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Abstract. This paper presents the synthesis and analysis of the enhanced predictivefuzzy
Hammersteinmodel of the water tank system.Fuzzy Hammersteinmodel was compared
with three other fuzzy models: the first was synthesized using Mamdanitype rule base,
the second –Takagi-Sugenotype rule base and the third – composed ofMamdaniand
Takagi-Sugenorule bases. The synthesized model is invertible so it can be used in
the model based control. Thefuzzy Hammersteinmodel was synthesized to eliminate
disadvantages of the otherfuzzymodels. The advantage of thefuzzy Hammersteinmodel
was experimentally proved and presented in this paper.

Keywords: fuzzy modeling, nonlinear modeling, predictive modeling,Hammerstein
model, fuzzy Hammerstein model, level modeling.

1 Introduction

A critical step in synthesizing model based control systemsis the development of suitable
model which could sufficiently approximate dynamic characteristics of nonlinear plant.
Recently fuzzy modeling of nonlinear dynamic systems has drawn a great deal of attention
[1].

Nonlinear autoregressive models with exogenous inputs (NARX) [2] are often used
with many nonlinear identification algorithms [3]. As most system identification strate-
gies [4–8], NARX has its own disadvantages: problems with parameters estimation in
high dimensions are caused by the course of dimensionality [9], exponential increasing
memory usage and the prior information requirements. Theseproblems make the NARX
method unpractical for the modeling of the high level dynamic processes. As an alterna-
tive the block-oriented fuzzy models can be used. The well-known members of this class
of the models arefuzzy HammersteinandWienermodels.

The aim of this paper is to describe the synthesis of afuzzy Hammersteinmodel for
the nonlinear water level plant. As the main advantage of theproposedfuzzy Hammerstein
model is that the model can be described with less parameters, is invertible (it can be used
in the model based predictive control), and is adequate to the real plant.
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2 Hammerstein class models

2.1 Hammerstein class models

Enhanced modeling can be obtained by using aHammersteinclass model [10] where
linearization is straightforward by the inversion of a static input-nonlinearity. TheHam-
mersteinmodels are suitable for the gray box modeling, where the static process behavior
is known in advance. TheHammersteinmodel consists of two parts: a static nonlinearity
part, that describes nonlinearities of a plant, and a lineardynamics part, as shown in
Fig. 1 [11], where the intermediate signalx(k) is not available. Such a model structure
has shown to be appropriate for the modeling of the behavior of a wide range of systems
such as distillation processes [12], friction dynamics [13], water level or air pressure and
etc.

Fig. 1. The structure of Hammerstein model.

TheHammersteinmodel is represented by the following equations:

y(k) =
B

(
q−1

)

A
(
q−1

)x(k) + d(k), (1)

B(q−1) = b0 + b1q
−1 + . . . + bmq−m, (2)

A(q−1) = 1 + a1q
−1 + . . . + anq−n, (3)

the non-measured intermediate variablex(k) is given by

x(k) = f
(
Θ, u(k)

)
, (4)

whereq − 1 is the unit delay operator,u(k) is the input,y(k) is the output,d(k) is the
measurement noise,(m; n) is the order of the linear part,f(.) is any nonlinear function
andΘ is a set of parameters, that describe the nonlinearity [11].

Hence MIMO (multi input multi output)Hammersteinmodel can be written using
equation [14]:

ŷ(k) =

na∑

i=1

Aiy(k − i) +

nb∑

i=1

Bif
(
u(k − i − nd)

)
, (5)

whereŷ(k), . . . , ŷ(k−na + 1) is the predicted output of the plant,u(k−nd), . . . , u(k−
nb−nd+1) – the input to the plant,na, nb – the rank of polynomialsA andB respectfully,
nd – the delay of the plant.A1, . . . , Ana

andB1, . . . , Bnb
are matrices of polynomials

coefficients. The size of matrixA is ny × ny whereny is the number of outputs of the
plant and the size of matrixB is ny × nu, wherenu is the number of inputs to the plant.
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2.2 Fuzzy Hammerstein model

Thefuzzy Hammersteinmodel is a special case of the NARX model, which is the combi-
nation of series of nonlinearities and linear dynamics but its structure is simpler than the
structure of the general NARX fuzzy model. Thefuzzy Hammersteinmodel approximates
nonlinearities of a plant and provides the predictions of outputs with a smaller error than
general NARX fuzzy models. Thefuzzy Hammersteinmodel consists of the series of
nonlinearities, expressed by a fuzzy system as a non linear function and a linear dynamical
part with the transfer functionG (as shown in Fig. 1), wherey = [y1, . . . , yny

]T is
the output vector,u = [u1, . . . , unu

]T – the input vector, andv = [v1, . . . , vnu
]T –

transformed input variables.
Fuzzy logic is chosen here because of its property to convertcomplex problems into

simpler problems using approximate reasoning and to allow to model uncertainties and
non-linearity of the plant. The nonlinear part of thefuzzy Hammersteinmodel is usually
approximated with the fuzzy system where zero-orderTakagi-Sugenofuzzy rules of the
form

Rh
j : IF u1 is T1,j and . . . andunu

is Tnu,j THEN vh = ph
j (6)

are used [4]. HereTij are the membership functions (gaussian, triangular, or trapezoidal
shape), that cover the universes of discourse of the input variables. Usually symmetric
triangular membership functions are used as they are simpleto calculate. In case of the
singleton defuzzification [14] the output of the fuzzy system is calculated according to
the equation:

νh =

∑Nr

j=1
βj(u)ph

j
∑Nr

j=1
βj(u)

, (7)

wherej is the truth value of thej-th rule’s premise. Product operator is used to represent
the premise of the rules:

βj =

n∏

i=1

Ti,j . (8)

If symmetric triangular membership functions are used, then

nr∑

j=1

βj(u) = 1. (9)

The fuzzy Hammersteinmodel is nonlinear in itsBj andpj parameters, whereBj are
polynomial coefficients andpj is zero order polynomial coefficient of the fuzzy sub
system’sj-th rule. Thefuzzy Hammersteinmodel is described with the equation:

ŷ(k) =

na∑

i=1

Aiy(k − i) +

nb∑

i=1

nr∑

j=1

Bipjβj(k − i − nd) (10)
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To easy the identification of the model parameters, the product of the parametersBi

andpj is used instead,Bj
i = Bipj. The generalizedfuzzy Hammersteinmodel then can

be described using equation [14]:

ŷ(k) =

na∑

i=1

Aiy(k − i) +

nb∑

i=1

nr∑

j=1

B
j
i βj(k − i − nd) (11)

If bk
i

bk
j

bl
j

bl
i

= 1, ∀i, j, k, l then generalizedfuzzy Hammersteinmodel becomes the original

fuzzy Hammersteinmodel [14].
The advantage of thefuzzy Hammersteinmodel is that with the fuzzy logic it is quite

easy to approximate any non-linearity. The model is clear and linguistically interpretable.
The fuzzy Hammersteinmodel is classified as low complexity model because it can be
synthesized with the smaller number of parameters comparing to the other fuzzy models.
Besides, simple fuzzy models do not incorporate previous state information in their rule
base [15]. The quality of thefuzzy Hammersteinmodel mainly depends on the identifica-
tion of its parameters.

3 Fuzzy Hammerstein model identification algorithms

The identification of the block-oriented model is a complex task. Different identification
algorithms are available for the parameter estimation ofHammersteinclass models. Ham-
merstein model identification methods usually use either parametric, like least squares,
recursive least squares [16, 17] and gradient method [4], ornonparametric methods, like
Bayesian regression which describes the unknown map as multidimensional stochastic
process which statistically summarizes the prior information that is available about the
map [6].

The aim of the nonparametric methods is to relax assumptionson the form of an
underlying nonlinear characteristic, and to let the training data decide which characteristic
fits those best [18]. Also, in the non parametric approach thenonlinearity is assumed to
be a continuous function, or a measurable function. In this case, the non-linear element is
represented by an approximation of a truncated series or an orthogonal function. But, the
choice of type and the length of series are not straightforward [19].

Alternative methods for the estimation of the nonlinear model parameters are avai-
lable when the model is synthesized using polynomials with unknown coefficients or by
a piecewise constant function [5]. This approach is preferable in control applications,
especially when piecewise linearization is feasible. Thenthe parameter estimation can be
solved by using regression techniques, iterating algorithms or combinations of these.

The least square parameter estimation algorithm, first usedby Gauss in 1795, identi-
fies unknown parameters using technique where measurement data are fitted to the under-
lying governing equations such that the identified parameter values minimize the squared
error (where error is, for example, measurement data minus the ideal measurement data
that would occur with zero noise and using the identified parameter values).
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In this paper the recursive least square (RLS) method is usedfor the identification
of fuzzy Hammerstein model parameters. This method was chosen because of several its
advantages:

• It can be applied in the real time, because it is not necessaryto use all input-output
data pairs to estimate parameters, and method uses earlier estimated parameters as
initial conditions or to specify previous estimates (usingnon recursive method we
need to recalculate parameters from all data) if plant conditions changes.

• The method does not require to have input output data which cover all possible input
output set.

• The method works faster because it does not use operations with matrices.

• The method faster converges if forgetting factor techniques is used [20].

• The method is simple for the implementation [21].

• The algorithm is able to learn very good policies using only asmall number of
samples compared to conventional learning approaches [21], such as Q-learning
[22].

• The algorithm requires little or no modification to adapt it to various situations [21].

The basic idea behind a RLS algorithm is to compute the parameter update at time
instant k by adding a correction term to the previous parameter estimate once the new
information becomes available. Such reformulation has reduced the computational re-
quirement significantly, making the RLS extremely attractive in the last three decades for
on-line parameter estimation applications. It can be seen that due to its recursive nature,
the complexity of the RLS has been reduced considerably fromO(N3) in the batch least
squares (BLS) to O(N2) in each estimate update [23,24].

In case of thefuzzy Hammersteinmodel parameters identification, RLS algorithm
searches for the best estimates of the model parametersA andB, taking into consideration
that the other parts of the model (the number of fuzzy sets, the centers of membership
functions) are chosen correctly in advance. The parametersof the fuzzy Hammerstein
model are identified from the linguistic rules and the process input-output data. The
parameters of the nonlinear static partB and p are multiplied, making them linear in
their product as the recursive least squares method is linear, so the estimate is the product
of nonlinear parameters, used to calculate the output of themodel. The non restricted
weighted recursive least squares method is described usingequation [4,17]:

Θ(k) = Θ(k − 1) +
P (k − 2)ϕT (k − 1)

[
ŷ(k) − ϕT (k − 1)Θ(k − 1)

]

α + ϕT (k − 1)P (k − 2)ϕ(k − 1)
, (12)

P (k − 1) =
1

α

[
p(k − 2) +

p(k − 2)ϕ(k − 1)ϕT (k − 1)P (k − 2)

α + ϕT (k − 1)P (k − 2)ϕ(k − 1)

]
, (13)
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whereα = [0.9; 1] is a forgetting factor (in this paper the value0.99 was chosen),P is a
covariance matrix [4,17]:

ϕ(k − 1) =
{
y(k − 1), . . . , y(k − ny),

β1

(
u(k − nd − 1), x

)
, . . . , βNr

(
u(k − nd − 1), x

)
, . . . ,

β1

(
u(k − nd − nu), x

)
, . . . , βNr

(
u(k − nd − nu), x

)}
,

(14)

(k − 1) = {a1, . . . , any
, p1,1, . . . , pnu,Nr

} – parameters vector,̂y(k) – measured process
output. If the forgetting factor is smaller, then thefuzzy Hammersteinmodel may become
unstable or its prediction may become weaker if predicting more complex signal for a
longer time period. If forgetting factor is not used, then itis not possible to track time-
varying parameter variation since the algorithm gain converges to zero whenk → ∞.
Further, the RLS algorithm converges very slowly, at rate of1

k
[25].

In this paper the RLS method is used for the estimation of polynomialA coefficients
and the product of polynomialB coefficients with the fuzzy rule base coefficients. During
the process of identification the cost function

E =
[
ŷ(k) − ϕT (k − 1)Θ(k − 1)

]2
(15)

is minimized [17], the RLS criterion is

J(Θ, k) =

k∑

j=1

ak−j
[
y(j) − ϕT (j − 1)Θ

]2
, (16)

wherey(j) is measured process output, is forgetting factor [20].

4 Nonlinear plant

The laboratory plant used for the modeling is shown in Fig. 2.Its central part is a close
tank with the adjustable water level within the range from0 to 25 cm. The “level” variable
of the process can be varied using water pump (item 1 in Fig. 2). The pump is the actuator

Fig. 2. The plant’s structure.
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and has an electrical input-range of0 to 10 V. The tank has two outlets for water flow. The
manual valve (item 3 in Fig. 2) and/or the combination of the magnetic valve (item 2 in
Fig. 2) and manual valve (item 2a in Fig. 2) control the exit water flow. These valves and
the control of the water pump manipulate the stationary condition of water flow. The water
flows in and out of the tank through rubber hoses, what are circled in rings. This water
flow peculiarity increases plant’s nonlinear characteristics. The pumps have dead zones
of different magnitudes and saturation non-linearity; they intro-duce electrical noises and
delays into the system. The water flow also depends on the water temperature and its
softness, what makes the modeling task more difficult.

5 Fuzzy Hammerstein model of nonlinear water plant

Fig. 3 shows the scheme of the two input one output fuzzy Hammerstein model.

Fig. 3. The scheme of fuzzy Hammerstein model.

The inputs are the control signal and the actual water level.The output is the change
of water level in reservoir. The predicted water level at thetime momentt is calculated
as the sum the previously calculated water level and the predicted water level change.
The generalizedfuzzy Hammersteinmodel was synthesized for the nonlinear plant. The
structure of the model is shown in Fig. 4.

The input linguistic variables are described using symmetric triangular membership
functions, equally spread across the universes of discourses. The universe of discourse
of the control signal is an interval[0; 10] and the universe of discourse of the water
level is [0; 20]. The first linguistic variable is composed of 6 membership functions, the
second with 21. Fuzzy sub-model uses 126 zero orderTakagi-Sugenofuzzy rules, product
for rules implication and singleton defuzzification. The generalizedfuzzy Hammerstein
model is described using parameter vector, containing polynomialA coefficients, the or-
der of the polynomialsA andB, theTakagi-Sugenofuzzy rule base the meaning of which
is explained in [26] and coefficientC. The order of the polynomialA was experimentally
chosen to be 3 as higher order makes the model unstable. The order of the polynomialB
was experimentally chosen to be 6.
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Fig. 4. The structure of generalized fuzzy Hammerstein model.

In order to increase the prediction rate of thefuzzy Hammersteinmodel, the parame-
ter grouping was introduced. The parameters were estimatedfor the five different groups
of the model input (the plant control signal) values:[0 . . . 2], [2 . . . 4], [4 . . . 6], [6 . . . 8],
and[8 . . . 10] volts. Subject to the input values of thefuzzy Hammersteinmodel different
parameter vectors were used. Besides, the polynomialA coefficients are multiplied by
the coefficientC:

ŷ(k) =

na∑

i=1

CAiy(k − i) +

nb∑

i=1

nr∑

j=1

B
j
i βj(k − i − nd). (17)

The coefficientC was introduced in the equation noting from the experiments that
the model is more accurate when the roots of the polynomialA are closer to0. The
influence of the coefficientC was also analyzed changing the order of the polynomialB.
It was noticed that the values of the coefficient are symmetric in regard to the input signal
of each group and is different when the polynomialB order changes (higher values if
polynomialB order is higher and lower values if its order is lower). The coefficientC has
always value1 at the ends of group intervals because the model parameters are identified
at these points. Table 1 presents the experimentally determined values of coefficientC
using which the prediction error is the smallest.

An increase of the order of the polynomialA in most cases makes the model unstable
so the relationship to the values of the coefficientC was not found.
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Table 1. CoefficientC values for group[4 . . . 6]

Control signal (V ) 4 4.1 4.5 5 5.5 5.9 6
The order of

PolynomialB
2 1 0.06 0.4 0.37 0.4 0.06 1
4 1 0.3 0.46 0.5 0.46 0.3 1
6 1 0.52 0.68 0.75 0.68 0.52 1

6 The analysis of fuzzy Hammerstein model

The synthesizedfuzzy Hammersteinmodel was tested with the real data from the plant
and the results were compared with theMamdanitype fuzzy model,Takagi-Sugenotype
fuzzy model and the hybrid fuzzy model [26].

The experiments were done in the real time. The step form input signal with the
steps of 5 volts, 4.1 volts and 6 volts was passed to the plant ant to the models at the same
time. The data were acquired at 1 second intervals.

Fuzzy models were compared according to the following criteria:

• The number of parameters that need to be identified.

• The number of times the re-identification of the parameters was used expressed in %
(the process of re-identification of model parameters is applied when the model’s
prediction error exceeds the defined limit).

• The accuracy of the prediction (the mean, the mean quadraticdeviation, the standard
deviation and the relative error of prediction were calculated).

The results of the experiments are presented in the Table 2 and the Figs. 5–8. From
the figures it can be seen that the best prediction is achievedwith the fuzzy Hammerstein
model. This model is defined with the smallest amount of the parameters (185 parameters)
and it predicts more accurate than the Mamdani type model, defined by 2892 parameters.
Another advantage of thefuzzy Hammersteinmodel is that it never re-identifies its para-
meters as the other models do, so it is100 % predictive.

Table 2. Performance analysis of fuzzy models

No. of No. of Prediction error
para- online Mean Stand.

meters re-ident quadric devia-
Fuzzy model (%) Relative Mean deviat. tion
Mamdani 2892 4.5 0.2016 0.2113 0.0413 0.2032
Takagi-sugeno 18 10.60 0.3472 0.3154 0.0893 0.2989
Hybrid 908 5.15 0.2470 0.2204 0.0281 0.1677
Hammerstein 185 0.0 0.1280 0.2066 0.0476 0.2183

209



R. Liutkevičius

Fig. 5. Outputs of the plant and the Mamdani type fuzzy model.

Fig. 6. Outputs of the plant and the Takagi-Sugeno type fuzzymode.

Fig. 7. Outputs of the plant and the Hybrid fuzzy model.

Fig. 8. Outputs of the plant and the fuzzy Hammerstein model.
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7 Conclusions

In this paper the synthesis of thefuzzy Hammersteinmodel for the nonlinear and non-static
water level plant has been introduced. Thefuzzy Hammersteinmodel was experimentally
compared with theMamdanitype,Takagi-Sugenotype and Hybrid fuzzy models. It was
experimentally proved, that thefuzzy Hammersteinmodel is more adequate to the real
plant than the other fuzzy models and it can be described using less parameters than the
other models, analyzed in this paper. For the identificationof the model’s parameters the
recursive least square algorithm was used. In order to increase the quality of the model,
the parameter grouping during the process of the parameter identification was introduced
to thefuzzy Hammersteinmodel. It was experimentally proved that thefuzzy Hammerstein
model with the parameter grouping is more precise than the model without it. It was also
experimentally proved that once identified thefuzzy Hammersteinmodel is quite precise
for any operating mode of the plant and did not need additional parameter re-identification
as the other analyzed models did.
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26. R. Liutkevičius, S. Dainys, Hybrid fuzzy model of nonlinear plant,Information technology and
control, 34(1), pp. 51–56, 2005.

212


