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Abstract. In this paper the Sturm-Liouville problem with one classical and the other
nonlocal two-point or integral boundary condition is investigated. Critical points of the
characteristic function are analyzed. We investigate how distribution of the critical points
depends on nonlocal boundary condition parameters. In the first part of this paper we
investigate the case of negative critical points.
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1 Introduction

Differential problems with nonlocal boundary conditions arise in various fields of biology,
biotechnology, physics, etc. Theoretical investigation of problems with different types of
nonlocal boundary conditions is a topical problem and recently much attention has been
paid to them in the scientific literature. The analysis of eigenvalues of the difference
operator with a nonlocal condition permits us to investigate the stability of difference
schemes and corroborate the convergence of iterative methods [1–5] and it is also of
interest in itself. Eigenvalues and eigenfunctions of differential problems with nonlocal
two-point boundary conditions are investigated by A.V. Gulin and V. A. Morozova [6],
N. I. Ionkin and E. A. Valikova [7], M. Sapagovas and A.Štikonas [8],Štikonas [9],
S. Pečiulytė [10–13]. Such problems with nonlocal integral boundary conditions are
analyzed B. Bandyrskii, I. Lazurchak, V. Makarov and M. Sapagovas [14], R.Čiupaila,
Ž. Jesevičīutė and M. Sapagovas [15], G. Infante [16], A.Štikonas and S. Pečiulytė [10,
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17], etc. In recent decades the number of differential problems with nonlocal boundary
conditions and numerical methods for such problems have increased significantly.

Investigation of the spectra of differential equations with nonlocal conditions is quite
a new area related to the problems of this type. In this paper,we investigate the Sturm-
Liouville problem with a classical the first type boundary condition on the left side of the
interval (also the second type boundary condition) and withfour cases of nonlocal two-
point and two cases of nonlocal integral boundary conditions on the right boundary. We
analyze critical and other points of a real characteristic function.

For the fixed parameterξ, dependence of spectra of these problems on the para-
meterγ in nonlocal boundary conditions has been investigated in the previous research
(see, [8, 11, 13, 15, 17]) and S. Pečiulytė Doctoral Thesis[10]. Furthermore, conditions,
where there exist constant, negative and only real eigenvalues have been obtained in these
articles. The first results on the dependence of distribution constant and critical points on
the parameterξ ∈ (0, 1) were presented in [12]. We extend here our investigation andthe
new results on the critical points of the characteristic functions are presented.

In the first part of this paper we formulate a few problems withnonlocal boundary
conditions in Section 2. Then we give a definition of a real characteristic function in
Section 3, we find zeroes, poles and constant eigenvalue points for this function and
investigate critical points in Section 4. The distributionof negative critical points are
presented in Section 5.

2 Some problems with nonlocal boundary conditions

Let us analyze the Sturm-Liouville problem with one classical boundary condition

−u′′ = λu, t ∈ (0, 1), (1)

u(0) = 0, (2)

and the other nonlocal two-point boundary condition of the Samarskii-Bitsadze type or
integral type:

u′(1) = γu(ξ), (Case 1) (31)

u′(1) = γu′(ξ), (Case 2) (32)

u(1) = γu′(ξ), (Case 3) (33)

u(1) = γu(ξ), (Case 4) (34)

u(1) = γ

∫ ξ

0

u(t)dt, (Case 5) (35)

u(1) = γ

∫ 1

ξ

u(t)dt, (Case 6) (36)

with the parametersγ ∈ R and ξ ∈ [0, 1]. Also, we analyze the Sturm-Liouville
problem (1) with the boundary condition

u′(0) = 0 (4)
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on the left side and with nonlocal boundary conditions (3) onthe right side of the interval.
We enumerate these cases from Case 1′ to Case 6′, respectively. We denote problems
(1), (2) in the case of nonlocal boundary conditions (31)–(36) as P1, P2, P3, P4, P5, P6
and problems (1), (4) in the case of nonlocal boundary conditions (31)–(36) as P1′, P2′,
P3′, P4′, P5′, P6′, respectively. Note that the index in the references denotes the case. If
there is no index, then the rule (or results) holds on in all the cases of nonlocal boundary
conditions.

Remark 1 (Classical case). We have the classical case forγ = 0. Eigenvalues in this
case are well known:

λcl
k = k2π2, uk(t) = sin(kπt), k ∈ N; (53,4,5,6)

λcl
k = (k − 1/2)2π2, uk(t) = sin

(

(k − 1/2)πt
)

, k ∈ N; (51,2)

λcl
k = (k − 1/2)2π2, uk(t) = cos

(

(k − 1/2)πt
)

, k ∈ N; (53′,4′,5′,6′ )

λcl
k = (k − 1)2π2, uk(t) = cos

(

(k − 1)πt
)

, k ∈ N. (51′,2′ )

We get the same case forξ = 0 (ProblemsP1, P4, P5, P2′, P3′, P5′), ξ = 1
(ProblemsP6, P6′), ξ = 1 andγ 6= 1 (ProblemsP2, P4, P2′, P4′). In the caseξ = 1
andγ = 1 (ProblemsP2, P4, P2′, P4′) we have degenerate case with one left boundary
condition. So, we omit these cases and defineDξ := [0, 1] (ProblemsP3, P1′), Dξ :=
(0, 1] (ProblemsP1, P5, P3′, P5′),Dξ := [0, 1) (ProblemsP2, P6, P4′, P6′),Dξ := (0, 1)
(ProblemsP4, P2′).

Remark 2 (Caseγ = ∞). In this case, we define boundary conditions:u(ξ) = 0,

u′(ξ) = 0, u′(ξ) = 0, u(ξ) = 0,
∫ ξ

0
u(t)dt = 0,

∫ 1

ξ
u(t)dt = 0, accordingly.

Firstly, let us consider the case whereξ is fixed. We define aconstant eigenvalue
as the eigenvalueλ = q2 that does not depend on the parameterγ ∈ C [11, 17]. For
any constant eigenvalue we define theconstant eigenvalue pointq ∈ Cq := {z ∈ C :
−π/2 < arg z 6 π/2 or z = 0} and theconstant eigenvalueγ-value point(q, γ) ∈
Cq × C, respectively. For a constant eigenvalue, the set ofγ-value points inCq × C is a
vertical line. Other eigenvalues will be named asnonconstant. For such eigenvalues, we
define a nonconstant eigenvalue pointq(γ) ∈ Cq and a nonconstant eigenvalueγ-point
(q, γ(q)) ∈ Cq × C. In the nonconstant eigenvalue case, we get eigenvalue points as
roots of the equationf1(q) − γf2(q) = 0, wheref1(q) := sin q/q for Problems P1–P6,
andf1(q) := cos q for Problems P1′–P6′. The functionf2(q) depends on the case of
the second boundary condition. We get all the constant eigenvalue points by solving the
system

{

f1(q) = 0,

f2(q) = 0.

Corollary 1. The pointq = 0 cannot be a constant eigenvalue point for problems(1)
with boundary conditions(2) or (4).
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All nonconstant eigenvalues (which depend on the parameterγ) areγ-points of the
meromorphic functionsγc = γc(q) = f1(q)/f2(q) : Cq → C. We call this functionγc as
a complex characteristic function.

We enumerate the eigenvaluesλk = λk(γ, ξ) using the classical caseγ = 0, i.e.,
λk(0, ξ) = λcl

k . The eigenvaluesλk (and eigenvalue pointsqk :=
√
λk) depend on the

parameterγ continuously. All zeroes (zeroes of the functionf1(q) ) and poles (zeroes
of the functionf2(q) ) of the complex characteristic function for investigated problems
(see, [10–13]) are nonnegative real numbers. If a zero of thefunctionf1(q) is coincident
with a pole, i.e., a zero of the functionf2(q), then this point is a constant eigenvalue point.
In fact we must find the setZ of all zeroes of the real characteristic functionγ. Then the
set of the constant eigenvalue pointsC = {kπ, k ∈ N} r Z.

We call the pointqc ∈ Cq, qc 6= 0 such thatγ′c(qc) = 0, a critical point of the
complex characteristic function, and we call an image of thecritical pointγc(qc) a critical
valueof the complex characteristic function [12].

3 Real characteristic function

If we takeq only in the raysq = x > 0, q = −ix, x 6 0 instead ofq ∈ Cq, we
investigate positive eigenvalues in case the rayq = x > 0, and we get negative eigen-
values in the rayq = −x, x < 0. The pointq = x = 0 corresponds toλ = 0. We
have two restrictions of the functionγc : Cq → R on those rays:γ+(x) := γc(x+ i0) for
x > 0 andγ−(x) := γc(0 − ix) for x 6 0. The functionγ+ corresponds to the case of
positive eigenvalues, while the functionγ− to that of negative eigenvalues. All the real
eigenvalues

λk =

{

x2
k for xk > 0,

−x2
k for xk 6 0,

k ∈ N, (6)

can be investigated using areal characteristic functionγ : R → R (see, [11,17]):

γ(x) =

{

γ+(x) = γc(x) for x > 0,

γ−(x) = γc(−ix) for x 6 0.

Let us write an expression of the characteristic function ineach case of the nonlocal
boundary condition [10,11,17] forξ ∈ Dξ:

γ =
1

ξ
· f(x)

g(ξx)
,

{

f(x) := coshx, g(x) := sinh x
x for x 6 0,

f(x) := cosx, g(x) := sinh x
x for x > 0;

(71,5′)

γ =
f(x)

g(ξx)
,

{

f(x) := coshx, g(x) := coshx for x 6 0,

f(x) := cosx, g(x) := cosx for x > 0;
(72,4′)

γ =
f(x)

g(ξx)
,

{

f(x) := sinh x
x , g(x) := coshx for x 6 0,

f(x) := sin x
x , g(x) := cosx for x > 0;

(73)
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γ =
1

ξ
· f(x)

g(ξx)
,

{

f(x) := sinhx
x , g(x) := sinhx

x for x 6 0,

f(x) := sin x
x , g(x) := sin x

x for x > 0;
(74,2′)

γ =
2

ξ2
· f(x)

g(ξx)
,

{

f(x) := sinhx
x , g(x) := coshx−1

x2/2 for x 6 0,

f(x) := sin x
x , g(x) := 1−cos x

x2/2 for x > 0;
(75)

γ =
f(x)

g(ξx)
,

{

f(x) := x sinhx, g(x) := coshx for x 6 0,

f(x) := −x sinx, g(x) := cosx for x > 0;
(71′)

γ = ξ · f(x)

g(ξx)
,

{

f(x) := coshx, g(x) := x sinhx for x 6 0,

f(x) := cosx, g(x) := −x sinx for x > 0;
(73′)

γ =
2

1 − ξ2
· f(x)

g(1+ξ
2 x)g(1−ξ

2 x)
=

{

x sinh x
cosh(ξx)−1 for x 6 0,

x sin x
1−cos(ξx) for x > 0,

{

f(x) := sinh x
x , g(x) := sinh x

x for x 6 0,

f(x) := sin x
x , g(x) := sin x

x for x > 0;
(76)

γ =
1

1 − ξ
· f(x)

g1(
1+ξ
2 x)g2(

1−ξ
2 x)

=

{

x cosh x
sinh x−sinh(ξx) for x 6 0,

x cos x
sin x−sin(ξx) for x > 0,

{

f(x) := coshx, g1(x) := sinhx
x , g2(x) := coshx for x 6 0,

f(x) := cosx, g1(x) := sin x
x , g2(x) := cosx for x > 0.

(76′)

Characteristic functions are the same for the problems P1 and P5′, P2 and P4′, P4 and
P2′, accordingly. Thus, these problems have the same spectrum.

Now we formulate obvious properties of the functionsf , g, g1, g2 as following
proposition. Some of these properties were investigated in[10,11,17].

Proposition 1. The pointz0 = 0 is zero of the second order for the functionf in Case1′,
and the pointspk = 2πk are zeroes of the second order for the functiong in Case5 for
k ∈ N and in Case3′ for k = 0:

f(z0) = f ′(z0) = 0, f ′′(z0) 6= 0, g(pk) = g′(pk) = 0, g′′(pk) 6= 0. (8)

Other zero pointsz of the functionsf(x), g(x), g1(x), g2(x) are of the first order

f(z) = 0, f ′(z) 6= 0, g(z) = 0, g′(z) 6= 0, gi(z) = 0, g′i(z) 6= 0, i = 1, 2. (9)

These positive zeroes of the first order of the functionf are equal to:

zk := (k − 1/2)π, k ∈ N, (101,2,3′,4′,5′,6′ )

zk := kπ, k ∈ N; (103,4,5,1′,2′,6)
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the positive zeroes of the first order of the functiong are equal to:

p̃k := (k − 1/2)π, k ∈ N, (112,3,1′,4′ )

p̃k := kπ, k ∈ N; (111,4,2′,3′,5′,6)

the positive zeroes of the first order are equal to:

p̃k := kπ, k ∈ N for g1, p̃k := (k − 1/2)π, k ∈ N for g2; (126′)

and there are no zeroes of the first order in Case5.

The graphs of characteristic functions for someξ are presented in Fig. 1. The vertical
solid lines correspond to constant eigenvalues, vertical dashed lines cross thex-axis at
points of poles. For some cases the vertical line of the constant eigenvalue coincides with
the vertical asymptotic line at the point of a pole.

g

x

g

x

Case 1 (5′), ξ = 2

7
Case 2 (4′), ξ = 2

3
Case 3,ξ = 3

4

g

x

g

x

Case 4 (2′), ξ = 1

4
Case 5,ξ = 4

9
Case 6,ξ = 1

2

g

x

g

x

Case 1′, ξ = 1

2
Case 3′, ξ = 2

3
Case 6′, ξ = 3

7

Fig. 1. Real characteristic functionsγl(xπ).
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Remark 3. Note, that the positive part of thex-axis is scaledπ times andx = 1 is really
x = π in all figures.

3.1 Zeroes, poles and constant eigenvalues points

The characteristic function has the zero pointz, if f(z) = 0 and g(ξz) 6= 0 (Prob-
lems P1–P5, P1′–P5′), g(1+ξ

2 z) 6= 0 or g(1−ξ
2 z) 6= 0 (Problem P6),g1(

1+ξ
2 z) 6= 0 or

g2(
1−ξ
2 z) 6= 0 (Problem P6′). For characteristic functions (7), we have the next zero

points of the functionf :

zk = (k − 1)π, k ∈ N; (131′)

zk = (k − 1/2)π, k ∈ N; (131,2,3′,4′,5′,6′ )

zk = kπ, k ∈ N. (133,4,5,6,2′)

Note that the zero points are the same for allξ and they are on the vertical lines in the
domainDx,ξ := R ×Dξ. The pointx = 0 is a zero point only for Problem P1′ and it is
zero of the second order for allξ ∈ [0, 1].

The characteristic function (Problems P1–P5, P1′–P5′, ξ 6= 0) has a pole point̃p if
g(p̃) = 0 andf(p̃/ξ) 6= 0. For characteristic functions (7) we have the next zero points p̃
for the functiong:

p̃k = (k − 1/2)π, k ∈ N; (142,3,1′,4′ )

p̃k = kπ, k ∈ N; (141,4,2′,5′ )

p̃k = (k − 1)π, k ∈ N; (143′)

p̃k = 2kπ, k ∈ N. (145)

In these cases the poles of the characteristic function arepk andp̃k = ξpk. So, the poles
are on the hyperbolaeξx = p̃k, k ∈ N, in the domainDx,ξ. The pointx = 0 is a
pole point only for Problem P3′, and it is the pole of the second order for allξ ∈ (0, 1]
and, in this case the hyperbola degenerates to the linex = 0. The characteristic function
(Problems P2, P3, P1′, P4′) for ξ = 0 is an entire function, i.e., there are no points of
poles.

Remark 4 (Constant eigenvalue points for Problems P1–P4, P1′–P5′). Note thatx = 0
is not a constant eigenvalue point. All the positive zeroes and positive poles for these
problems are of the first order. If we havef(zk) = g(pl) = 0 for someξ, then this point
zk = pl = c is a constant eigenvalue point andγ(c) 6= 0. Geometrically we get constant
eigenvalue points as the intersection vertical lines of zeroes and hyperbolae of poles in
the domainDx,ξ.

Remark 5 (Constant eigenvalue points for Problem P5). We note thatx = 0 is not a
constant eigenvalue point. Positive zeroes are of the first order and positive poles for
this problem are of the first or second order. If for someξ we havef(zk) = g(pl) = 0,
then this pointzk = pl = c is a constant eigenvalue point andγ(c) 6= 0. We have the
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first order poles at the points of constant eigenvalues. Geometrically we get constant
eigenvalues points as the intersection of vertical lines ofzeroes and hyperbolae of poles
in the domainDx,ξ, too.

For Problem P6g(x) > 0, x 6 0 and for Problem P6′ g1(x) > 0, g2(x) > 0, x 6 0.
We have the next zero points̃p for the functiong, g1, g2 (see, Prop. 1):

p̃m = mπ, m ∈ N; (156:g)

p̃k = kπ, k ∈ N; (156′:g1
)

p̃l = (l − 1/2)π, l ∈ N. (156′:g2
)

For Problem P6 and Problem P6′ we have two families of polesp′m1
, p′′m2

andp′k, p′′l ,
wherep̃m1

= 1−ξ
2 p ′

m1
, p̃m2

= 1+ξ
2 p ′′

m2
and p̃k = 1−ξ

2 p ′
k, p̃l = 1+ξ

2 p ′′
l . These poles

are on the hyperbolae(1 + ξ)x = 2p̃m, (1 − ξ)x = 2p̃m (Problem P6) and hyperbolae
(1 + ξ)x = 2p̃k, (1 − ξ)x = 2p̃l (Problem P6′) in the domainDx,ξ (see, Fig. 2). In each
case, the hyperbolae families are intersected only at the zero points of the functionf , i.e.,
these intersection points are points of constant eigenvalues [17].

Fig. 2. Points of the first and second order poles of the real characteristic function in
Case 6 (the left figure) and Case 6′ (the right figure).

Remark 6 (Constant eigenvalue points for Problems P6, P6′). All positive zeroes and
positive poles for these problems are of the first order. Geometrically the three families of
curves (zero lines, two families of pole hyperbolae) intersect together, i.e., if two families
intersect, then their intersection point lies on the curve of the third family and this point
is a constant eigenvalue point.

Proposition 2. All the constant eigenvalue points in Cases6 and6′ are on the hyperbolae
xξ = kπ, k ∈ N and onx-axis (ξ = 0), too.

Proof. We get a constant eigenvalue point as the intersection of thetwo hyperbolae for
ξ > 0 or (see, (15)):

1 − ξ

2
x = p̃m1

,
1 + ξ

2
x = p̃m2

; (166)
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1 − ξ

2
x = p̃k,

1 + ξ

2
x = p̃l. (166′)

Note thatp̃m1
< p̃m2

, p̃k < p̃l for ξ > 0. If we add and subtract these equalities, then
we get

x = p̃m1
+ p̃m2

, xξ = p̃m2
− p̃m1

; (176)

x = p̃k + p̃l, xξ = p̃l − p̃k. (176′)

In the caseξ = 0, the proof follows from the first equalities (16).

Let a lineξ = const intersect the hyperbolae at the pointshk, wherehk < hk+1,
k ∈ N. The pointshk, k ∈ N are poles (of the first or second order) or constant
eigenvalue points for the real characteristic function. Let us defineh0 = 0. Then
the real characteristic functionγ is defined forx ∈ P̄i := (hi−1, hi), i ∈ N and
P̄0 := (−∞, 0). If hi is a constant eigenvalue pointcj or c0 and we have finite limits:
limx→cj

γ(x) or limx→c0
γ(x), then we add this point to the interval, i.e.,P̄i := (hi−1, cj ]

or P̄i := [cj−1, hi) or P̄i := [cj−1, cj ].
The spectrum of Sturm-Liouville problems (1)–(3) and (1), (4), (3) were investigated

in [8, 9, 11, 17]. Lemmas on the existence zeroes, poles, minimums and maximums
of the characteristic functions and conditions on the existence of constant eigenvalues
are presented there. We note (see, [11]) that two negative real eigenvalues can exist in
the negative part of the real spectrum in problems P3 and P3′ for someγ andξ values.
Negative multiple and complex eigenvalues can exist as well. In other cases of nonlocal
boundary conditions, there exists one negative real eigenvalue for particular values of the
parameterγ.

4 Critical points of real characteristic function

The pointxcr is acritical point of the real characteristic function, ifγ′(xcr) = 0. Critical
points of the characteristic function are important for theinvestigation of multiple eigen-
values. Critical points of the characteristic function aremaximum and minimum points
of this function (see, Fig. 1). Generalized eigenfunctionsexist for these points [9]. The
generalized eigenfunctions exist at constant eigenvalue points, too. If this point is critical
point, then we have generalized eigenfunctions of the second order, else generalized
eigenfunctions are of the first order.

Now, note thatpk = pk(ξ), cj = cj(ξ), xcr = xcr(ξ), and recall the case with non
fixed ξ. For any critical pointxcr(ξ), we define thecritical point (xcr(ξ), ξ) ∈ Dx,ξ :=
R ×Dξ ⊂ Rx × Rξ. If the critical point is an extremum, i.e. the maximum or minimum
point, then we use the notation “extremum” instead of “critical”. Note that the property
“to be a critical point” or “to be extremum” in theRx,ξ is only in thex-direction. The
critical points(xcr(ξ), ξ) depend on the parameterξ continuously. The set of these points
is curves in the domainRx,ξ.
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4.1 Investigation of the few auxiliary functions

Let us consider functions [17] (see, Fig. 3 and Fig. 4):

ϕ−(x) := x cothx; ϕ+(x) := x cotx;

ψ−(x) := x tanh x; ψ+(x) := −x tanx

for x ∈ R and the functions:

ϕ(x) :=

{

ϕ−(x) for x 6 0,

ϕ+(x) for x > 0;
ψ(x) :=

{

ψ−(x) for x 6 0,

ψ+(x) for x > 0.

These two functions are related by the equality

ϕ(x) · ψ(x) = −x|x|. (18)

Fig. 3. The functionϕ(x). Fig. 4. The functionψ(x).

Proposition 3. Functionsϕ, ψ are positive decreasing functions forx < 0, ϕ is a
decreasing function in the intervals[0, π), (πk, π(k + 1)), k ∈ N andψ is a decreasing
function in the intervals[0, π/2), (π(k − 1/2), π(k + 1/2)), k ∈ N.

Proof. The derivatives of this function are equal to:

ϕ′

−(x) :=
sinh(2x) − 2x

cosh(2x) − 1
; ϕ′

+(x) := − sin(2x) − 2x

cos(2x) − 1
;

ψ′

−(x) :=
sinh(2x) + 2x

cosh(2x) + 1
; ψ′

+(x) := − sin(2x) + 2x

cos(2x) + 1
.

So, the derivatives of the functionϕ andψ are negative forx 6= 0. The positiveness of the
functionsϕ, ψ for x < 0 is evident.

Corollary 2. The propertieslimx→0 ϕ(x) = ϕ(0) = 1, ψ(0) = 0, limx→0 ϕ
′(x) =

ϕ′(0) = 0, ψ′(0) = 0 are valid.

476



Investigation of Negative Critical Points of the Characteristic Function for Problems with NBC

Corollary 3. The inequalityx coth(x) > 1 is valid for all x ∈ R and the equality is true
only forx = 0.

Proposition 4. The inequality

cothx− tanhx <
x

sinh2 x
(19)

is valid forx > 0.

Proof. We derive forx > 0:

cothx− tanhx =
1

sinhx coshx
<

x

sinhx coshx
cothx =

x

sinh2 x
.

Proposition 5. The functionh0(x) := x(sinh x+x)/(coshx+1) is an increasing positive
function forx ∈ (0,+∞) andh0(0) = 0.

Proof. The derivative of the function

S0(x) := sinhx+ sinhx coshx− x2 sinhx+ 3x+ 3x coshx

is

S′

0(x) = 4 coshx+ coshx(coshx− x2) + sinh2 x+ x sinhx+ 3 > 0.

SinceS0(0) = 0, we get thatS0(x) > 0 for x > 0. The derivative of the functionh0 is

h′0(x) :=
sinhx+ sinhx coshx− x2 sinhx+ 3x+ 3x coshx

(coshx+ 1)2
=

S0(x)

(coshx+ 1)2
.

Thus,h′0(x) > 0 for x > 0. The positiveness of the functionh0 and conditionh0(0) = 0
is evident.

Proposition 6. The functionh1(x) := (12 + 6x sinhx− 12 coshx)/(coshx− 1)/x2 is
a decreasing positive function forx ∈ (0,+∞) andh1(0) = 1, h1(+∞) = 0.

Proof. The derivatives of the function

S1(x) := −4 coshx+ x2 + x sinhx+ 4

are
S′

1(x) = −3 sinhx+ 2x+ x coshx, S′′

1 (x) = −2 coshx+ 2 + x sinhx,

S′′′

1 (x) = − sinhx+ x coshx, S
(4)
1 (x) = x sinhx > 0.

SinceS1(0) = S′
1(0) = S′′

1 (0) = S′′′
1 (0) = 0, we get thatS1(x) > 0 for x > 0. The

derivative for the functionh1 is

h′1(x) :=
24 coshx− 6x2 − 6x sinhx− 24

(coshx− 1)x3
= − 6S1(x)

(coshx− 1)x3
.

So,h′1(x) < 0 for x > 0. The positiveness of the functionh1 and conditionsh1(0) = 1,
h1(+∞) = 0 are evident.
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S. Pečiulytė, O.̌Stikonienė, A.Štikonas

Proposition 7. The functionh2(x) := x3/(sinhx−x)/6 is a decreasing positive function
for x ∈ (0,+∞) andh2(0) = 1, h2(+∞) = 0.

Proof. The derivatives of the function

S2(x) := −3 sinhx+ 2x+ x coshx

are

S′

2(x) = −2 coshx+ 2 + x sinh x, S′′

2 (x) = − sinhx+ x coshx,

S′′′

2 (x) = x sinhx > 0.

SinceS2(0) = S′
2(0) = S′′

2 (0) = 0, we get thatS2(x) > 0 for x > 0. The derivative for
the functionh2 is

h′2(x) :=
x2

6
· 3 sinhx− 2x− x coshx

(sinhx− x)2
= − x2S2(x)

6(sinhx− x)2
.

Consequently,h′2(x) < 0 for x > 0. The positiveness of the functionh2 and conditions
h2(0) = 1, h2(+∞) = 0 are evident.

Let us consider two functions forx > 0:

V (x) := 4 cosh3 x+ 4x sinhx coshx− 4 coshx− 4x2 − 4x sinhx,

S(x) := −8 cosh3 x− 8 cosh2 x+ 4x sinhx cosh2 x+ 4x2 coshx

+ 4x sinhx coshx+ 8 coshx+ 8 + 4x2.

We find derivatives of the first function:

V ′(x) = 12 cosh2 x sinhx+ 4x cosh2 x+ 4 sinhx coshx+ 4x sinh2 x

− 8 sinhx− 8x− 4x coshx,

V ′′(x) = 24 coshx sinh2 x+ 12(cosh2 x− 1) coshx+ 4x sinhx(4 coshx− 1)

+ 8(cosh2 x− 1) + 8 sinh2 x > 0.

SinceV (0) = V ′(0) = 0, we get thatV (x) > 0 for x > 0.
The derivatives of the second function are:

S′(x) = − 20 cosh2 x sinhx− 12 sinhx coshx+ 4x cosh3 x

+ 8x sinh2 x coshx+ 8x coshx+ 4x2 sinhx+ 4x cosh2 x

+ 4x sinh2 x+ 8 sinhx+ 8x,

S′′(x) = − 32 coshx sinh2 x− 16 cosh3 x− 8 cosh2 x− 8 sinh2 x

+ 28x sinhx cosh2 x+ 8x sinh3 x+ 16x sinhx

+ 16 coshx+ 4x2 coshx+ 16x sinhx coshx+ 8,
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S′′′(x) = − 24 sinh3 x− 84 cosh2 x sinhx− 16 sinhx coshx+ 28x cosh3 x

+ 80x sinh2 x coshx+ 24x coshx+ 32 sinhx+ 4x2 sinhx

+ 16x cosh2 x+ 16x sinh2 x,

S(4)(x) = − 160 coshx sinh2 x− 56 cosh3 x+ 244x sinhx cosh2 x

+ 80x sinh3 x+ 32x sinhx+ 56 coshx+ 4x2 coshx

+ 64x sinhx coshx,

S(5)(x) = − 80 sinh3 x− 244 cosh2 x sinhx+ 244x cosh3 x

+ 728x sinh2 x coshx+ 40x coshx+ 88 sinhx+ 4x2 sinhx

+ 64x cosh2 x+ 64 sinhx coshx+ 64x sinh2 x,

S(6)(x) =2188x sinhx cosh2 x+ 728x sinh3 x+ 48x sinhx+ 128 coshx

+ 4x2 coshx+ 256x sinhx coshx+ 128 cosh2 x+ 128 sinh2 x > 0.

SinceS(0) = S′(0) = S′′(0) = S(3)(0) = S(4)(0) = S(5)(0) = 0, we obtain that
S(x) > 0 for x > 0.

If we define the functions:

G0(x) := x
(coshx+ 1)2 − (sinhx+ x) sinh x

(coshx+ 1)(sinhx+ x)
= x

2 + 2 coshx− x sinh x

(coshx+ 1)(sinhx+ x)
,

F0(x) := x
(coshx− 1)2 − (sinhx− x) sinh x

(coshx− 1)(sinhx− x)
= x

2 + x sinhx− 2 coshx

(coshx− 1)(sinhx− x)
,

then

F0(x) −G0(x/2) =
x

2

S(x/2)

V (x/2) sinh(x/2)
> 0, x > 0. (20)

Corollary 4 (see, Proposition 6 and Proposition 7). The functionF0(x) = h1(x)h2(x) is
a decreasing positive function forx ∈ (0,+∞) andF0(0) = 1, F0(+∞) = 0.

Let us define positive functions forx > 0:

F1(x) :=
sinhx− x

coshx− 1
= ϕ′

−(x/2), G1(x) :=
sinhx+ x

coshx+ 1
= ψ′

−(x/2).

Proposition 8. The functionF1(x) is an increasing positive function forx ∈ (0,+∞)
andF1(0) = 0.

Proof. We derive forx > 0:

x cothx > 1 ⇒ 2 sinhx < sinhx+ x coshx.

Now we integrate the latter inequality from 0 tox and get

2 coshx− 2 < x sinhx ⇒ sinh2 x− x sinhx < cosh2 x− 2 coshx+ 1

⇒ (sinhx− x) sinhx < (coshx− 1)2 ⇒ (sinhx− x) sinhx

(coshx− 1)2
< 1.
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As a result, we have

0 < F ′

1(x) = 1 − (sinhx− x) sinh x

(coshx− 1)2
< 1. (21)

The positiveness of the functionF1 and conditionF1(0) = 0 are evident.

Corollary 5. The inequalities0 < ϕ′′
−(x) < 1 are valid forx < 0.

Corollary 6. The functionh3(x) := x(sinh x − x)/(coshx − 1)/2 is an increasing
positive function forx ∈ (0,+∞) andh3(0) = 0.

Remark 7. The functionG1(x) is positive andG1(x) > tanhx.

FunctionsF1 andG1 are both positive. Then we have the positive function

H1(x; y) :=
F1(x)

G1(yx)
=

cosh(yx) + 1

sinh(yx) + yx
· sinhx− x

coshx− 1
=

ϕ′
−(x/2)

ψ′
−(yx/2)

for all y > 0. The derivative of this function is

H ′

1(x; y) :=
F1(x)

G1(yx)x

(

x
F ′

1(x)

F1(x)
− yx

G′
1(yx)

G1(yx)

)

=
F1(x)

G1(yx)x

(

F0(x) −G0(yx)
)

.

The graphs of the functionsF0(x) andG0(yx) for y > 1/2 are presented in Fig. 5.

Corollary 7. If the parametery > 1/2, then the functionH1(x; y) is an increasing
function forx > 0.

Remark 8. The valuey = 1/2 is not the limit value. From the Taylor series

F0(x)−G0(yx) =
(

− 1/15+ (1/3)y2
)

x2 +
(

919/403200− (2/45)y4
)

x4 +O
(

x6
)

it follows that this value isy =
√

5/5 ≈ 0.447.

Let us consider a functionH(x; y) for x > 0

H(x; y) : =
cothx−x/ sinh2 x

y tanh(yx)+y2x/ cosh2(yx)
=

cosh(2yx)+1

y(sinh(2yx)+2yx)
· sinh(2x)−2x

cosh(2x)−1

=
1

y
H1(2x; y) =

1

h0(2yx)
· 2xF1(2x).

Corollary 8 (see, Proposition 5). For fixedx > 0, the functionHx(y) := H(x; y), y > 0
is a decreasing function.

Corollary 9. For fixedy > 1/2 the functionHy(x) := H(x; y) is an increasing function
for all x > 0.
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The graphs of the functionsH(x; y) for somey > 0 are presented in Fig. 6.
We note that fory > 0

lim
x→0

H(x; y) =
1

3y2
, (22)

lim
x→+∞

H(x; y) =
1

y
. (23)

Finally, we consider the functions

G(x; y) := x cothx− yx tanh(yx) = ϕ−(x) − ψ−(yx), x ∈ R, (24)

G̃(x; y) := yx coth(yx) − x tanh(x) = ϕ−(yx) − ψ−(x), x ∈ R (25)

for y > 0 (see, Fig. 7 and Fig. 9). Since these functions are even, we investigate them for
x > 0.

Fig. 5. The functionsF0(x)
andG0(yx).

Fig. 6. The functionH(x; y). Fig. 7. The functionG(x; y),
x > 0.

Let us begin with functionG. We note thatG(0; y) = 1. The derivative of this
function

G′(x; y) = cothx− x/ sinh2 x− y tanh(yx) − y2x/ cosh2(yx)

and

G′(x; y) =

{

yG1(yx)
(

H(x; y) − 1
)

for y > 0,

F1(2x) for y = 0.
(26)

Lemma 1. The functionG(x; y) is even. It has the following properties:

(i) If y ∈ [0,
√

3/3], thenG is an increasing function forx > 0 and x = 0 is the
minimum point of the functionG;

(ii) If y ∈ (
√

3/3, 1), then there existsxmin(y) > 0 such that the functionG is a
decreasing function for0 < x < xmin(y), andG is an increasing function for
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x > xmin(y). There existsxmin(y) > 0, 0 < G(xmin(y); y)) < 1 which is
the minimum point of functionG andx = 0 is the maximum point of functionG
(−xmin(y) is the minimum point, too);

(iii) If y ∈ [1,+∞), thenG is a decreasing function forx > 0 andx = 0 is the maximum
point of functionG;

(iv) For fixedx > 0, the functionGx(y) := G(x; y) is a decreasing function.

For all y > 0, we haveG(0; y) = 1 and

lim
x→+∞

G(x; y)/x = 1 − y, lim
x→−∞

G(x; y)/x = −(1 − y), lim
x→±∞

G(x; 1) = 0.

Proof. G′(x; y) > 0(= 0, < 0) if and only ifH(x; y) > 1(= 1, < 1). If y ∈ (
√

3/3, 1),
thenH(0, y) < 1 < H(+∞; y) (see, limits (22) and (23)). AsH is an increasing
function, we have only one pointxmin(y) such thatH(xmin(y); y) = 1.

If y ∈ [1,+∞), thenH(x; y) < 1 (in this caseH(+∞; y) < 1), and if y ∈
[1/2,

√
3/3), thenH(x; y) > 1 (in this caseH(+0; y) > 1). If y =

√
3/3 then

G(0;
√

3/3) = 1, butG(x;
√

3/3) > 1 for x > 0.
Fory ∈ (0, 1/2), we have (see, Corollary 8)

H(x; y) > H(x; 1/2) > 1.

So,G is an increasing function for suchy.
The derivativeG′

x(y) = ∂
∂yG(x; y) = −xψ′

−(yx) < 0 (see, Proposition 3).
The other properties of the functionG are evident.

Corollary 10. If x ∈ (−∞, 0), then

0 < ψ(x) < ϕ(x) < ψ(x) + 1. (27)

Proof. Let us consider functioñG. We note that̃G(0; y) = 1,

G̃(x; y) =

{

G(yx; 1/y) for y > 0,

1 − ψ(x) for y = 0.
(28)

The derivatives are equal to

G̃′

x(y) :=
∂

∂y
G̃(x; y) = xϕ′

−(yx) > 0, (29)

G̃′

y(x) :=
∂

∂x
G̃(x; y) = G1(x)

(

H̃(x; y) − 1
)

, (30)

where

H̃(x; y) =

{

H(yx; 1/y) for y > 0,

0 for y = 0.
(31)
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It follows that

H̃(x; y) =
2yxF1(2yx)

h0(2x)
= yH1(2yx; 1/y). (32)

So, we have the following properties for functioñH .

Corollary 11. For fixedx > 0, the functionH̃x(y) := H̃(x; y), y > 0 is an increasing
function.

Corollary 12. For fixed0 < y 6 2, the functionH̃y(x) := H̃(x; y) is an increasing
function for allx > 0.

The graphs of the functions̃H(x; y) for somey > 0 are presented in Fig. 8.
We see that fory > 0

lim
x→0

H̃(x; y) =
y2

3
, (33)

lim
x→+∞

H̃(x; y) = y. (34)

From these properties we derive the following lemma (the proof is the same as that of
Lemma 1).

Lemma 2. The functionG̃(x; y) is even. It has the following properties:

(i) If y ∈ [0, 1], thenG̃ is a decreasing function forx > 0 andx = 0 is the maximum
point of functionG̃;

(ii) If y ∈ (1,
√

3), then there exists̃xmin(y) > 0 such that functioñG is a decreasing
function for0 < x < x̃min(y), andG̃ is an increasing function forx > x̃min(y).
There exists̃xmin(y) > 0, 0 < G̃(x̃min(y); y)) < 1 which is the minimum point
of functionG andx = 0 is the maximum point of functioñG (−x̃min(y) is the
minimum point, too);

(iii) If y ∈ [
√

3,+∞), thenG̃ is an increasing function forx > 0 andx = 0 is the
minimum point of the functioñG;

(iv) For fixedx > 0, the functionG̃x(y) := G̃(x; y) is an increasing function.

For all y > 0, we haveG̃(0; y) = 1 and

lim
x→+∞

G̃(x; y)/x = y − 1, lim
x→−∞

G̃(x; y)/x = −(y − 1), lim
x→±∞

G̃(x; 1) = 0.

Lemma 3. The functionsϕ andψ satisfy the Riccati differential equation

y′(x) =
1

x
y(x) − 1

x
y2(x) − |x|; (35)

Proof. We prove the lemma by substituting the functionsϕ andψ directly into differential
equations.
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4.2 Critical points equation and its properties

Lemma 4. There are no critical points in Case 6 and Case 6′.

Proof. The functions

γ6(x) :=
1

1 − ξ
ϕ
(

1−ξ
2 x

)

+
1

1 + ξ
ϕ
(

1+ξ
2 x

)

,

γ6′(x) :=
1

1 − ξ
ϕ
(

1−ξ
2 x

)

+
1

1 + ξ
ψ

(

1+ξ
2 x

)

are decreasing functions as the sum of such functions.
Let us consider the characteristic functions for Problems P1–P5, P1′–P5′. These

functions are of the form (see, (7))

γ(x; ξ) = κ(ξ)
f(x)

g(ξx)
(36)

whereκ(ξ) = 1
ξ , 1,

2
ξ2 , ξ. The derivative (byx) of this function

γ′(x; ξ) = κ(ξ)
f ′(x)g(ξx) − f(x)g′(ξx)ξ

g2(ξx)
. (37)

We can write the condition on the critical point (γ′ = 0) in the interval(hi−1, hi) as

f ′(x) = ξf(x)
g′(ξx)

g(ξx)
, (38)

becauseg(ξx) 6= 0 for x ∈ (hi−1, hi). If xc is a critical point andf(xc) = 0 then
from (38) we derivef ′(xc) = 0, i.e., the critical point is zero of the second order for the
functionf , however, Proposition 1 declares that there are zeroes onlyof the first order for
x 6= 0. Thus,f(xc) 6= 0, and we can write equality (38) as follows:

F (x, ξ) := Dlnf(x) −Dlng(ξx) = 0, (39)

where

Dlnf(x) := x log′ |f(x)| = x
f ′(x)

f(x)
for f(x) 6= 0. (40)

Consequently, we can rewrite equality (37) as

γ′(x; ξ) =
1

x
κ(ξ)γ(x; ξ)F (x; ξ) =

1

x
κ(ξ)γ(x; ξ)

(

Dlnf(x) −Dlng(ξx)
)

. (41)

Proposition 9. For Dln the next properties are valid:

Dln(fg) = Dlnf +Dlng; Dln(fg) = gDlnf + gDlng log f, f > 0;

Dlnf
α = αDlnf, α ∈ R;Dln(xαf) = Dlnf + α, α ∈ R;

Dln(xα) = α, α ∈ R; Dln

(

f ◦ g(x)
)

= (Dlnf)
(

g(x)
)

·Dlng(x);

Dln

(

f(αx)
)

= (Dlnf)(αx), α ∈ R.
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So, we obtain

Dln sinx = x cotx = ϕ+(x);

Dln
cosh x−1

x2/2 = x coth(x/2) − 2 = 2
(

ϕ−(x/2) − 1
)

;

Dln
sin x

x = x cotx− 1 = ϕ+(x) − 1;

Dln
sinhx

x = x cothx− 1 = ϕ−(x) − 1;

Dln sinhx = x cothx = ϕ−(x);

Dln(x sinhx) = x cothx+ 1 = ϕ−(x) + 1;

Dln cosx = −x tanx = ψ+(x);

Dln
1−cos x

x2/2 = x cot(x/2) − 2 = 2
(

ϕ+(x/2) − 1
)

;

Dln coshx = x tanhx = ψ−(x);

Dln(−x sinx) = x cotx+ 1 = ϕ+(x) + 1;

and equality (39) is valid with:

Dlnf(x) = ψ(x), Dlng(x) = ϕ(x) − 1; (421,5′)

Dlnf(x) = ψ(x), Dlng(x) = ψ(x); (422,4′)

Dlnf(x) = ϕ(x) − 1, Dlng(x) = ψ(x); (423)

Dlnf(x) = ϕ(x) − 1, Dlng(x) = ϕ(x) − 1; (424,2′)

Dlnf(x) = ϕ(x) − 1, Dlng(x) = 2
(

ϕ(x/2) − 1
)

; (425)

Dlnf(x) = ϕ(x) + 1, Dlng(x) = ψ(x); (421′)

Dlnf(x) = ψ(x), Dlng(x) = ϕ(x) + 1. (423′)

Afterwards we derive the next expressions for functionF :

F (x; ξ) = ψ(x) − ϕ(ξx) + 1; (431,5′)

F (x; ξ) = ψ(x) − ψ(ξx); (432,4′)

F (x; ξ) = ϕ(x) − ψ(ξx) − 1; (433)

F (x; ξ) = ϕ(x) − ϕ(ξx); (434,2′)

F (x; ξ) = ϕ(x) − 2ϕ(ξx/2) + 1; (435)

F (x; ξ) = ϕ(x) − ψ(ξx) + 1; (431′)

F (x; ξ) = ψ(x) − ϕ(ξx) − 1. (433′)

The equationF (x; ξ) = 0 defines a set of critical points in the domainDx,ξ. This set
is graphs of functionsξ = ξcr(x) locally, as in all the cases∂F

∂ξ sign(x) > 0 (∂F
∂ξ =

−xϕ′(ξx) or ∂F
∂ξ = −xψ′(ξx) or ∂F

∂ξ = −xϕ′(ξx/2)) for x 6= 0.

Remark 9 (The caseξ = 0). For ξ = 0, (ProblemsP2, P3, P1′, P4′) ϕ(0) = 1,ψ(0) = 0,
but in this case∂F

∂x 6= 0. So, we get the critical points as rootsz of the equations:

485
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ψ(x) = 0 (Problem2, 4′), ϕ(x) = 1 (Problem3), ϕ(x) = −1 (Problem1′). At the
points(z, 0) ∈ Dx,ξ, z 6= 0 the curveF (x, ξ) has a vertical tangent line. If0 6∈ Dξ, then
limx→z ξ(x) = +∞ wherez is a nonzero root of the equation:ψ(x) = 0 (Problems1,
5′), ϕ(x) = 1 (Problems4, 2′), ϕ(x) = 1 (Problem5), ψ(x) = 0 (Problem3′).

In the domainDx,ξ there are two families of curves: vertical lines of the points of
zeroes, and hyperbolae of the points of poles. The intersection points of these two families
are constant eigenvalue points. We denote byDc the complement of the union of these
two families and use the notationDc

− := {(x, ξ) ∈ Dc : x < 0}, Dc
+ := {(x, ξ) ∈

Dc : x > 0}. This complementDc
+ is an infinite union of curvilinear subfigures: tri-

angles, and quadrangles, and so on (see, Fig. 10). Then either the left or right side of
these figures is vertical lines, and the other sides are hyperbolae, orξ = 0, 1. The curves
F (x, ξ) = 0 (γ′ = 0) are inside these subdomains, and have no common points with
the vertical sides (γ = 0) or parts of hyperbolae (γ = ∞), except the vertices (constant
eigenvalue points) or linesξ = 0, 1.

Fig. 8. The functionH̃(x; y). Fig. 9. The functionG̃(x; y),
x > 0.

Fig. 10. The subdomains of
the domainDc.

From (42) and Lemma 3 it follows that

d

dx
Dlnf(x) =

1

x
Dlnf(x) − 1

x

(

Dlnf(x)
)2 − |x|, (441,2,3′,4′,5′ )

d

dx
Dlnf(x) = − 1

x
Dlnf(x) − 1

x

(

Dlnf(x)
)2 − |x|, (443,4,5,2′)

d

dx
Dlnf(x) =

3

x
Dlnf(x) − 1

x

(

Dlnf(x)
)2 − 2

x
− |x|; (441′)

and

d

dx
Dlng(x) = − 1

x
Dlng(x) −

1

x

(

Dlng(x)
)2 − |x|, (451,4,2′,5′ )

d

dx
Dlng(x) =

1

x
Dlng(x) −

1

x

(

Dlng(x)
)2 − |x|, (452,3,1′,4′ )

d

dx
Dlng(x) = − 1

x
Dlng(x) −

1

2x

(

Dlng(x)
)2 − 1

2
|x|, (455)

d

dx
Dlng(x) =

3

x
Dlng(x) −

1

x

(

Dlng(x)
)2 − 2

x
− |x|. (453′)
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We rewrite the latter formulae at the pointξx:

∂

∂x
Dlng(ξx) = − 1

x
Dlng(ξx) −

1

x

(

Dlng(ξx)
)2 − ξ2|x|, (461,4,2′,5′ )

∂

∂x
Dlng(ξx) =

1

x
Dlng(ξx) −

1

x

(

Dlng(ξx)
)2 − ξ2|x|, (462,3,1′,4′ )

∂

∂x
Dlng(ξx) = − 1

x
Dlng(ξx) −

1

2x

(

Dlng(ξx)
)2 − ξ2

2
|x|, (465)

∂

∂x
Dlng(ξx) =

3

x
Dlng(ξx) −

1

x

(

Dlng(ξx)
)2 − 2

x
− ξ2|x|. (463′)

At the critical pointDlng(ξx) = Dlnf(x):

∂

∂x
Dlng(ξx) = − 1

x
Dlnf(x) − 1

x

(

Dlnf(x)
)2 − ξ2|x|, (471,4,2′,5′ )

∂

∂x
Dlng(ξx) =

1

x
Dlnf(x) − 1

x

(

Dlnf(x)
)2 − ξ2|x|, (472,3,1′,4′ )

∂

∂x
Dlng(ξx) = − 1

x
Dlnf(x) − 1

2x

(

Dlnf(x)
)2 − ξ2

2
|x|, (475)

∂

∂x
Dlng(ξx) =

3

x
Dlnf(x) − 1

x

(

Dlnf(x)
)2 − 2

x
− ξ2|x|. (473′)

Finally, we get the expressions for the derivatives:

− x
∂

∂x
F (x, ξ) = −x d

dx
Dlnf(x) + x

∂

∂x
Dlng(ξx)

= −2Dlnf(x) +
(

1 − ξ2
)

x|x| = −2ψ(x) +
(

1 − ξ2
)

x|x|, (481,5′)

=
(

1 − ξ2
)

x|x|, (482,4,2′,4′ )

= 2Dlnf(x) +
(

1 − ξ2
)

x|x| = 2
(

ϕ(x) − 1
)

+
(

1 − ξ2
)

x|x|, (483)

=
1

2

(

Dlnf(x)
)2

+
(

1 − ξ2/2
)

x|x| =
1

2

(

ϕ(x) − 1
)2

+
(

1 − ξ2/2
)

x|x|, (485)

= −2Dlnf(x) + 2 +
(

1 − ξ2
)

x|x| = −2ϕ(x) +
(

1 − ξ2
)

x|x|, (481′)

= 2Dlnf(x) − 2 +
(

1 − ξ2
)

x|x| = 2
(

ψ(x) − 1
)

+
(

1 − ξ2
)

x|x|; (483′)

and

ξ′cr = −
∂
∂xF (x, ξ)
∂
∂ξF (x, ξ)

=
−x ∂

∂xF (x, ξ)

x ∂
∂ξF (x, ξ)

. (49)

The denominator of the last fraction is positive. So, the sign of ξ′cr(x) is the same as that
of expression (48).

5 Properties of the negative critical points

Theorem 1. There are no critical points for negativex in problemsP1, P2, P4, P5, P1′,
P2′, P4′, P5′.
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Proof. Case4 and CaseP2′. By the Mean Value Theorem we derive

F (x; ξ) = ϕ(x) − ϕ(ξx) = ϕ′(ϑ1)(1 − ξ)x, ϑ1 < 0.

Sinceϕ′ < 0 (see, Proposition 3), we getF (x; ξ) > 0 for x < 0.

Case2 and CaseP4′. If ξ = 0, thenF (x; 0) = ψ(x) > 0 for x < 0, otherwiseF (x; ξ) =
ψ(x) − ψ(ξx) = ψ′(ϑ2)(1 − ξ)x > 0, ϑ2 < 0.

Case5. In this case,F (x; ξ) = ϕ(x) − 2ϕ(ξx/2) + 1 = ϕ(x) − ϕ(ξx/2) + ϕ(0) −
ϕ(ξx/2) = ϕ′(ϑ3)(1 − ξ/2)x+ ϕ′(ϑ4)x > 0, ϑ3 < 0, ϑ4 < 0.

CaseP1′. From Corollary 10 it follows thatF (x; ξ) = ϕ(x) − ψ(ξx) + 1 > ψ(x) −
ψ(ξx) + 1 = ψ′(ϑ5)(1 − ξ)x+ 1 > 1 > 0, ϑ5 6 0.

Case1 and CaseP5′. If ξ = 1, thenF (x; 1) = ψ(x) − ϕ(x) + 1 > 0 for x < 0 (see,
Corollary 10), or elseF (x; ξ) = ψ(x)+1−ϕ(ξx) > ϕ(x)−ϕ(ξx) = ϕ′(ϑ6)(1− ξ)x >
0, ϑ6 < 0.

Corollary 13. For problemsP1, P2, P4, P5, P1′, P2′, P4′, P5′, the characteristic function
is a decreasing function with negativex (see,(41)).

Theorem 2. For problem P3, there exists a negative critical point if and only if
ξ ∈ (

√
3/3, 1) and this unique negative critical pointx− is the minimum point, and

γ(x−; ξ) > 0.

Proof. The functionF (x; ξ) = G(x; ξ) − 1, ξ ∈ [0, 1]. The proof follows from the
properties of functionG. The minimum pointx− = −xmin (see, Lemma 1).

Corollary 14. Let us consider the characteristic functionγ for negativex of problemP3.
Thenγ is

1) a decreasing function forξ ∈ [0,
√

3/3];

2) a decreasing function forx ∈ (−∞, x−) and an increasing function forx ∈ (x−, 0)
asξ ∈ (

√
3/3, 1);

3) an increasing function forξ = 1.

We havelim
x→0

γ(x; ξ) = 1 for all ξ, and if ξ < 1, then lim
x→−∞

γ(x; ξ) = +∞, or else

lim
x→−∞

γ(x; 1) = 0.

Proposition 10. In Case3, the functionξcr is a decreasing function and

lim
x→−∞

ξcr(x) = 1, lim
x→0

ξcr(x) =
√

3/3.
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Proof.

−x ∂
∂x
F ′(x; ξ) = −xG′(x; ξ) = ξxG1(−ξx)

(

H(x; ξ) − 1
)

< 0.

Theorem 3. For problemP3′, there exists one negative critical point for allξ ∈ (0, 1)
and this unique negative critical point̃x− is the minimum point andγ(x̃−; ξ) > 0. For
ξ = 1 there are no negative critical points.

Proof. The functionF (x; ξ) = −G̃(x; ξ) − 1, ξ ∈ (0, 1]. The proof follows from the

properties of functioñ̃G. The minimum point̃x− = −x̃min (see, Lemma 2).

Corollary 15. Let us consider the characteristic functionγ for negativex in ProblemP3′.
If ξ ∈ (0, 1), thenγ is a decreasing function forx ∈ (−∞, x̃−) and an increasing
function forx ∈ (x̃−, 0). The functionγ(x; 1) is an increasing function forx < 0. We
obtain lim

x→−0
γ(x; ξ) = +∞ for all ξ ∈ (0, 1], lim

x→−∞
γ(x; ξ) = +∞ for ξ ∈ (0, 1) and

lim
x→−∞

γ(x; 1) = 0.

Proposition 11. In Case3′, the functionξcr is a decreasing function forx < 0,
lim

x→−∞
ξcr(x) = 1 and the graph of this function intersects (in the limit)x-axis at the

point x = −x∗ wherex∗ is the positive root of the equationx tanhx = 2 or equation
G̃(x; 0) = −1. There are no critical points forx ∈ [x∗, 0).

Proof.

−x ∂
∂x
F ′(x; ξ) = xG̃′(x; ξ) = −xG1(−x)

(

H̃(x; ξ) − 1
)

< 0.

Remark 10. We will investigate nonnegative critical points in the nextarticle.
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8. M. P. Sapagovas, A. D.Štikonas, On the structure of the spectrum of a differentialoperator with
a nonlocal condition,Differ. Equ., 41(7), pp. 1010–1018, 2005.
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