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Abstract. The purpose of the present investigation deals with the unsteady free
convective flow of a viscous incompressible gray, absorbing-emitting but non-scattering,
optically-thick fluid occupying a semi-infinite porous regime adjacent to an infinite
moving hot vertical plate with constant velocity. We employa Darcian viscous flow
model for the porous medium. The momentum and thermal boundary layer equations
are non-dimensionalized using appropriate transformations and then solved subject to
physically realistic boundary conditions using the Laplace transform technique. Thermal
radiation effects are simulated via a radiation-conduction parameter,Kr, based on
the Rosseland diffusion approximation. The influence of Grashof (free convection)
number, radiation-conduction parameter (Kr), inverse permeability parameter (Kp) and
dimensionless time (t) are studied graphically. We observe that increasing thermal
radiation parameter causes a noticeable increase in the flowvelocity, u. Temperature,
θ, is significantly increased within the boundary layer with arise in Kr since the
latter represents the relative contribution of thermal radiation heat transfer to thermal
conduction heat transfer. Increased radiation therefore augments heat transfer, heats the
fluid and increases the thickness of the momentum and thermalboundary layers. Velocity
is found to decrease with an increase inKp (inverse permeability parameter) as are shear
stress function (∂u

∂y
|y=0) magnitudes owing to greater resistance of the porous medium

for lower permeabilities, which decelerate the flow. An increase inKr however boosts the
shear stress function magnitudes i.e. serves to acceleratethe flow. Temperature gradient,
∂θ
∂y

|y=0 is also positively affected by an increase in thermal radiation (Kr) and with time.
The present study has applications in geological convection, forest fire propagation, glass
heat treatment processes at high temperature, metallurgical processing etc.
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1 Introduction

Radiative-convective heat transfer flows find numerous applications in glass manufactu-
ring, furnace technology, high temperature aerodynamics,fire dynamics and spacecraft
re-entry [1]. Many studies have appeared concerning the interaction of radiative flux with
thermal convection flows. For example Chang et al. [2] studied the effect of radiation heat
transfer on free convection regimes in enclosures, with applications in geophysics and
geothermal reservoirs. Mudan [3] studied thermal radiation heat transfer from liquid pool
fires. The vast majority of convective-radiative flows have employed various algebraic
approximations to the integro-differential equation of radiative heat transfer. Succinct
discussions of the many models in use including the Schuster-Schwartzchild two-flux
model, Milner-Eddington model, Rosseland model, P1-approximation, Chandrasekhar
discrete ordinates approximation etc are provided in the monograph by Siegel and Howell
[4]. In the context of spacecraft technology Sutton [5] as early as 1956 suggested that for
temperatures ranging from 3500 degrees Fahreinheit to 7000Fahreinheit, as encountered
in rocket propulsion, thermal radiation can account for up to 25 % of the total heat transfer.
In the internal boundary layer regimes, on rocket combustion thrust chamber walls, signi-
ficant radiation heat transfer is imparted from the hot propellant to the chamber walls. Hill
and Petersen [6] have highlighted the dependence of radiation heat transfer on chamber
size, as the ratio of radiating volume to radiating surface is proportional to chamber
size dimensions. Cheng [7] considered the radiative-convective gas dynamic flow using
a differential approximation. Cess [8] presented a seminalstudy of radiating convec-
tive boundary layers with buoyancy effects using the Rosseland diffusion approximation.
Further studies in the context of boundary layer aerodynamics were communicated by
Tabaczynski and Kennedy [9], Taitel and Hartnett [10], Cogley et al. [11] who considered
non-grey gases, England and Emery [12] who analyzed absorption effects of the gas,
Adunson and Gebhart [13], Bankston et al. [14] who considered both absorption and
emission properties of the fluid and Dombrowski [15] who reported on optically-thick flat
plate boundary layers. Yucel and Bayazitoglu [16] analyzedthe more complex case of
anisotropical scattering in boundary layer radiative-convection. Hossain and Takhar [17]
studied the mixed convection flat plate boundary layer problem using the Rosseland
(diffusion) flux model. The above studies did not consider transient effects or incorporate
porous media effects. Both unsteady flows and porous convective-radiative flows have
important applications in geophysics, geothermics, chemical and ceramics processing.
The conventional approach in porous media transport modeling has been to simulate the
pressure drop across the porous regime using the Darcy linear model. This basically adds
an extra body force to the momentum boundary layer equation.Bear [18] has provided
an excellent treatment of Darcian hydromechanics, which isvalid for viscous-dominated
flows generally to a Reynolds number of about 10. Kaviany [19]has provided an excellent
appraisal of Darcian thermal convection flows and also coupled convective-radiative heat
transfer in porous media. Several studies have appeared recently analyzing the effects
of thermal radiation in convection flows in porous media. Takhar et al. [20] studied the
dissipative radiative-convection of a gas in a porous medium using the differential ap-
proximation, with applications in geothermal energy systems. Chamkha [21] studied the
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solar radiation effects on porous media convection on a vertical surface with applications
in solar collector dynamics. Mohammadein et al. [22] studied the radiative flux effects
on free convection in Darcian porous media with the Rosseland model. Satapathy et
al. [23] and El-Hakiem et al. [24] have also analyzed radiative-convection flows in non-
Darcian porous media using asymptotic and numerical methods. The 2-flux Schuster-
Schwartzchild model was used by Nagaraju et al. [25] to studyconvective-radiative flows
in variable permeability regimes using the Blottner difference scheme. Takhar et al. [26]
used shooting quadrature to analyze the mixed convection flow with thermal radiation
effects in Darcy-Forchheiimer porous media. More recentlyChamkha et al. [27] studied
Rosseland radiation-conduction number effects on boundary layer wedge convection of
a viscoelastic fluid in non-Darcian porous material. All of the above studies however
were for steady flows. The effect of unsteadiness in porous media and purely fluid regime
convection is important in numerous energy and environmental systems. Several authors
have therefore studied transient radiative-convective heat (and mass) transfer flows in
pure fluids or porous media. Ganesan et al. [28] studied theoretically the thermal radi-
ation effects on unsteady flow past an impulsively started plate. Muthucumaraswamy
and Ganesan [29] analyzed transient radiation-convectionimpulsively-started flow with
variable temperature effects. Ghosh and Pop [30] studied indirect radiation effects on
convective gas flow. Raptis and Perdikis [31] have also studied analytically the transient
convection in a highly porous medium with unidirectional radiative flux. Very recently
Zueco et al. [31] have presented two-dimensional numericalsolutions for non-Darcian
radiation-convection heat and mass transfer from an impulsively-started vertical surface
in porous media. In the present study we consider analytically the transient convective-
radiative heat transfer in an isotropic, homogenous porousregime adjacent to a hot vertical
plate using the Laplace transform method. Such a study has not appeared in the literature
and constitutes an important addition to the area of porous media convection studies.

2 Mathematical model

We consider the unsteady flow of a viscous incompressible fluid occupying a semi-infinite
region of the space past an infinite hot vertical plate movingupwards with constant
velocity embedded in a porous medium, as depicted in Fig. 1. The co-ordinate system
is selected such that thex′-axis is directed along the plate from the leading edge in the
vertically upward direction and they′-axis is normal to the plate. All fluid properties
are considered constant except the influence of density variation in the body force term,
under the Oberbeck-Boussinesq approximation. The radiation heat flux in thex′-direction
is considered negligible in comparison to they′-direction. The fluid is gray, absorbing-
emitting but non-scattering. Gravity acts in the opposite direction to the positivex′-axis.
The porous regime is assumed to be in local thermal equilibrium and thermal dispersion
effects are ignored. The unsteady boundary layer equationsfor mass, momentum and
energy (heat) conservation under these approximations, neglecting convective inertial
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terms, can be shown to take the form:

∂u′

∂x′
+

∂v′

∂y′
= 0, (1)

∂u′

∂t′
= ν

∂2u′

∂y′2
+ gβ

(

T ′ − T ′

∞

)

− νu′

K
, (2)

∂T ′

∂t′
=

k1

ρCp

∂2T ′

∂y′2
− 1

ρCp

∂qr

∂y′
. (3)

u ’,u, x ’,x

y ’,y, v ’

Fluid-saturated porous medium

Buoyancy-driven flow

Thermal
radiation flux

Hot vertical
plate

g

Fig. 1. Physical model and co-ordinate system.

The appropriate boundary conditions at the wall and in the free stream are:

u′ = 0, T ′ = T ′

∞
for y′ ≥ 0, t′ ≤ 0,

u′ = U, T ′ = T ′

w for y′ = 0, t′ > 0, (4)

u′ = 0, T ′ → T ′

∞
for y′ → ∞,

whereu′, v′, t′, ν, g, β, T ′, T ′

∞
, k1, Cp, ρ, qr andK are, respectively, the velocity com-

ponent along the plate, the velocity component normal to theplate, dimensional time,
the kinematic coefficient of viscosity, the gravitational acceleration, the coefficient of
thermal expansion, the temperature of the fluid, the temperature of the fluid far away
from the plate (in the free stream), the thermal conductivity, the specific heat at constant
pressure, the density of the fluid, the radiative heat flux andthe permeability of the porous
medium (dimensions, m2). Also T ′

w is the temperature at the plate andU is the velocity
of the moving plate. The radiation flux on the basis of the Rosseland diffusion model for
radiation heat transfer is expressed as:

qr = −4σ∗

3k∗

∂T ′4

∂y′
, (5)

in which σ∗ and k∗ are Stefan-Boltzmann constant and the spectral mean absorption
coefficient of the medium. It is assumed that the temperaturedifferences within the flow
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are sufficiently small such thatT ′4 may be expressed as linear function of the temperature.
It can be established by expandingT ′4 in a Taylor series aboutT ′

∞
and neglecting higher

order term, thatT ′4 can be expressed in the following way:

T ′4 = 4T ′3

∞
T ′ − 3T ′4

∞
. (6)

Implementing equations (5) and (6) in equation (3) we arriveat the modified energy
conservation equation:

∂T ′

∂t′
=

k1

ρCp

∂2T ′

∂y′2
+

1

ρCp

4σ∗

3k∗

∂2T ′4

∂y′2
. (7)

To present solutions which are independent of the geometry of the flow regime, we
introduce a series of non-dimensional transformations, defined as:

u =
u′

U
(dimensionless velocity),

y =
y′U

ν
(non-dimensional distance),

t =
t′U2

ν
(dimensionless time),

θ =
T ′ − T ′

∞

T ′

w − T ′

∞

(dimensionless temperature),

(8)
Pr =

ρνCp

k1

(Prandtl number),

Gr =
gβν(T ′

w − T ′

∞
)

U3
(Grashof number),

Kr =
16σ∗T ′3

∞

3k∗k1

(radiation-conduction parameter),

K2

p =
ν2

KU2
(inverse permeability parameter for the porous medium).

The continuity equation is satisfied and equations (2) and (7) are thereby transformed to:

∂u

∂t
=

∂2u

∂y2
+ Grθ − K2

pu, (9)

(1 + Kr)
∂2θ

∂y2
− Pr

∂θ

∂t
= 0. (10)

The corresponding boundary conditions are

u = 0, θ = 0 for y ≥ 0, t ≤ 0,

u = 1, θ = 1 for y = 0, t > 0, (11)

u = 0, θ → 0 for y → ∞,
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3 Analytical solution

By employing the Laplace transform technique the solutionsto the linear partial differ-
ential equations (9) and (10) for the transient velocity (u) and transient temperature (θ)
subject to the boundary conditions (11) can be shown to take the following form:

u(y, t) =
1

2

(

1 − Gr

K2
p

)

×
[

exp(−Kpy) erfc

(

y − 2Kpt

2
√

t

)

+ exp(Kpy) erfc

(

y + 2Kpt

2
√

t

)]

+
Gr

K2
p

erfc

(

y

2

√

Pr

(1 + Kr)t

)

+
Gr

K2
p

y

2
√

π

(√
2 − 1

)

t−1/2

2

×
[

exp

{

−
(

y2

4t
+ K2

pt

)}

−
√

Pr

1 + Kr
exp

(

− y2

4t

Pr

1 + Kr

)]

, (12)

θ(y, t) = erfc

(

y

2

√

Pr

(1 + Kr)t

)

. (13)

In these solutions we can extract the cases for the purely fluid regime i.e. infinite perme-
ability by settingKp → 0. For the cases where thermal radiation is absent we setKr → 0.
Dimensionless shear stress at the wall is evaluated by differentiating the velocityu with
respect toy. Dimensionless heat transfer at the wall is computed by obtaining the gradient
of the temperature solution with respect toy. The expressions for shear stress function i.e.
velocity gradient,∂u

∂y |y=0 and surface heat transfer rate i.e. temperature gradient,∂θ
∂y |y=0

take the form:

∂u

∂y

∣

∣

∣

∣

y=0

=
1

2

(

1 − Gr

K2
p

)

×
[

(

−Kp

)

erfc
(

−Kp

√
t
)(

Kp

)

erfc
(

Kp

√
t
)

− 2√
tπ

exp
(

−K2

pt
)

]

− Gr

K2
p

1√
π

[

√

Pr

(1 + Kr)t

]

+
Gr

K2
p

1

4
√

π

(
√

2 − 1
)

t−1/2

[

exp
{

− K2

pt
}

−
√

Pr

1 + Kr

]

, (14)

∂θ

∂y

∣

∣

∣

∣

y=0

= − 1√
π

(

√

Pr

(1 + Kr)t

)

. (15)
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4 Results and discussion

To gain a perspective of the physics of the flow regime, we havenumerically evaluated
the effects of Grashof number (Gr), radiation-conduction parameter (Kr), dimensionless
time (t) and inverse permeability parameter (Kp), on the velocity,u, temperature,θ,
shear stress function (velocity gradient i.e.∂u

∂y |y=0) and surface heat transfer function

(temperature gradient i.e.∂θ
∂y |y=0). Figs. 2 to 10 present these computations graphically.

As default values we setKp = 1, Kr = 1 (which implies equal radiation and conduction
contribution),Gr = 2 (buoyancy force is twice the viscous hydrodynamic force in the
boundary layer),Pr = 0.72 (which corresponds to air),t = 0.2. These values apply
unless otherwise indicated.

In Fig. 2, the spatial distribution of velocity,u, is plotted for the effects of inverse
permeability parameter (Kp), at a fixed time,t = 0.2. As the inverse permeability
parameter,Kp, increases from1 to 2 and then3, the velocity,u, continuously decreases
with distance transverse to the wall. The parameterKp as defined in equation (8) is
inversely proportional to theactual permeability, K, of the porous medium. The Darcian
drag force in the momentum equation, viz,−K2

pu, is therefore directly proportional to
Kp. An increase inKp will therefore increase the resistance of the porous medium(as the
permeability physically becomes less with increasingK) which will serve to decelerate
the flow and reduce velocity,u. This trend is indeed maintained with further separation
from the plate. Aty = 2 we observe that the streamwise velocity (u) decreases from
0.065299 for Kp = 1 to very close to zero forKp = 2, and is further reduced to the
minimum for Kp = 3. Deceleration of the flow is therefore sustained at considerable
distance from the plate towards the free stream as inverse permeability (Kp) parameter is
increased. The profiles decay monotonically for all values of Kp from the maximum at
the wall to the minimum in the free stream.

y

u

Fig. 2. Non-dimensional spatial velocity distribution (u) for Gr = 2.0, Kr = 1.0,
Pr = 0.72 andt = 0.2 for various inverse permeability parameters (Kp).

In Fig. 3 we have plotted the spatial variation of dimensionless velocity (u) with
radiation-conduction parameter,Kr, again att = 0.2, for weak free convection (Gr = 2)
and high permeability (Kp = 1). The parameter,Kr, defines the relative contribution
of radiation heat transfer to thermal conduction transfer.LargeKr values imply large
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radiation contribution, as may be encountered in for example high temperature materials
processing applications, glass production etc. In the limit asKr → 0, thermal radiation
flux contribution vanishes i.e. the regime isfree convection with thermal conduction
at the wall. In the opposite limit asKr → ∞, thermal radiation totally dominates
thermal conduction. Hence with an increase inKr, thermal radiation will have a stronger
contribution thanthermal conduction (the contribution is only equal for both modes of
heat transfer whenKr = 1). Velocity, u is seen therefore to increase in magnitude with
a rise inKr i.e. increase in thermal radiation contribution. An interesting feature for the
highestKr value is the presence of an overshoot in velocity over the range0 < y < 0.7.
Velocity rises above the prescribed value at the wall (unity) peaks aty ∼ 0.5, and then
falls progressively thereafter. This trend is not observedfor Kr = 1 or 2. Thermal
radiation supplements the fluid thermal conductivity via the energy equation and serves
to increase buoyancy and therefore accelerates the flow. We observe in consistency with
this that for example fory = 1.0, u increases in value fromKr = 0.5 (thermal conduction
is greater than radiation forKr < 1), to Kr = 1 and then to the maximum value at this
location, forKr = 2.0. Similarly this pattern of increase in velocity is sustained with
greater distance from the wall. Aty = 2 (maximum computed distance from the plate),
dimensionless velocities are all minimized although againthe values are highest for the
highest value ofKr.

y

u

Fig. 3. Non-dimensional spatial velocity distribution (u) for Gr = 2.0, Kp = 1.0,
Pr = 0.72 andt = 0.2 for various inverse permeability parameters (Kr).

The profiles of spatial dimensionless velocity (u) with distance from the wall, at
various times (t) are shown in Fig. 4. As time,t, increases from0.2, 0.3 to 0.4 we
observe that velocityu is increased markedly. There is a steep decline from the wallfor
all profiles and no velocity overshoot. With time the flow is therefore accelerated in the
upward direction. Values ofu at any distancey are always higher fort = 0.4 than for
t = 0.3 or t = 0.2. Peak velocity always occurs at the wall owing to the translational
of the wall in the upward direction, according to the dimensionless boundary condition
imposed.

In Fig. 5 we have studied the influence of buoyancy via the Grashof number (Gr), on
the velocity development with distance normal to the wall attime, t = 0.2. We observe
that consistently the velocity,u, is increased with distance,y, asGr is increased from
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2 to 4 and then6. The flow is accelerated due to the enhancement in buoyancy forces
corresponding to an increase in Grashof number i.e. free convection effects. Positive
values ofGr correspond to cooling of the plate surface by natural convection. Heat is
therefore conducted away from the vertical plate into the fluid which increases temper-
ature and thereby enhances the buoyancy force. For the higher values ofGr (i.e. 4, 6)
there are velocity over-shoots close to the moving plate (aty ∼ 0.5) after which profiles
descend smoothly to their lowest values, in the free stream.For Gr = 2 no such over-
shoot is observed. As such only much larger buoyancy forces (i.e. Gr = 4, 6) would
be responsible for the overshoot effect. As before with the effects of thermal radiation
parameter (Kr) the increase in velocity is sustained at further distancesfrom the wall i.e.
u values are highest forGr = 6.0 (maximum thermal Grashof number) for all values of
y, except at the wall where velocity is held at unity.

y

u

Fig. 4. Non-dimensional spatial velocity distribution (u) for Gr = 2.0, Kr = 1.0,
Kp = 1.0, Pr = 0.72 for various times (t).

y

u

Fig. 5. Non-dimensional spatial velocity distribution (u) for Kr = 1.0, Kp = 1.0,
Pr = 0.72, t = 0.2 for various Grashof numbers (Gr).

The effects of time (t) and radiation-conduction parameter (Kr) on spatial distribu-
tion of the dimensionless temperature function (θ) are shown in Figs. 6 and 7. Tempera-
ture in Fig. 6 is seen to decrease from a maximum at the wall (1.0) to a minimum value
with maximum distance,y. However with increasing time (t) we observe that there is a
clear increase in temperatures. This trend is maintained atall locations in the flow regime
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i.e. velocity aty = 1.0, 1.5 or 2.0 is always maximized with the greatest time (t = 0.4).
Fig. 7 shows that at fixed time,t = 0.2, an increase in thermal radiation-conduction
parameter (Kr) is observed to strongly increase temperatures throughoutthe fluid with
distance normal to the wall in the porous medium regime. LargerKr values correspond to
an increased dominance of thermal radiation over conduction. As such thermal radiation
supplements the thermal diffusion and increases the overall thermal diffusivity of the
regime since the Rosseland diffusion flux model adds a radiation conductivity to the
conventional thermal conductivity. As a result the temperatures in the porous medium
flow (which has high permeability asKp is fixed in Fig. 7) are significantly increased.
Since the medium is highly absorbing, thermal boundary layer thicknesses will also be
increased.

y

q

Fig. 6. Dimensionless temperature profile (θ) for Kr = 1.0, Kp = 1, Gr = 2.0,
Pr = 0.72 for various dimensionless times (t).

y

q

Fig. 7. Dimensionless temperature profile (θ) for Pr = 0.72, Kp = 1, Gr = 2.0 for
various radiation-conduction parameters (Kr).

In Fig. 8 the variation of the velocity gradient (i.e. shear stress function),∂u
∂y |y=0 with

inverse permeability parameter (Kp) and also thermal radiation-conduction parameter
(Kr). As expected with an increase inKp (corresponding to a decrease in permeability)
the magnitude of shear stress function is decreased considerably, as shown by the negative
slope of the profiles. Conversely with a rise inKr, shear stress function is positively
affected indicating that the presence of thermal radiationaccelerates the flow, an important
feature in metallurgical materials processing.
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In Fig. 9 the collective influence of the Grashof number (Gr) and thermal radiation-
conduction parameter (Kr) on the shear stress function variation is shown. Increasing Gr

clearly increases shear stress function (∂u
∂y |y=0) values i.e. increasing buoyancy serves to

accelerate the flow which increases shear stress function values. Similarly in consistency
with previous computations, an increase in thermal radiation also serves to accelerate the
flow which increases shear stress function values i.e. the maximum shear stress function,
∂u
∂y |y=0, corresponds to the maximumKr value (highest thermal radiation flux).

Kp

S
h

e
a

r 
s
tr

e
s
s

Fig. 8. Shear stress function at the plate forPr = 0.72, Gr = 2.0 and t = 0.2
for various radiation-conduction parameters (Kr) and inverse permeability parameter

(Kp).

Gr

S
h
e
a
r 

s
tr

e
s
s

Fig. 9. Shear stress function at the plate forPr = 0.72, t = 0.2 andKp = 1.0 and
various Grashof numbers (Gr) and radiation-conduction parameters (Kr).

Finally in Fig. 10, we observe that with an increase in thermal radiation-conduction
parameter,Kr (i.e. the abscissa coordinate) the temperature gradient atthe wall is in-
creased i.e. values become less negative with increasingKr. Similarly with increasing
time from0.2 through0.3, 0.4, 0.5 to 0.6, there is a consistent increase in temperature
gradient,∂θ

∂y |y=0. Both thermal radiation flux and time therefore have a positive influence
on heat transfer from the plate surface into the porous medium.
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Fig. 10. Temperature gradient( ∂θ
∂y

|y=0) at the wall forPr = 0.72 andKp = 1.0 for
various radiation-conduction parameters (Kr) and times (t).

5 Conclusions

A mathematical model has been presented for the unsteady convection heat transfer from
a vertical translating plate adjacent to a Darcian porous medium, in the presence of
significant thermal radiation. The governing boundary layer equations have been non-
dimensionalized and solved using the Laplace transform technique. It has been shown
that the fluid is accelerated i.e. velocity (u) is increased with a rise in permeability of the
porous medium (i.e. a decrease in inverse permeability parameter (Kp)), with increasing
thermal radiation-conduction parameter (Kr), time (t) and also free convection parameter
(Grashof number,Gr). Dimensionless temperature (θ) is also seen to increase with time
(t) and increasingKr values, owing to an increase in radiation which augments buoyancy
in the porous regime. An increase in inverse permeability parameter (corresponding to
lesser permeability of the porous regime) also reduces the shear stress function (∂u

∂y |y=0)
values. Conversely increasing Grashof number and thermal radiation-conduction param-
eter serve to increase shear stress function values. Temperature gradient,∂θ

∂y |y=0, is
increased by a rise in thermal radiation-conduction parameter and also with time.
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