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Abstract. In this paper, we analyze the model of business cycle with time delay set forth
by A. Krawiec and M. Szydłowski [1]. Our goal in this model is to introduce the time
delay into capital stock and gross product in capital accumulation equation. The dynamics
are studied in terms of local stability and of the description of the Hopf bifurcation, that
is proven to exist as the delay (taken as a parameter of bifurcation) cross some critical
value. Additionally we conclude with an application.
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1 Introduction and mathematical models

Great attention has been paid to equations with delay, whichhave significant economical
and biological background (see for example [2–9]). In most application of delay differen-
tial equations in investment processes, the need of incorporation of a time delay is often
the result of the time interval required between investmentdecision and installation of
investment capital [10, 11]. In general, delay differential equations exhibit much more
complicated dynamics than ordinary differential equations since time delay could cause a
stable equilibrium to become unstable and cause the system to fluctuate.

In this paper, we consider the Kaldor-Kalecki model of business cycle with time
delay as follows:











dY

dt
= α

[

I
(

Y (t), K(t)
)

− S
(

Y (t), K(t)
)]

,

dK

dt
= I

(

Y (t − τ), K(t − τ)
)

− δK(t),

(1)

whereY is the gross product,K is the capital stock,α is the adjustment coefficient in
the goods market,δ is the depreciation rate of capital stock,I(Y, K) is the investment
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function, S(Y, K) is the saving andτ is the time delay needed for new capital to be
installed.

Clearly, introducing time delay into capital stock and gross product in capital accu-
mulation equation is more reasonable, because the change inthe capital stock is due to
the past investment decisions (see [12, p. 103]).

The first model in this optic is proposed by Kalecki (in 1935 [10]). The main
characteristic feature of his model is the distinction between investment decisions and
implementation, i.e. there is a time delay after which capital equipment is available for
production.

Besides the influence of Keynes (in 1936 [13]) and Kalecki (in1937 [14]), Kaldor
(in 1940 [15]) presented a nonlinear model of business cycleby an ordinary differential
equations as follows:











dY

dt
= α

[

I
(

Y (t), K(t)
)

− S
(

Y (t), K(t)
)]

,

dK

dt
= I

(

Y (t), K(t)
)

.

(2)

In this model the nonlinearity of investment and saving function leads to limit cycle
solution (see also [16–18] for more information).

Based on the Kaldor model of business cycle and the Kalecki’sidea on time delay,
Krawiec and Szydłowski (in 1999, [1]) proposed the following Kaldor-Kalecki model of
business cycle:











dY

dt
= α

[

I
(

Y (t), K(t)
)

− S
(

Y (t), K(t)
)]

,

dK

dt
= I

(

Y (t − τ), K(t)
)

− δK(t).

(3)

The fundamental characteristics of this model is the nonlinearity of investment function
and the inclusion of time delay into the gross product in capital accumulation equation.

In ( [1] and [6], 2000), Krawiec and Szydłowski investigatedthe stability and Hopf
bifurcation of a positive equilibriumE∗ of system (3) in the special case of small time
delay. In ( [12], 2001), they showed that for a small time delay parameter the Kaldor-
Kalecki model assumes the form of the Lienard equation. In ( [19], 2005), they investigate
the stability of limit cycle. Zhang and Wei ( [9], 2004) investigated local and global
existence of Hopf bifurcation for (3).

In this work, the dynamics of the system (1) are studied in terms of local stability
and of the description of the Hopf bifurcation, that is proven to exist as the delay (taken
as a parameter of bifurcation) cross some critical value. A numerical illustrations is given
to compare our results and the ones (3) of Krawiec-Szydłowski model [1].
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2 Steady state and stability analysis

As in [6], we consider some assumptions on the investment andsaving functions:

I(Y, K) = I(Y ) − βK,

and

S(Y, K) = γY,

whereβ > 0 andγ ∈ (0, 1). For economic justification of this simple mathematical
formulation, see [20–23].

Then system (1) becomes:











dY

dt
= α

[

I
(

Y (t)
)

− βK(t) − γY (t)
]

,

dK

dt
= I

(

Y (t − τ)
)

− βK(t − τ) − δK(t).

(4)

2.1 Steady state

In the following proposition, we give a sufficient conditions for the existence and unique-
ness of positive equilibriumE∗ of the system (4).

Proposition 1. Suppose that

(i) there exists a constant L > 0 such that |I(Y )| ≤ L for all Y ∈ R;

(ii) I(0) > 0;

(iii) I ′(Y ) − γ < γβ
δ for all Y ∈ R.

Then there exists a unique equilibrium E∗ = (Y ∗, K∗) of system (4), where Y ∗ is the
positive solution of

I(Y ) −
(β + δ)γ

δ
Y = 0 (5)

and K∗ is determined by

K∗ =
γ

δ
Y ∗. (6)

Proof. (Y, K) is a steady-state of (4) if

dY

dt
=

dK

dt
= 0,
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that is






I(Y ) − βK − γY = 0,

I(Y ) − (β + δ)K = 0.
(7)

Let us assume thatY > 0 andK > 0 satisfy (7). Then

K =
γ

δ
Y, (8)

and

I(Y ) −
(β + δ)γ

δ
Y = 0. (9)

In view of hypotheses (i), (ii) and (iii) of Proposition 1, it’s clear that equation (9) has a
unique solutionY ∗ > 0. This concludes the proof.

2.2 Local stability analysis

Let y = Y − Y ∗ andk = K − K∗. Then by linearizing system (4) around(Y ∗, K∗) we
have











dy

dt
= α

(

I ′(Y ∗) − γ
)

y(t) − αβk(t),

dk

dt
= I(Y ∗)y(t − τ) − βk(t − τ) − δk(t).

(10)

The characteristic equation associated to system (10) is

λ2 + aλ + bλ exp(−λτ) + c + d exp(−λτ) = 0, (11)

where

a = δ − α(I ′(Y ∗) − γ),

b = β,

c = −αδ
(

I ′(Y ∗) − γ
)

,

and

d = αβγ.

The local stability of the steady stateE∗ is a result of the localization of the roots of the
characteristic equation (11). In order to investigate the local stability of the steady state,
we begin by considering the case without delayτ = 0. In this case the characteristic
equation (11) reads as

λ2 + (a + b)λ + c + d = 0, (12)

hence, according to the Hurwitz criterion, we have the following lemma.
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Lemma 1. For τ = 0, the equilibrium E∗ is locally asymptotically stable if and only if
I ′(Y ∗) − γ < min(γβ

δ , δ+β
α ).

We now return to the study of equation (11) withτ > 0.

Theorem 1. Let the hypotheses

(H1) |I ′(Y ∗) − γ| < γβ
δ

and

(H2) I ′(Y ∗) − γ < δ+β
α .

Then there exists τ0 > 0 such that, when τ ∈ [0, τ0) the steady state E∗ is locally
asymptotically stable, when τ > τ0, E∗ is unstable and when τ = τ0, equation (11) has
a pair of purely imaginary roots ±iω0, with

ω2
0 = −

1

2

(

α2
(

I ′(Y ∗) − γ
)2

+ δ2 − β2
)

+
1

2

[

(α2(I ′(Y ∗) − γ)2 + δ2 − β2)2

− 4
(

α2δ2
(

I ′(Y ∗) − γ
)2

− β2γ2
)]1/2

(13)

and

τ0 =
1

ω0

arctan
α
[

γδ − (αγ − δ)
(

I ′(Y ∗) − γ
)]

ω0 + ω3
0

(

αI ′(Y ∗) − δ
)

ω2
0 + α2γδ

(

I ′(Y ∗) − γ
) . (14)

Proof. From the hypotheses (H1) and (H2), the characteristic equation (11) has negative
real parts forτ = 0 (see Lemma 1). By Rouché’s theorem [24, p. 248], it follows that if
instability occurs for a particular value of the delayτ, a characteristic root of (11) must
intersect the imaginary axis. Suppose that (11) has a purelyimaginary rootiω, with
ω > 0. Then, by separating real and imaginary parts in (11), we have

{

−ω2 − αδ
(

I ′(Y ∗) − γ
)

+ βω sin(ωτ) + αβγ cos(ωτ) = 0,
(

δ − α(I ′(Y ∗) − γ)
)

ω + βω cos(ωτ) − αβγ sin(ωτ) = 0.
(15)

Hence,

ω4+
(

α2
(

I ′(Y ∗)−γ
)2

+δ2−β2
)

ω2+α2
(

δ2
(

I ′(Y ∗)−γ
)2
−β2γ2

)

=0. (16)

It’s roots are

ω2
± = −

1

2

(

α2
(

I ′(Y ∗)−γ
)2

+δ2−β2
)

±
1

2

[(

α2
(

I ′(Y ∗)−γ
)2

+δ2−β2
)2

− 4
(

α2δ2
(

I ′(Y ∗)−γ
)2
−β2γ2

)

]1/2

(17)

Clearly, the hypothesis (H1) implies thatω0 = ω+ makes sense.
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From equation (15), we obtain the following set of values ofτ for which there are
imaginary roots:

τn,1 =
θ1

ω+

+
2nπ

ω+

,

where0 ≤ θ1 < 2π, and

cos θ1 =

(

αI ′(Y ∗) − δ
)

ω2
0 + α2γδ

(

I ′(Y ∗) − γ
)

β(ω2
0 + α2γ2)

,

sin θ1 =
α
[

γδ − (αγ − δ)
(

I ′(Y ∗) − γ
)]

ω0 + ω3
0

β(ω2
0 + α2γ2)

,

wheren = 0, 1, 2, . . ..
We setτ0 = τ0,1. Thus, from (H1) and (H2), we have:
For τ ∈ [0, τ0), E∗ is locally asymptotically stable.
For τ > τ0, E∗ is unstable.
For τ = τ0, equation (11) has a purely imaginary rootsλ0 = ±iω0 whereω0 is

given by (13).

Theorem 2. Assume that

(H3) I ′(Y ∗) − γ ≤ min(−βγ
δ , δ2

−β2

α2 ).

Then E∗ is locally asymptotically stable for all τ ≥ 0.

Proof. From Lemma 1, (H3) implies that the characteristic equation(11) has all roots
with negative real parts forτ = 0 and no purely imaginary roots forτ > 0. Thus,E∗ is
locally asymptotically stable for allτ ≥ 0.

3 Hopf bifurcation occurrence

According to the Hopf bifurcation theorem [25], we establish sufficient conditions for the
local existence of periodic solutions.

Theorem 3. Under hypotheses (H1) and (H2) of Theorem 1, a Hopf bifurcation of peri-
odic solutions of system (4) occurs at E∗ when τ = τ0.

Proof. For the proof of this theorem we apply the Hopf bifurcation theorem introduced in
[25]. From Lemma 1, the characteristic equation (11) has a pair of imaginary roots±iω0

at τ = τ0. In the first, lets show thatiω0 is simple: Consider the branch of characteristic
rootsλ(τ) = ν(τ)+iω(τ), of equation (11) bifurcating fromiω0 atτ = τ0. By derivation
of (11) with respect to the delayτ, we obtain

{

2λ + δ − α
(

I ′(Y ∗) − γ
)

+
[

β − τ(βλ + αβγ)] exp(−λτ)
} dλ

dτ

= (βλ + αβγ)λ exp(−λτ).
(18)
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If we suppose, by contradiction, thatiω0 is not simple, the right hand side of (18) gives

αγ + iω0 = 0,

and leads a contradiction with the fact thatα andγ are positive.
Lastly we need to verify the transversally condition,

dRe(λ)

dτ

∣

∣

∣

∣

τ0

6= 0.

From (18), we have
(

dλ

dτ

)−1

=

(

2λ + δ − α
(

I ′(Y ∗) − γ
))

exp(λτ) + β

λ(βλ + αβγ)
−

τ

λ
.

As,

Sign
dRe(λ)

dτ

∣

∣

∣

∣

τ0

= Sign Re

(

dλ

dτ

)−1∣
∣

∣

∣

τ0

.

Then

Sign
dRe(λ)

dτ

∣

∣

∣

∣

τ0

= Sign Re

(

− 2iω0 + β + δ + α
(

I ′(Y ∗) − γ
))

exp(iω0τ0)

−iαβI ′(Y ∗)ω0

.

From (11), we have

exp(λτ) = −
βλ + αβγ

λ2 + δ − α
(

I ′(Y ∗) − γ
)

λ − αδ
(

I ′(Y ∗) − γ
) . (19)

So, by (H1) and (13) we obtain

Sign
dRe(λ)

dτ

∣

∣

∣

∣

τ0

= Sign
(

[(

α2
(

I ′(Y ∗) − γ
)2

+ δ2 − β2
)2

− 4
(

α2δ2
(

I ′(Y ∗) − γ
)2

− β2γ2
)]1/2

)

.

Consequently,

dRe(λ)

dτ
(τ0) > 0.

4 Application

4.1 Effect of additional delay

Let’s compare the principal results of systems (3) (see Krawiec-Szydłowski model in
[1]) and (4) by a numerical illustration. Consider the following Kaldor-type investment
function:

I(Y ) =
exp(Y )

1 + exp(Y )
.

Theorems 1 and 3 implie:
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Proposition 2. If

α = 3; β = 0.2; δ = 0.1; γ = 0.2.

Then systems (3) and (4) have the following positive equilibrium

E∗ = (1.31346, 2.62699).

Furthermore, the critical delay and the period of oscillations corresponding to (4) (resp.
(3)) are τ0 = 2.9929 and P0 = 48.2646 (resp. τc = 5.3312 and Pc = 38.0053) (see
Zhang [9] for more details).

The following numerical simulations are given for system (4) for τ = 2, andτ = 3
and for system (3) forτ = 3.

1 1.2 1.4 1.6
2

2.2
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Y(t)

K
(t

)

Fig. 1. The steady stateE∗ of (4) is
stable whenτ = 2.
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Fig. 2. The steady stateE∗ of (4) is
unstable whenτ = 3 .
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Y(t)

K
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Fig. 3. The steady stateE∗ of the
Krawiec-Szydłowski model [1] is

stable whenτ = 3.

As τ0 < τc, we think that it’s more interesting to introduce the delayτ into both
gross product and capital stock (see also [12, p. 103]).
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4.2 Effect of changing parameters

Now, let’s show how the critical delayτ0 and the period of oscillationsP0 change as the
model parameters move.

In Fig. 4, we construct the family of curvesτ0(α, β, γ, δ) assuming that three of
parametersα, β, γ andδ are fixed. For values ofγ which are less than a critical value
γc = 0.004, the condition of existence of equilibrium is violated (see Fig. 4(a)). For
values ofβ (resp.δ) which are less (resp. greater) than a critical valueβc = 0.07 (resp.
δc = 0.28), the system will not exhibit a Hopf bifurcation (see Fig. 4(b)) (resp. (see
Fig. 4(d))). Additionally the family of curvesP0(α, β, γ, δ) are presented in Fig. 5.
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Fig. 4. The dependence of the critical value of delayτ0 on the model parameters:
(a) α = 3, β = 0.2, δ = 0.1 andγ ∈ (0.004, 1]; (b) α = 3, γ = 0.2, δ = 0.1
andβ ∈ (0.07, 1]; (c) β = 0.2, γ = 0.2, δ = 0.1 and α ∈ (0, 4]; (d) α = 3,

β = 0.2, γ = 0.2 andδ ∈ [0, 0.28).
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Fig. 5. The dependence of the period of oscillationsP0 on the model parameters:
(a) α = 3, β = 0.2, δ = 0.1 and γ ∈ (0.004, 1]; (b) α = 3, γ = 0.2,
δ = 0.1 and β ∈ (0.07, 1]; (c) β = 0.2, γ = 0.2, δ = 0.1 and α ∈ (0, 4];

(d) α = 3, β = 0.2, γ = 0.2 andδ ∈ [0, 0.28).
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