran [2] obtained asymptotic solutions for the steady
hydrodynamic problem formulated by von Karman. Benton [3] improved Cochran’s solu-
tions and solved the unsteady problem. The problem of heat transfer from a rotating disk
maintained at a constant temperature was first considered byMillsaps and Pohlhausen [4]
for a variety of Prandtl numbers in the steady state. Sparrowand Gregg [5] studied the
steady state heat transfer from a rotating disk maintained at a constant temperature to
fluids at any Prandtl number. The influence of an external uniform magnetic field on
the flow due to a rotating disk was studied [6–8]. The effect ofuniform suction or
injection through a rotating porous disk on the steady hydrodynamic or hydromagnetic
flow induced by the disk was investigated [9–11].

In the present work, the steady laminar flow of a viscous incompressible fluid due to
the uniform rotation of a disk of infinite extent in a porous medium is studied with heat
transfer. The flow in the porous media deals with the analysisin which the differential
equation governing the fluid motion is based on the Darcy’s law which accounts for the
drag exerted by the porous medium [12–14]. The temperature of the disk is maintained
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at a constant value. The governing nonlinear differential equations are integrated numer-
ically using the finite difference approximations The effect of the porosity of the medium
on the steady flow and heat transfer is presented and discussed.

2 Basic equations

Let the disk lie in the planez = 0 and the spacez > 0 is equiped by a viscous
incompressible fluid. The motion is due to the rotation of an insulated disk of infinite
extent about an axis perpendicular to its plane with constant angular speedω through a
porous medium where the Darcy model is assumed [14]. Otherwise the fluid is at rest
under pressurep∞. The equations of steady motion are given by
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whereu, v, w are velocity components in the directions of increasingr, ϕ, z respectively,
P is denoting the pressure,µ is the coefficient of viscosity,ρ is the density of the fluid,
andK is the Darcy permeability [12–14]. We introduce von Karman transformations [1],

u = rωF, v = rωG, w =
√

ωνH, z =
√

ν/ωζ, p − p∞ = −pνωP,

whereζ is a non-dimensional distance measured along the axis of rotation,F, G, H andP
are non-dimensional functions ofζ, andν is the kinematic viscosity of the fluid,ν = µ/ρ.
With these definitions, equations (1)–(4) take the form
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M = ν/Kω is the porosity parameter. The boundary conditions for the velocity problem
are given by

ζ = 0, F = 0, G = 1, H = 0, (9a)

ζ → ∞, F → 0, G → 0, P → 0, (9b)
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Equation (9a) indicates the no-slip condition of viscous flow applied at the surface of the
disk. Far from the surface of the disk, all fluid velocities must vanish aside the induced
axial component as indicated in equation (9b). The above system of equations (5)–(7)
with the prescribed boundary conditions given by equations(9) are sufficient to solve
for the three components of the flow velocity. Equation (8) can be used to solve for the
pressure distribution if required.

Due to the difference in temperature between the wall and theambient fluid, heat
transfer takes place. The energy equation without the dissipation terms takes the form
[4,5];
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whereT is the temperature of the fluid,cp is the specific heat at constant pressure of
the fluid, andk is the thermal conductivity of the fluid. The boundary conditions for
the energy problem are that, by continuity considerations,the temperature equalsTw

at the surface of the disk. At large distances from the disk,T tends toT∞ whereT∞
is the temperature of the ambient fluid. In terms of the non-dimensional variableθ =
(T − T∞)/(Tw − T∞) and using von Karman transformations, equation (10) takes the
form;
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wherePr is the Prandtl number,Pr = cpµk/k. The boundary conditions in terms ofθ
are expressed as

θ(0) = 1, θ(∞) = 0. (12)

The system of non-linear ordinary differential equations (5)–(7) and (11) is solved
under the conditions given by equations (9) and (12) for the three components of the flow
velocity and temperature distribution, using the Crank-Nicolson method [15]. The result-
ing system of difference equations has to be solved in the infinite domain
0 < ζ < ∞. A finite domain in theζ-direction can be used instead withζ chosen
large enough to ensure that the solutions are not affected byimposing the asymptotic
conditions at a finite distance. The independence of the results from the length of the
finite domain and the grid density was ensured and successfully checked by various trial
and error numerical experimentations. Computations are carried out forζ∞ = 12.

3 Results and discussion

Figs. 1–4 present the variation of the profiles of the velocity componentsG, F , andH
and the temperatureθ, respectively, for various values of the porosity parameter M and
for Pr = 0.7. Figs. 1–3 indicate the restraining effect of the porosity of the medium on
the flow velocity in the three directions. Increasing the porosity parameterM decreases
G, F , andH and the thickness of the boundary layer.
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Fig. 1. Effect of the porosity parameterM on the profile ofG.

Fig. 2. Effect of the porosity parameterM on the profile ofF .

Fig. 3. Effect of the porosity parameterM on the profile ofH .
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Fig. 4. Effect of the porosity parameterM on the profile ofθ.

Fig. 4 presents the influence of the porosity parameterM in increasing the tempe-
ratureθ as a result of the effect of the porosity in preventing the fluid at near-ambient
temperature from reaching the surface of the disk. Consequently, increasingM increases
the temperature as well as the thermal boundary layer thickness. The absence of fluid at
near-ambient temperature close to the surface increases the heat transfer.

4 Conclusion

In this study the steady flow induced by a rotating disk with heat transfer in a porous
medium was studied. The results indicate the restraining effect of the porosity on the
flow velocities and the thickness of the boundary layer. On the other hand, increasing the
porosity parameter increases the temperature and thickness of the thermal boundary layer.
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