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Abstract. A numerical simulation has been carried out to study the laminar flow in
a symmetric sudden expanded channel subjected to a uniform blowing/suction speed
placed at the lower and upper porous step walls. The governing equations for viscous flow
have been solved using finite-difference techniques in pressure-velocity formulation. The
results obtained here have been compared with the availableexperimental and numerical
results of similar problems. It is noted that the recirculating region formed near the step
walls diminishes in its length for increasing values of blowing speed applied at the porous
step walls. For a suitable blowing speed, the recirculationzone disappears completely.
The critical Reynolds number for the flow bifurcation (i.e. flow asymmetry) is obtained
and it increases with the increase of the blowing speed. The critical Reynolds number for
symmetry breaking of the flow decreases with the increasing values of suction speeds.
The primary and the secondary recirculating regions formednear the channel walls are
controlled using blowing.

Keywords: sudden expansion, porous step walls, staggered grid.

1 Introduction

Laminar separated flows and the control of flow separation belong to one of the fun-
damental classes of flows which have attracted substantial attention in fluid mechanics
over the years. Two-dimensional laminar flow of an incompressible Newtonian fluid in
a symmetric sudden expanded channel has been studied by several investigators. Experi-
mental and numerical studies of Durst et al. [1], Cherdron etal. [2], Sobey and Drazin [3],
Fearn et al. [4], and Durst et al. [5] investigated the suddenexpansion channel flows with
moderate expansion ratio. When the Reynolds number Re is relatively low, the flow
is symmetric and the recirculating regions at the two channel walls are also symmetric.
With the increase of Reynolds number, the flow remains two-dimensional but asymmetry
of the flow sets in. Additional recirculation zones appear along the channel walls for
further higher values of Re. Recently, Chiang et al. [6] reported the sidewall effects in
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a symmetric sudden expansion flow via 2-D and 3-D simulations. Hawa and Rusak [7]
used an asymptotic analysis to investigate the resulting change in the bifurcation diagram
and stability in a slightly asymmetric channel with a suddenexpansion. Using asymptotic
analysis, Hawa and Rusak [8] demonstrated that when the Reynolds number is smaller
than a critical value,Rec, the symmetric states have an asymptotically stable mode of
disturbance. However, whenRe > Rec, the symmetric states are unstable to this mode
of asymmetric disturbance. The asymmetry of the flow dependson the Reynolds number
of the flow, the expansion ratio and also on the aspect ratio (Durst et al. [5]).

Separation control (with active or passive methods) is of immense importence to the
performance of air, land or sea vehicles, turbomachines, diffusers, and a variety of other
technologically important systems involving fluid flow (seeGad-el-Hak and Bushnell [9]).
There are several methods which have been developed for the purpose of artificial control
of the boundary layer behaviour e.g. near-wall fluid suctionand blowing, cooling and
heating, surface modifications in the form of hump and dip, flow streaming by favourable
pressure gradient. According to the physical concept of theboundary layer, it is possible
to delay or even prevent separation by removing the decelerated fluid particles caused by
the adverse pressure gradient in the region where separation is likely to develop. The
much explored method of preventing separation is suction because it is relatively easy to
impose the various strengths of surface mass flow to perturb the laminar flow separation.
The effect of suction consists in the removal of directed fluid particles from the boundary
layer before they are given a chance to cause separation. On the other hand, the wall
shear stress and hence friction drag is reduced by blowing. That is why blowing may be
useful in controlling the flow separation in a system involving fluid flow. Wall blowing
and suction have been encountered in many engineering flow problems such as turbine-
blade cooling, transition delay and prevention of separation. Comprehensive summaries
of research in the area of boundary layer control by suction or injection in the flow of a
viscous fluid are to be found in Lachmann et al. [10] and Chang et al. [11]. Recently,
Kaiktsis and Monkewitz [12] investigated the effects of wall suction applied at the step
wall on flow separation in backward-facing step flow.

In the present paper, we explore the effects of suction and blowing speeds placed
at the porous step walls on flow separation and symmetry-breaking bifurcation in a two-
dimensional sudden expanded channel. Finite-difference approximations of the governing
equations of motion in the primitive variable formulation are employed. The recirculation
regions near the step walls can be influenced by a suitable imposition of blowing and
suction speed at the porous step walls. Wall shear stress distribution which is a function
of suction or blowing speed has been calculated and presented graphically. The pattern of
streamlines and the vorticity contours have been drawn and analysed physically. The crit-
ical Reynolds number for which the symmetry breaking bifurcation of the flow occured
is obtained.

2 Governing equations

We consider the two-dimensional flow of an incompressible viscous fluid of constant
densityρ, in a two-dimensional symmetric sudden expanded channel. Let (x∗, y∗) be
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the Cartesian coordinates of any point in the flow domain, where thex∗-axis is along the
bottom plate of the outlet channel andy∗ is the normal to both the plates. Letu∗, v∗ be
the velocity components along thex∗ andy∗ directions respectively,p∗ the pressure and
U the maximum velocity at the inlet section of the channel. A physical sketch of the
problem is given in Fig. 1. The height of the inlet channel is h. Let x∗

1, x∗

2 denote the
upper wall and lower wall reattachment lengths respectively. The channel height is taken
ass∗.

x 1

x 2

s

2hh

(a)
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x 2

s

h 2h

(b)

Fig. 1. Schematic diagram of the flow configuration, in the presence of (a) blowing;
(b) suction at the step walls.

Introducing the following dimensionless variables

t = t∗U/h, x = x∗/h, y = y∗/h, u = u∗/U, v = v∗/U,

(1)
p = p∗/ρU2, xr = x∗

r/h,

the Navier-Stokes equations for motion are written as

∂u

∂x
+

∂v

∂y
= 0, (2)

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
= −

∂p

∂x
+

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

, (3)

∂v

∂t
+

∂uv

∂x
+

∂v2

∂y
= −

∂p

∂y
+

1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)

, (4)
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whereRe = Uh/ν is the Reynolds number. The non-dimensional step height is taken as
s wheres = s∗/h. The channel expansion ratio is taken as1 : 2. The non-dimensional
length of the inlet channel is taken as4.

3 Boundary conditions

The streamwise and transverse velocity components should be zero at the rigid walls (no-
slip condition) except at the porous step walls where a blowing or suction of fluid with
speedub or us is imposed. The suction or injection speed is kept small in comparison
with the main stream velocityU . At the inlet section of the channel the flow is assumed
to be fully developed i.e., Poiseuille flow.

The downstream length measured from the step is sufficientlylong (45 non-dimen-
sional units), so that the reattachment length is independent of the length of the compu-
tational domain. The boundary condition at the outlet cross-section of the channel was
taken as that of a fully developed flow, i.e.∂u

∂x
= ∂v

∂x
= 0.

4 Numerical methods

The governing equations (2), (3) and (4) along with the initial and boundary conditions are
solved by a finite difference method. Control volume-based finite-difference discretiza-
tion of the above equations is carried out on a staggered grid, popularly known as MAC
(Marker and Cell) proposed by Harlow and Welch [13]. In this type of grid alignment,
the velocities and the pressure are evaluated at different locations of the control volume.

The time derivative terms are differenced according to the first-order accurate two-
level forward time-differencing formula. The convective terms in the momentum equa-
tions are differenced with a hybrid scheme consisting of thecentral differencing and the
second-order upwinding in order to reduce or eliminate “false diffusion”. The diffusive
terms are differenced by a second-order accurate three-point central difference formula.
The source terms are centrally differenced, keeping the position of the respective fluxes
at the centres of the control volumes. Thus, in finite-difference form, witht = n∆t, x =
i∆x, y = j∆y andp(x, y, t) = p(i∆x, j∆y, n∆t) = pn

ij , where the superscript n refers
to the time direction,∆t is the time increment and∆x, ∆y are the length and width of the
(i, j)-th control volume.(xi, yj) and(xi+ 1

2

, yi+ 1

2

) are the co-ordinates of the cell centre
and the right top corner of the cell, respectively.

The discretized form of the continuity equation at the(i, j) cell becomes

un
i+ 1

2
,j
− un

i− 1

2
,j

∆x
+

vn
i,j+ 1

2

− vn
i,j− 1

2

∆y
= 0. (5)

Considering the source, convective and diffusive terms at the n-th time level, the
momentum equation in thex-direction given by equation (3) is put in the finite-difference
form

un+1

i+ 1

2
,j
− un

i+ 1

2
,j

∆t
=

pn
i,j − pn

i+1,j

∆x
+ Ucdn

i,j , (6)
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where

Ucdn
i,j =

1

Re
Diffun

i,j − Conun
i,j . (7)

HereDiff un
i,j andCon un

i,j are the diffusive and convective terms of theu-momentum
equation for then-th time level at(i, j) cell. The diffusive terms are discretized centrally.
A central difference formula is used for the mixed derivative∂2u/∂x∂y in uniform grid
sizes.

The same discretization techniques are employed for thev-momentum equation and
the final form of discretized equation becomes

vn+1

i,j+ 1

2

− vn
i,j+ 1

2

∆t
=

pn
i,j − pn

i,j+1

∆y
+ Vcdn

i,j , (8)

where

Vcdn
i,j =

1

Re
Diffvn

i,j − Convn
i,j . (9)

HereDiff vn
i,j andCon vn

i,j are the finite-difference representation of diffusive and con-
vective terms of thev-momentum equation for thenth time level at the cell(i, j).

A Poisson equation for pressure is obtained by combining thediscretized form of the
momentum and continuity equations. The final form of the Poisson equation for pressure
is

2 (A + B) pn
i,j − Apn

i+1,j − Apn
i−1,j − Bpn

i,j−1 − Bpn
i,j+1

= −

[

Divn
i,j

∆t
+

Ucdn
i,j − Ucdn

i−1,j

∆x
+

Vcdn
i,j − Vcdn

i,j−1

∆y

]

.
(10)

HereDivn
i,j is the finite-difference representation of the divergence of the velocity field at

cell (i, j). The expressions forA, B are presented below.

A =
1

(∆x)2
, B =

1

(∆y)2
.

The advantage in using MAC cell is that the pressure boundarycondition is not needed at
the boundaries where the velocity vector is specified, because the domain boundaries are
chosen to fall on velocity nodes. For the cells adjacent to the upper wall(y = 2), we get
from v-momentum equation

pn
i,j+1 = pn

i,j + ∆yVcdn
i,j . (11)

Thus the Poisson equation for pressure for the cells adjacent to the upper wall
(y = 2) is

(2A + B)pn
i,j − Apn

i+1,j − Apn
i−1,j − Bpn

i,j−1

= −

[

Divn
i,j

∆t
+

Ucdn
i,j − Ucdn

i−1,j

∆x
−

Vcdn
i,j−1

∆y

]

,
(12)
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wherepn
i,j is the pressure located at the cell centre inside the flow domain.

The Poisson equation for pressure for the cells adjacent to the inlet channel boundary
atx = 0 can be expressed as

(A + 2B)pn
i,j − Apn

i+1,j − Bpn
i,j−1 − Bpn

i,j+1

= −

[

Divn
i,j

∆t
+

Ucdn
i,j

∆x
+

Vcdn
i,j − Vcdn

i,j−1

∆y

]

,
(13)

wherepn
ij is the pressure at the cell centre inside the flow domain.

Similarly, the Poisson equations for pressure for the cellsadjacent to the step height
wall, inlet channel lower wall and outlet channel lower walland outlet boundary are
obtained. The Poisson equation for pressure (equation (10)) is solved iteratively by
successive over-relaxation (S.O.R.) method. The value of the over-relaxation parameter
is taken here as1.2.

In the correction stage, pressure and subsequently the velocities are corrected to get
a more accurate velocity field in the sense that it will satisfy the continuity equation more
accurately. This second stage begins with computing the divergence of the velocity field
for each cell. If it is found to be greater than0.5×10−6 at any cell in absolute sense, then
the pressure is corrected for each cell in the flow field. The velocity components at the
sides of the cell are then adjusted. The pressure correctionformula is

pn
i,j = p∗i,j + ω∆pi,j, (14)

wherep∗ij is obtained after solving the Poisson equation,ω (ω ≤ 0.5) is an under-
relaxation parameter and

∆pi,j = −
Div∗

i,j

2∆t(A + B)
, (15)

whereDiv∗

i,j is the value of the divergence of velocity field at the cell(i, j) obtained after
solving the Poisson equation for pressure. Theu-velocity correction formulae are:

un+1

i+ 1

2
,j

= u∗

i+ 1

2
,j

+
∆t ∆pi,j

∆x
, (16)

un+1

i− 1

2
,j

= u∗

i− 1

2
,j
−

∆t ∆pi,j

∆x
, (17)

whereu∗

i+ 1

2
,j
, u∗

i− 1

2
,j

represent the updated velocity field obtained after solvingthe Pois-

son equation for pressure. Similarly, thev-velocity corrections could be obtained.
The Courant-Fredrichs-Lewy (CFL) condition and the condition which is related to

the viscous effects, according to Hirt’s stability criterion (that is, the momentum must
not diffuse farther than one cell in one time step) were used to determine the time step
∆t (see Hirt [14]). The final time step was less than the minimum determined by the
above two conditions. A typical value of the time step for thepresent computation in the
Reynolds number range 100 to 500 is 0.006. For higher Reynolds number flow, the time
step (consistent with the above two conditions) had to be reduced further. The details can
be found in Midya et al. [15].
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5 Results and discussion

Grid independent tests have been performed for selecting the final grid-size of the present
computation. The reattachment lengths on both the upper andthe lower wall have been
presented at Table 1 for different grid sizes whenub = us = 0 andRe = 300. The results
are compared with the experimental results of Durst et al. [5] for the reattachment length
atRe = 300 andub = 0.0 (at which lower and upper wall reattachment lengths are near
about5.39 and17.1 respectively) and are found to agree well in case of lower grid sizes
(i.e. ∆x = ∆y = 0.04). Grid independent tests have also been performed for two cases,
one forub = 0.05 and another forus = 0.05. The primary separation lengths at the lower
and upper walls forub = 0.05 andus = 0.05 have been shown in the Table 2 and Table 3
respectively. All the computations have been carried out ina Pentium IV machine with a
speed2.4 of GHz and256 MB RAM.

Table 1. Reattachment lengths at the lower and upper walls for different grid sizes for
Re = 300 andub = 0.0

grid lower wall upper wall
0.04× 0.04 5.373 16.963

0.06× 0.06 5.782 15.824

0.08× 0.08 6.100 15.737

Table 2. Primary separation lengths at the lower and upper wall for different grid sizes
for Re = 300 andub = 0.05

grid lower wall upper wall
0.04 × 0.04 3.28 6.71

0.06 × 0.06 3.34 6.67

0.08 × 0.08 3.39 6.56

Table 3. Primary separation lengths at the lower and upper wall for different grid sizes
for Re = 300 andus = 0.05

grid lower wall upper wall
0.04 × 0.04 2.22 8.13

0.06 × 0.06 2.27 8.08

0.08 × 0.08 3.31 8.02

The verification of the present numerical algorithm is performed against experimen-
tal and numerical results for the case of symmetric sudden expansion channel. The results
obtained in this study have been compared with the experimental and numerical studies
of Durst et al. [5] and are presented in Fig. 2. In this figure, we present recirculation
zone lengths, normalized by step heights (s = 1/2), versus Reynolds number,Re.
The computational values obtained by using the present numerical scheme agree well
with the numerical and experimental findings of Durst et al. [5]. The dependence of
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the details of the flow on the dimensionless parameters, say,Reynolds number (Re) and
suction/blowing speed is investigated systematically in the following sections.

Present prediction

x r__
s

Re

x 1

x 2

Predicted in [5]

Measured in [5]

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600  700

Fig. 2. Recirculation length,xr, normalized by step height,s, versus Reynolds number
Re for the comparison of experimental and numerical results.

5.1 Pattern of flow

First of all we present the figures which establishes the mirror image field in the flow.
Fig. 3 depicts the pattern of streamlines reflecting mirror image view forus = 0, 0.05, 0.1
andRe = 100. The recirculating region increases on both lower and upperwalls equally
when the suction velocity (us) is 0.05. Its length further increases forus = 0.1.

u s= 0

u s= 0.05

u s= 0.1

 5  10  15  20  25  30

 5  10  15  20  25  30

 5  10  15  20  25  30

Fig. 3. Pattern of streamlines for different values of suction speeds for the Reynolds
numberRe = 100 (thex- andy-scales are not the same).
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Fig. 4 exhibits the vortex shedding of the flow pattern for different suction velocities
(us = 0, 0.05, 0.1) for the same Reynolds number. The same feature of vorticityfield
(mirror-image) is viewed.

u s= 0

u s= 0.05

u s= 0.1

 5  10  15  20  25  30

 5  10  15  20  25  30

 5  10  15  20  25  30

Fig. 4. Vorticity isocontours for different values of suction speeds for the Reynolds
numberRe = 100 (thex- andy-scales are not the same).

We have also drawn curves of wall shear stresses (Figs. 5(a) and (b)) for both walls
taking same values of suction speeds and Reynolds number. The same feature as cited
above is retained in the distribution of wall stresses.

Fig. 6 presents the velocity distribution at the location ofx = 5 near the step wall
(the inlet channel length has been taken as4, i.e. uptox = 4). It is clear that, whenus =
0, the upper and the lower parts of the velocity curves have negative regions indicating the
presence of recirculation zones in both the channel walls. The length of recirculation zone
increases for the increased values of suction speeds. The flow field becomes asymmetric.

Fig. 7 shows the streamlines forub = 0, 0.05, 0.1 for the Reynolds number 300. It
is seen, however, that asub increases, the length of separation also gradually diminishes
along the upper wall of the channel whereas increases gradually along the lower wall of
the channel and the streamline pattern gradually becomes symmetric asub increases.

Isovorticity lines have some interesting features, and areshown in Fig. 8 at the
Reynolds number300. In the non-manipulated (ub = 0) flow, the centreline vorticity
contour is curved which starts at the junction of inlet channel and outlet channel. This
indicates the asymmetric nature of the flow. Whenub = 0.05 is imposed, the contours
becomes more symmetric thanub = 0 and centreline vorticity line also tends to a straight
line. Forub = 0.1, the centreline becomes nearly straight line and contours are almost
symmetric about the centreline of the channel.

Figs. 9(a) and 9(b) represent non-dimensional shear stressdistribution
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([τw = τ/(1

2
ρU2)]) along the upper and lower outlet walls respectively for various values

of the blowing atRe = 300. With the increase in blowing speeds, it is seen from Fig. 9
that the upper wall shear stresses decrease significantly near the upper step wall. For the
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Fig. 5. Shear stress distribution: (a) along the upper outlet wall, for us = 0, 0.05, 0.1

andRe = 100; (b) along the lower outlet wall, forus = 0, 0.05, 0.1 andRe = 100.
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Fig. 6. Velocity profiles at a stationx = 5 for us = 0, 0.05, 0.1 andRe = 100.
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Fig. 7. Pattern of streamlines for different values of blowing speeds for the Reynolds
numberRe = 300 (thex- andy-scales are not the same).
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Fig. 8. Vorticity isocontours for different values of blowing speeds for the Reynolds
numberRe = 300 (thex- andy-scales are not the same).
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non-manipulated flow case, the graph for the wall shear stress shows that there is a big
primary separation, near the upper step wall. With the application of small blowing speed,
sayub = 0.05, this large separation zone decreases in its size and for the blowing speed
ub = 0.1, the large separation region has been drastically decreased in length. Hence,
blowing can be used as an alternative method for controllingseparation. Due to the appli-
cation of blowing at the porous step walls, the decelerated fluid particles are accelerated,
resulting in the decrease of region of separation.
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Fig. 9. Shear stress distribution: (a) along the upper outlet wall, for ub = 0, 0.05, 0.1

andRe = 300; (b) along the lower outlet wall, forub = 0, 0.05, 0.1 andRe = 300.

The velocity curve at the location ofx = 5 near the step wall (the inlet channel
length has been taken as4, i.e. uptox = 4) is shown in the Fig. 10. The velocity curves
have negative regions showing the recirculation zones in both the channel walls forub = 0.
The separation zones on both the walls decrease its length for the application of blowing
speedub = 0.05. The velocity curve forub = 0.1 has no negative region which indicates
the flow separation region is completely disappeared.
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Fig. 10. Velocity profiles at a stationx = 5 for ub = 0, 0.05, 0.1 andRe = 300.

5.2 Asymmetric flow

Now, we measure asymmetry of the flow by the root mean squarev-velocity (vrms) on
the centreline of the channel. Thevrms is defined as

vrms =

√

v2

i+ 1

2
,j

+ v2

i+ 3

2
,j

+ v2

i+ 5

2
,j

+ . . . + v2

i+ 2n−1

2
,j

n
,

j lies on the centreline of the channel,n is the total number of grid points in the axial
direction. Whenvrms is close to zero, the flow becomes symmetric. Fig. 11 depictsvrms

versusRe for various values ofub andus. Obviously, the flow remains symmetric up to a
specific Reynolds number depending upon the situation considered. It is to be noted that
the critical Reynolds number denoted byRec is obtained close to125 for ub = us = 0.
With further increase in Reynolds number, the asymmetry of the flow develops which
turns up another strong recirculating region. Fig. 11 indicates that for blowing speed
ub = 0.05 the flow field remains symmetric up toRe = 185 approximately. The critical
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Fig. 11. Distribution of r.m.s.v-velocity on the channel centreline againstRe for
different values of blowing and suction speeds.
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Reynolds number is near about260 when the blowing speed isub = 0.1. On the contrary,
if we impose suction velocity at the steps, the flow is found tobe more unstable, and an
early asymmetry occurs. Whenus = 0.05, the flow becomes asymmetric at a Reynolds
number of90 approximately and for suction speedus = 0.1, the critical value is found
near about75. Therefore, imposition of blowing at the step walls increases the flow’s
stability to asymmetric perturbations, and can also prevent separation. On the other hand,
suction can be used as an asymmetry generator.

6 Conclusions

The structure of a two-dimensional flow in a channel with sudden expansion subject
to blowing and suction at the porous step walls has been studied. The Navier-Stokes
equations have been solved by a finite difference method using staggered grid. Asym-
metric states appear whenRe > Rec. Shear stress distributions have been determined
for different blowing and suction speeds.The critical Reynolds numbers for the flow
asymmetry bifurcation have been obtained for various blowing and suction speeds. Based
on the present results, the following observations can be made.

1. In the region of large recirculation zone, shear stress values decrease significantly at
increasing blowing speed.

2. By the application of blowing, the separation point shifts towards downstream of the
channel and the reattachment point towards the upstream direction of the channel.

3. Thus, blowing shrinks the large recirculation zone, and in the case of suction, the
separating enhances.

4. The blowing through the channel wall makes the asymmetricnature of flow to the
symmetric by diminishing the region of separation. On the other hand, the symmetric
nature of flow becomes asymmetric by the application of suction from the porous
channel wall and the region of separation enhances due to increasing suction speed.

5. The critical Reynolds number for flow symmetry bifurcation increases with the in-
crease of blowing intensity.
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